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Abstract
Process monitoring is necessary in machining operation to increase productivity, improve surface quality, and reduce
unscheduled downtime. Tool wear and breakage are important and common source of machining problems due to high
temperatures and forces of the machining process. Therefore, it is highly beneficial to develop an online tool condition
monitoring (TCM) system. This paper investigates a robust tool wear monitoring system for milling operation. Recent
developments in machine learning, in particular deep learning methods, result in significant improvement in automation of
different industries. Therefore, in this research, we employed convolutional neural network (CNN) as a well-established
and powerful deep learning algorithm for tool wear estimation. Wavelet packet-based features are extracted for tool wear
monitoring as a powerful time-frequency fault indicator. Moreover, a hybrid feature extraction method is proposed using
wavelet time-frequency transformation and spectral subtraction algorithms to intensify the effect of tool wear in the signal
and reduce the effect of other cutting parameters. CNN-based monitoring systems are compared with three other machine
learning methods (support vector machine, Bayesian rigid network, and K nearest neighbor method) as the baseline. The
research is validated using different datasets. The algorithms are implemented and compared using experimental force and
vibration signals from LIPPS lab of ETS university as well as using current signals as the fault indicator from Nasa Ames
dataset.

Keywords Tool condition monitoring · Deep learning · Spectral subtraction · Tool wear · Wavelet transform

1 Introduction

Machining processes are fundamental part of today’s
competitive manufacturing industries. Due to the need
for higher productivity, higher quality parts, and lower
manufacturing cost, there is growing demand to make the
machining operation totally automatic. Along with other
directions in automation, it is necessary to automatically
monitor machining online to assure the production safety

� Fatemeh Aghazadeh
fatemeh.aghazadehkouzekonani.1@ens.etsmtl.ca

Antoine Tahan
antoine.tahan@etsmtl.ca

Marc Thomas
marc.thomas@etsmtl.ca
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H3C 1K3, Canada

and quality. Tool defects can be considered one of the
most common and costly faults of the machining process.
Due to contact forces and friction between cutting tool
and workpiece, high temperatures in the cutting area and
pressure of the chips on the tool, various defects may happen
to the tool which deteriorates the surface finish or causes
damage or breakage to the tool, workpiece, or machining
center [1]. Therefore, there is high demand to design a
reliable and robust online automatic TCM system to actively
monitor the cutting process and provide live reports of tool
condition status.

TCM methods can be categorized into two main groups:
direct and indirect methods. Direct methods measure actual
value of faults with sensors such as laser, optical and ultra-
sonic. Another approach is used in indirect methods by
employing physical parameters of the system such as force
and vibration to represent tool condition indirectly [2].
Although direct measurement methods estimate tool fault
with high accuracy, they are still expensive to implement
and not suitable for online applications in industrial
environments. However, indirect methods can be used to

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-018-2420-0&domain=pdf
mailto: fatemeh.aghazadehkouzekonani.1@ens.etsmtl.ca
mailto: antoine.tahan@etsmtl.ca
mailto: marc.thomas@etsmtl.ca


3218 Int J Adv Manuf Technol (2018) 98:3217–3227

fulfill TCM purposes as an alternative with accurate results
and acceptable cost by using a proper descriptor signal and
an appropriate modeling method [3]. Moreover, the same
sensor can be used for multiple monitoring tasks.

Applicable and informative signals that are widely used
for TCM includes force, vibration, acoustic emission,
current, and power signals. Li et al. studied TCM for turning
process by employing force signals as the fault indicator
[4]. They extracted 14 time domain features from the force
signals and, using v-support vector regression, developed
a model for flank wear estimation. While the force signal
shows promising behavior to represent tool wear variations
during the machining process, it is also highly dependent
on other operating conditions and relatively expensive for
industry use [3]. Vibration sensors are also practical in
industrial environments. For example, Harun et al. studied
TCM during deep twist drilling process and compared
vibration and force signals for this purpose using time and
frequency domain fault descriptors.Their study suggests
that both sensors are capable of performing this task,
but they recommended vibration signal as the superior
fault indicator [5]. Acoustic emission is also practical and
informative signal which is highly used in the literature
for TCM [6, 7]. Soltani Rad et al. also employed spindle
current as an economic and practical indicator signal for
tool breakage detection in milling process. In this paper, the
authors applied least squares support vector machine (LS-
SVM) as the classifier and achieved acceptable results for
monitoring tool breakage [8]. To make monitoring systems
more robust, sensor fusion is a powerful approach. Sensor
fusion refers to combining the information of more than one
sensor in a complementary way to enhance the accuracy
and reliability of the system. For example, Segreto et al.
employed cutting force, acoustic emission, and vibration
signals for tool condition assessment in turning process.
Signals are fused in feature level after processing and the
results are fed to a neural network [9].

Signal processing is the next step after choosing
appropriate sensors and signal acquisition to magnify the
effect of monitoring parameters by removing noises. Time
domain analysis, frequency domain analysis, and time-
frequency domain analysis are three common approaches
for this step [10]. While many researches are devoted in
time domain and frequency domain analyses due to low
complexity, time-frequency analysis is well suited for this
application as it examines both time variant and frequency
characteristics of the signal simultaneously. Based on the
non-stationary nature of faulty signals, time-frequency
analysis can provide discriminative information about
machinery health conditions. Therefore, discriminative fault
features can be extracted from a faulty signal by choosing
a proper time-frequency method [11]. Rehorn et al. utilized
s-transform as a time-frequency transformation method

and proposed a time-frequency domain feature, selective
regional correlation, for machining condition monitoring
[12]. In another research, a comparative study is performed
between five time-frequency transformation methods for the
purposes of TCM in milling operation [13].

The signal representation in time-frequency domain
has high dimensions. Therefore, after time-frequency step,
dimensionality reduction methods are useful. Dimensional-
ity reduction methods such as principal component analysis
(PCA) and linear discriminant analysis (LDA) are popular
among the literature to perform this task [14–16]. Spectral
substraction is another method which can be implemented
to enhance signal quality. It it originally used in speech
enhancement to remove the effects of steady sounds in
the environment [17, 18]. Similar to the sound and speech
analysis applications, this method is employed as a noise
reduction tool. Fault diagnosis applications can use it to
reduce the steady-state part of the signal and present fault
characteristics. For example, El Bouchikhi et al. proposed
an algorithm for fault diagnosis of induction machine bear-
ings using spectral subtraction method. In this study, stator
current frequency response of the healthy machine is sub-
tracted from spectrum of machine’s current acquired signal
to present better fault indicators [19].

During the machining process, various parameters such
as operational conditions, depth of cut, feed rate, and
workpiece material are changing which may degrade the
monitoring performance and can reduce system robustness.
Moreover, the relation between signals and monitoring
parameters are often nonlinear and complex. Therefore,
powerful methods are required to perform the decision-
making task. Many methods such as artificial neural
network (ANN), support vector machine (SVM), and
Bayesian networks are employed to perform this task in
the literature. Patra et al. investigated tool wear during
micro drill using thrust force signals and ANN method
[20]. In another study, discrete wavelet transform (DWT) and
SVM are used along with sound signals for tool condition
monitoring in face milling [21]. Tobon-Mejia used Bayesian
network method for TCM and the estimation of its
remaining useful life (RUL) in machining process [22].

Recently, powerful characteristics of deep learning
methods draw attention of researchers in different fields and
helped them to solve many challenges in machine learning
domain [23]. Deep learning refers to machine learning
techniques with deep architectures and multiple layers
which enable them to learn highly complex relationships
from even low-processed to raw signals [24]. In an era
in which sensors are actively producing high amounts
of data, such techniques are able to make the most
information out of the big data. They are therefore less
dependent on specific applications and frameworks and
have powerful characteristics to outperform other methods
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when the relationship between the input data and desired
output is complex [25]. Despite their high potential, they
are relatively recent in the field of machinery condition
monitoring. Zhao et al. employed long short-term memory
networks (CBLSTM) for tool condition monitoring in
milling process [26]. Jing et al. developed a CNN-based
method for gearbox condition monitoring using frequency
data of vibration signals and their method outperformed
some of the common machine learning algorithms [27]. In
another study, vibration signals of a gerbox system are pre-
processed using statistical measures from the time domain
and frequency band energy from frequency domain. Then,
the feature vector is fed to CNN to train it to detect gearbox
faults [28]. Based on high potentials of deep learning
methods, further research is crucial to examine them with
different signals and levels of signal processing in TCM
applications.

In this study, a TCM system is proposed using
convolutional neural network as a powerful and established
deep learning method. In the first step, force signals
and vibration signals from ETS experimental dataset are
selected independently to develop the monitoring system.
Wavelet packet transform is employed for signal processing
step to transform the signal to time-frequency domain. The
final step is the machine learning algorithm which the
proposed method is compared with three common methods
in the literature, support vector regression, Bayesian rigid
regression, and nearest neighbor regression methods. In
the next step of the study, spindle current signal from
Nasa Ames dataset [29] is used for further validation of
the method. Spectral subtraction is an ideal candidate to
process current signals as it is power based and not a
vectorial format in contrast to force and vibration. . Spectral
subtraction method is applied around tooth path frequency.
Afterwards, further noise processing is performed on the
output of spectral subtraction and a number of features are
generated to represent the fault in the signals. Finally, the
comparative study between the machine learning algorithms
is performed to see the results with a different dataset,
signal, and higher levels of signal processing.

This paper is organized as follows: Section 2 represents
the backgrounds and formulation of the algorithms which
are used in this paper. The proposed algorithm is explained
in Section 3. Section 4 introduces the two datasets which
are used in this study for validation of the work. Results
and discussion are presented in Section 5 and Section 6 is
dedicated to conclusion.

2 Background of methods

This section presents the formulation and background of the
algorithms and techniques which are used in this paper.

2.1Wavelet transform

Wavelet transform is one of the methods that is widely
used for fault diagnosis and health condition monitoring.
The main difference between wavelet transform (WT) and
fast Fourier transform (FFT) is that in wavelet transform,
wavelets are used as the basis instead of sinusoidal functions
that are used in fast Fourier transforms. It is an effective
tool for transient signal analysis as well as time-frequency
localization since it adds a scale variable in addition to the
time variable in the inner product transform. It has a better
time localization but a lower frequency resolution for higher
frequency components. In contrast, for lower-frequency
components, the frequency resolution is higher while the
time localization is worse. Following equation describes the
formulation of the continuous wavelet transform [11].

WTx (t, a) = 1√
a

+∞∫
−∞

x (u) ψ
(u − t)

a
du (1)

where wavelet ψ (u − t) /a is derived by dilating and
translating the wavelet basis ψ (t), and 1/

√
a is a norma-

lization factor to maintain energy conservation and a > 0.

2.2 Spectral subtraction

Spectral subtraction is a method which was originally used
for speech signal enhancement. A signal is considered
a combination of noise and clean speech; therefore, the
noise spectrum is estimated during speech pauses, and an
estimation of the noise spectrum is subtracted from the
noisy speech spectrum to obtain clean speech. It can be used
in fault diagnosis applications by removing the steady-state
part of the spectrum from signals to obtain their anomalies
and fault signatures. Consider a measured signal which
consists of the steady-state normal component and additive
fault [18, 19]:

y[n] = s[n] + d[n] (2)

where y[n], s[n], and d[n] are the sampled measured
signals, fault, and steady-state component, respectively. The
frequency domain representation of the signal is given by
the following:

Y (jw) = S(jw) + D(jw) (3)

Therefore, the fault component of the signal can be
obtained based on the following equation:

̂S(jw) = Y (jw) − ̂D(jw) (4)

where ̂S(jw) is the fault-related spectrum estimate and
̂D(jw) is an estimate of the steady-state component of
spectrum. ̂D(jw) is often obtained using the time-averaged
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signal spectrum using the normal healthy state of the
system:

̂D(jw) ∼= |D(jw)| = 1

M

M−1
∑

i=0

|Di(jw)| (5)

where |D(jw)| is time-averaged signal spectrum and M is
the number of samples in the average window.

2.3 Convolutional neural network

Deep convolutional neural networks (CNNs) have recently
demonstrated a great success in many machine learning
tasks, such as regression and prediction. Such CNNs
have been exploited to appropriately characterize internal
variations (intra-class) within a large amount of data. The
special characteristic of this network is that the network
learns data-driven filters to convert the data to features
that describe the inputs and represent variables of interest
inside the network which are usually performed separately
in traditional methods [30]. Therefore, it can achieve
high performance even with minimal pre-processing. The
general architecture of CNN consists of one input layer,
one or multiple convolutional layers, pooling layers, fully
connected layers, and one output layer.

In a convolution layer, the feature maps from previous
layers are convolved with learnable kernels and fed to the

activation function to construct the output feature map. Each
output map may combine convolutions with multiple input
maps. The general formulation for a convolutional layer is
as follows [30]:

Xl
j = f

⎛

⎝

∑

i∈Mj

Xl−1
i ∗ kl

ij + bl
j

⎞

⎠ (6)

where Xl−1
i is the feature map in the previous layer, f is a

nonlinear activation function, Mj represents a selection of
input maps, l is the index for each convolution layer, k is a
square matrix with the size of kernels, and b is an additive
bias given to each output map.

Pooling layers are generally used after the convolutional
layers to produce down sampled versions of the input maps.
Therefore, the number of output maps will be the same
as the number of input maps, but their dimensions are
decreased. In terms of formulation [30]:

Xl
j = f

(

βl
jdown(X

l−1
j ) + bl

j

)

(7)

where down() represents a sub-sampling function. Max
pooling is an example of such functions which uses the
maximum value from each cluster of neurons at the prior
layer [31]. Each output map has its own multiplicative bias
β and an additive bias b.

Fig. 1 The monitoring system
framework
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Finally, fully connected layers which are traditional
multilayer perceptions (MLPs) [32] compute the desired
outputs from the neurons of the previous layers.

3 Proposedmethodology

In this section, proposed methodology of this paper is
elaborated. The first step of the system is signal acquisition.
Three different sensors (dynamometer, accelerometer, and
current sensor) are examined using two different datasets.
The framework of the system with its different steps is
depicted in Fig. 1. After the data acquisition step, signals are
processed to extract fault indicators and remove noise.

Time-frequency transformation is used for this task
due to its promising capability in revealing the time-
variant characteristics of the signals in frequency domain
using Morlet wavelet transform method. We favored the
Morlet wavelet in this research as in mechanical dynamical
signals, impulses are usually the symptoms of faults and
the Morlet wavelet is very similar to impulse component
[33]. Furthermore, Jáuregui et al. in their research on
frequency and time-frequency analysis of cutting force and
vibration signals for tool condition monitoring reported
the Morlet wavelet function as a good candidate for the
feature extraction applications, as it provides a good balance
between time and frequency resolutions [34].

The next step is to extract features from the wavelet
transform that describe the fault properly. Wavelet packet
transform is employed as it permits decomposing signals
into uniform frequency bands [35]. WaveletPacket function
from PyWavelets [36], the scientific Python module for
wavelet transform calculations is used to perform the
transformation. The algorithm proposed in this paper uses
the Morlet as the wavelet function and with 4 as the
levels of decomposition. The output of the transformation
is divided into 16 uniform bands. The rms value of each
grouped output frequency band is obtained and the first 12
bands of rms values are used as the input to the machine
learning without further processing. Therefore, minimum
pre-processing is implemented to explore the capability of
CNN.

Contrary to other hand-crafted feature learning models,
these data-driven models are capable of learning discrim-
inative nonlinear feature representations. Thus, they can
provide an effective prediction tool for fault detection by
learning robust feature representations directly from the
input signals.

A deep CNN model is proposed in this paper to
accurately predict the faults in machining process. To
that end, a simple yet effective architecture as shown in

Fig. 1 is considered due to the constraints of tool condition
monitoring system. The proposed architecture is comprised
of two convolutional layers (conv1 and conv2), where each
layer has 12 kernels of 2×1 and 4×1, respectively. To
keep the original signal size and avoid decreasing the
number of features, the stride is considered as 1 and these
convolutional layers are designed consecutively. A pooling
layer is used after those successive convolutional layers to
handle the spatial size of the feature representation through
max pooling, as well as to control the number of parameters
(computational complexity of the network) and overfitting.
The output of pooling layer is first flatten and then fed into
two fully connected layers. The fully connected layers are
responsible to compute the softmax activation with a matrix
multiplication followed by a bias in order to produce the
prediction value.

For the system which uses current signals, spectral
subtraction method is applied to the signals. For this
purpose, a local average of the spectral magnitude in
different frequency bands is extracted using the dataset.
For each new signal, the estimated healthy spectrum under
the same cutting conditions is subtracted from the signal.
Figure 2 illustrates the diagram of spectral subtraction
method. Further noise canceling and signal refinement is
performed after the spectral subtraction step.

In the next step, various features are extracted from
the output of spectral subtraction step. Maximum energy
and frequency of occurrence, variance, standard deviation,
and width of frequency response are among the extracted
features. Afterwards, CNNmodel which is used for this step
is similar to the one which was explained in Fig. 1.

Fig. 2 Spectral subtraction method for current signal
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4 Experimental datasets

4.1 ETS dataset

Experimental setup
A set of experiments are performed to measure tool

flank wear during machining of hard to cut materials.
K2X10 Huron high-speed CNC machine of the LIPPS
laboratory at ETS is used to perform the experimental tests.
A multi-component Kistler dynamometer 9255-B, coupled
with charge amplifiers, was used to measure the cutting
forces in three orthogonal directions (Fx/Fy/Fz). A tri-axial
accelerometer was mounted on the spindle of the machine
with a sensitivity of 100 mV/g for measuring acceleration.

Fig. 3 Experimental setup

D2 high-speed tool steel is selected as the workpiece
material with hardness of 60-62 HRC due to its high wear
resistance in order to investigate tool wear in machining
hard material with dimension of 200 mm × 54 mm × 4
mm. Carbide Walter End Mill Protostar H50 Ultra tool with
6 teeth is selected as the cutting tool with 50◦ of helix angle.
Different cutting speeds of 2500 rpm and 6000 rpm and feed
rates of 0.12 mm/tooth and 0.05 mm/tooth with 4-mm depth
of cut and tool wear were measured at different intervals
which results in 63 cases with different tool wears and
cutting conditions. Figure 3 demonstrates this experimental
setup.

4.2 Nasa Ames dataset

Tool fault detection models and validation of the research
method is implemented by the benchmark NASA Ames
and UC Berkeley milling dataset [29]. The experiments
are performed under various operating conditions using
the Matsuura MC-510V machining center. In this research,
spindle current sensor is selected based on its ease of use
and practicality in industrial application. The dataset signals
include cases with changes in depth of cut and feed rate, and
therefore, the effect of these parameters can be investigated
on the monitoring system accuracy and the system will be
developed under varying cutting parameters.

The tool is a 70-mm face mill with six KC710 inserts
based on its industrial applicability. Workpiece material in
the research is cast iron. An OMRON K3TB-A1015 current
converter feeds the signal from one spindle motor current
phase into the cable connector and a model CTA 213 current
sensor (Flexcore Div. of Marlan & Associates, Inc.) is used
for data acquisition. Flank wear (VB in μm), which is
defined as the distance from the cutting edge to the end
of the abrasive wear on the flank face is considered as the
fault and its value is reported in all the experiments using a
microscope.

5 Results and discussion

In this section, results for the three monitoring systems are
presented. The first one uses force signals from the ETS
dataset as the monitoring signal. The second one employs
the vibration signals from ETS dataset and finally the third
subsection investigates the system with current signals from
the Nasa Ames dataset and spectral subtraction method.

5.1 Tool wear estimation using force signals
from ETS dataset

The methodology of this system is depicted in Fig. 1. This
system uses force signal as the monitoring indicator from
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Table 1 Comparison between
different machine learning
algorithms with force signals

Regression algorithms Average accuracy, % RMSE

Bayesian ridge regression 73.1 0.1815

Nearest neighbors regression (KNN) 71.5 0.2021

Support vector regression (SVR) 79.0 0.1103

Convolutional neural network (CNN) 88.2 0.0709

the ETS dataset. The data is divided into two categories,
training and testing. The system is trained using the training
subset which consists of 70% of the data. Afterwards, the
system is tested with 30% of the data. The features and
tool wear are normalized before machine learning step
and denormalized after tool wear prediction. MinMaxScaler
function from Scikit-learn python library [37] is employed
as an standard machine learning feature normalization
method to normalize both inputs and tool wear. It trains
an estimator using a linear scaling function to transform
features .This estimator scales and translates each feature
individually such that it is in the given range (between zero
and one in this paper) on the training set using a linear
interpolation.

The keras deep learning library is employed [38] with
tensorflow as the back-end [39] to implement the proposed
CNN model. Three of the common machine learning
methods (SVR, KNN, and Bayesian network) in this field
are also implemented using Scikit-learn machine learning
library [37] as a baseline to compare the performance
of the CNN-based system with these methods. For the
monitoring system, average accuracy in percentage (the
differences between predicted and actual tool wear values
divided by average of tool wears) and RMSE are calculated
as representative of the performance from the Scikit-learn
machine learning performance analysis toolboxes.

Table 1 presents the results of tool wear estimation using
test dataset for different machine learning algorithms. Based
on the results, CNN has the highest accuracy (88.2%) and
lowest root mean square error (RMSE) (0.0709) which
are acceptable for most industrial applications. It can be
observed from the results is a relatively high difference
between the accuracy of CNN and other methods due to the
fact that signals were not processed after the time-frequency
transformation method. Convolution layers of the CNN was
able to filter the data and convert it to more discriminative
features. Figure 4 presents the predicted versus actual tool
wears using the CNN-based algorithm for two tools from
the no wear state up to the high tool wear values. For each
tool, the experiments start with no wear (VB = 0) and the
curves show gradual increase in the tool wear as cutting is
continued until high tool wear values. Based on the figure,
the estimated tool wear greatly correlates with actual tool
wear.

5.2 Tool wear estimation using vibration signals
from ETS dataset

The system in this section is similar to the force-based
monitoring system of the previous section, except that the
force signal is replaced with the spindle vibrations. The
ETS dataset is used for this system as well. Data is divided
into two categories, Training and testing with 70% and 30%
of the data respectively. The keras deep learning library
is employed to implement the proposed CNN model and

Fig. 4 Estimated and real tool wear values using force signals. a First
cutting and b second cutting tool
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Table 2 Comparison between
different machine learning
algorithms with vibration
signals

Regression algorithms Average accuracy, % RMSE

Bayesian ridge regression 66.9 0.2251

Nearest neighbors regression (KNN) 57.0 0.281

Support vector regression (SVR) 59.6 0.2701

Convolutional neural network (CNN) 84.6 0.086

Scikit-learn for other machine learning methods similar to
previous sections.

The result of tool wear estimation using vibration test
dataset is provided in Table 2. The accuracy of CNN is
84% which is slightly lower than the force-based system
of previous sections, but still promising for real-world
applications. For the vibration-based systems, there is a

Fig. 5 Estimated and real tool wear values using vibration signals. a
First cutting tool and b second cutting tool

high difference between the accuracy of CNN and other
machine learning methods. It can be interpreted that it is
due to the fact that vibration signals do not provide features
directly related to tool wear without specific and hand-
crafted pre-processing. However, convolution filters in CNN
architecture were able to convert the data to discriminative
features. RMSE value of CNN (0.086) is also significantly
lower than other methods. Figure 5 illustrates the predicted
versus actual tool wear using the CNN-based algorithm for
two different tools. Experiments start with a new tool with
no wear (Experiment 0) state up to the high tool wears.

5.3 Tool wear estimation using spindle current
signals from Nasa Ames dataset

The last section of the study investigates a system design
based on the spindle current signal as the fault indicator.
Nasa Ames dataset is utilized for the validation. Two
systems are trained for comparison one with spectral
subtraction method and another without this method. The
architecture of the first system is illustrated in Fig. 2. The
architecture of the second method is similar to the force-
and vibration-based systems, which directly fed machine
learning with wavelet transform-based features. Therefore,
the effect of higher pre-processing is investigated in the
performance of the algorithms.

Figure 6 depicts the result of wavelet transform using
some sample signals from the dataset. The diagram
represents the WT output for the healthy signal (VB = 0)
as well as four states of the fault. It can be observed from
the diagrams that the signal has higher energy around tooth
pass frequency. As the fault value increases, the magnitude
and density of wavelet are increased. However, the data
is still noisy and needs to be further processed to extract
discriminative features. The processed data after the spectral
subtraction is shown in Fig. 7. For this analysis, an average
estimation of spectrum of the current signal around tooth
path frequency for healthy case is extracted from the dataset.
For each new signal of the machine, the estimated healthy
spectrum under the same cutting conditions is subtracted
from the signal. It normalizes the signals based on their
cutting conditions and magnifies the effect of tool wear.
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Fig. 6 Spindle current signals
with different tool wears in
wavelet domain

Fig. 7 Spindle current signals
with different tool wears after
spectral subtraction
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Fig. 8 Loss function during training process

Comparing the Figs. 6 and 7, the signal quality is enhanced
after the spectral subtraction and the signals are more
discriminative with respect to tool wear.

The CNN architecture and machine learning implemen-
tation for this step is similar to two previous systems.
Figure 8 reports the loss values converging close to zero dur-
ing the epochs of the training step. Afterwards, the unseen
test dataset signals are fed to the system.

Based on the results of Table 3, CNN is superior to
other methods with 87.2% accuracy in tool wear estimation
for the system with spectral subtraction Bayesian rigid
regression and support vector regression methods also
have satisfactory results of 85.8% and 85.5% respectively.
Based on the comparison between the systems with and
without spectral subtraction, spectral subtraction increased
the accuracy of each algorithm by approximately 5%.
Therefore, it can be concluded that although CNN has
powerful capabilities to interpret data with minimum pre-
processing, it would still benefit from advanced and
efficient signal processing methods, specially under limited
number of training samples.

Based on the results of three studied systems, CNN
consistently provided higher results than other algorithms
with different datasets and signals which proves its
efficiency. The major advantage of CNN is in lower
processed signals which has ability to extract relevant
information compared to other methods.

6 Conclusion

In this research, a tool condition monitoring methodology
is proposed and tested under changing cutting parameters.
Force and vibration signals from the ETS dataset and
spindle motor current signals from Nasa Ames dataset
are used as monitoring signals. Wavelet transform as an
advanced time-frequency transformation method is used
in the signal processing step due to its great applicability
to process signals and reveal rich information in both
time and frequency domains simultaneously. A deep CNN
method is also implemented as the last step to model the
complex relationships between extracted features and tool
wear values.

Wavelet analysis revealed the time-variant characteristics
of frequency response of the signal and the study confirms
its performance and applicability for tool wear monitoring.
Spectral subtraction method is employed for the current
signal which significantly improved its condition and
magnified the signature of tool wear by removing the
steady-state part of the signal due to normal cutting
and magnified the remaining fault characteristics.The
comparison between the systems with and without spectral
subtractions shows approximately 5% increase in the
accuracy of systems which benefit from this algorithm.

Tables 1, 2, and 3 report the comparative results of the
CNN-proposed methodology of the paper with some of the
common machine learning techniques. Based on the results,
CNN consistently outperforms other machine learning
algorithms between all three signals from two datasets
which proves its robustness and high performance in this
application. CNN improved the accuracy of force- and
vibration-based methods significantly (around 15%). It is
interpreted as the results of CNN convolution layers which
filtered the signal and extracted discriminative features from
the raw wavelet response. Therefore, it is beneficial in
reducing the cost of specific engineering data manipulations
and improving accuracy in the case of low-quality signals.
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Table 3 Comparison between
different machine learning
algorithms with current signals

Regression algorithms With spectral subtraction Without spectral subtraction

Average accuracy, % RMSE Average accuracy, % RMSE

Bayesian ridge regression 85.8 0.091 79.6 0.188

Nearest neighbors regression (KNN) 79.1 0.220 78.5 0.232

Support vector regression (SVR) 85.5 0.102 80.1 0.181

Convolutional neural network (CNN) 87.2 0.088 81.5 0.156
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