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Abstract
The single-row facility layout problem (SRFLP) seeks the arrangement of given facilities along a straight row in such
a way that the total material handling cost among the facilities is minimized. The SRFLP is studied till date as an
unconstrained problem allowing the placement of the facilities in any location in any order without any restriction. However,
a practical SRFLP instance may need to satisfy different types of constraints imposed on the placement of its facilities,
e.g., the operation sequencing with precedence constraints in a process planning can be modeled as a SRFLP with ordering
constraints. Such a SRFLP model, named as the constrained SRFLP (cSRFLP), is introduced here by instructing to place
some facilities in fixed positions, and/or in specified orders with or without allowing the placement of other facilities in
between two ordered facilities. Since it would be computationally too expensive for any search technique to satisfy such
constraints, a permutation-based genetic algorithm (pGA), named as the constrained pGA (cpGA in short), is also proposed
with some specially designed operators for exploring only feasible solutions of cSRFLP. In the numerical experimentation,
investigating three case studies of the operation sequencing problem of process planning as cSRFLP instances, the cpGA
found new sequences of operations with the same best-known objective value for the smaller-size case study, while improved
the best-known solutions of the other two case studies of larger sizes. Further, transforming some large-size benchmark
instances of SRFLP into cSRFLP, the cpGA found marginally inferior solutions than their best-known SRFLP solutions,
which is obvious due to the constraints imposed in the transformed cSRFLP instances.

Keywords Combinatorial optimization · Facility layout design · Operation sequencing · Constraint · Genetic algorithm

1 Introduction

The well-known single-row facility layout problem (SRFLP)
deals with the effective arrangement of given facilities
along a straight row on one side of a corridor, so as to
minimize the total material handling cost among the
facilities. It has applications in various areas, including
installation of machines in flexible manufacturing systems
where automated guided vehicles transport materials among
the machines laid down along a straight line [12], or
arrangement of departments in office buildings, stores in
supermarkets, laboratories in hospitals, and so on [34, 38].
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The SRFLP is an NP-hard combinatorial optimiza-
tion problem [1, 10, 17], which has been investigated
by both exact and heuristic approaches. Methods investi-
gated for exact solutions of the SRFLP include branch-
and-bound [38], dynamic programming [34], semidefi-
nite programming [2], and mixed-integer linear program-
ming [24]. To deal with large-size instances in lesser compu-
tational time, various heuristic and metaheuristic procedures
have been adopted, e.g., hybrid simulated annealing [11],
constructive greedy heuristic [20], and ant colony algo-
rithm [39]. Recent work with heuristics for the SRFLP
includes scatter search [21], particle swarm optimiza-
tion [37], tabu search [36], and genetic algorithm [6].

The SRFLP is usually handled as an unconstrained
optimization problem, in which the facilities can be
arranged in any order without any restriction. However,
while handling practical problems, one might encounter
some positioning and ordering constraints on the placement
of some given facilities, such as arranging a facility in a
fixed position, two facilities together, and a facility prior
to another. Although there are many other models taking
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care of such constraints, the SRFLP could not be found
studying in that direction. For example, in the hospital
facility layout design problem studied by Padgaonkar [32],
the departments requiring more inter-floor movement were
fixed closer to the elevator and those requiring frequent
inter-departmental movement were fixed on the same or the
next floor. Observing the possibility of more impulse buying
if a customer passes through more items, Ozgormus [31]
designed the block layout of a grocery store by dispersing
basic commodities (such as milk, meat, frozen foods, and
breads/cereals) at the end of the store. In regard of placing
facilities in some given orders, operation sequencing in
process planning is a well-known problem. The operation
sequencing problem seeks the manufacturing operations,
required for machining an industrial part, to be sequenced
with some precedence (i.e., ordering) constraints in a way
to minimize the total machining cost [16]. Precedence
constraints among machining operations become essential
if some features of an industrial part cannot be machined
prior to machining some other features, e.g., a hole is to
be drilled in a work-piece before it is tapped [25, 41]. It is
also observed that the ordering of operations in sequence
flexibility-based manufacturing systems can be varied by
carrying out some operations in sequence, while others
without any such restriction [22]. Since a manufacturing
system is neither very restrictive like the classical job-shop
problem (which involves strict ordering of the operations to
be performed) nor so flexible as the generalized open-shop
problem (in which the operations can be performed in any
order), such restrictions in sequencing operations are quite
common in many manufacturing systems [13]. Genetic
algorithm [14, 35], ant colony algorithm [19], simulated
annealing [14, 29], and particle swarm optimization [23,
27, 33] are widely used metaheuristics for finding optimal
operation sequences in process planning.

Motivated by practical requirements as above, a con-
strained SRFLP model, named as the constrained single-
row facility layout problem (or, cSRFLP in short), is intro-
duced here considering positioning and ordering constraints
on the placement of some facilities. Also, the operation
sequencing problem with precedence constraints is illus-
trated as a variant of the cSRFLP with ordering constraints.
It is to be noted that it would be computationally very expen-
sive [28, 40], or even impossible, for a search technique
to satisfy such integer constraints on its own. Therefore, a
novel permutation-based genetic algorithm, named as the
constrained permutation-based genetic algorithm (or, cpGA
in short), is also proposed for exploring only the feasi-
ble space of the cSRFLP. In the cpGA, a greedy heuristic
algorithm initializes its population with randomly gener-
ated feasible solutions, while a crossover operator generates
new feasible solutions by exploiting old solutions. Simi-
larly, a mutation operator is developed for exploring the

neighborhood of newly generated solutions by preserving
their feasibility. In the numerical experimentation, results
of some cSRFLP instances of various sizes are presented
by comparing with the results of the operation sequencing
problem and their SRFLP-based values. It is to be men-
tioned that until Datta et al. [6] formulated the general
SRFLP model as an unconstrained permutation-based opti-
mization problem, it was studied with various constraints
on overlapping of the facilities and their placement in a row
of length equal to the sum of the lengths of all the indi-
vidual facilities. The positioning and ordering constraints
considered in the cSRFLP model are not to be confused
with those overlapping and length-based constraints used in
the exact mathematical formulation of the general SRFLP
model. Apart from the operation sequencing problem as
illustrated in the present work, the proposed cSRFLP model
can also be applied for finding the optimum sequence of
assembly operations in the product assembling problem.

The rest of the article is organized as follows: the
cSRFLP model is introduced in Section 2, followed by
the proposed cpGA in Section 3. Performing numerical
experimentation with three instances of the operation
sequencing problem of process planning and some selective
large-size cSRFLP instances in Section 4, the article is
finally concluded in Section 5.

2 The proposed cSRFLPmodel

As described in Section 1, the cSRFLP model introduced
in the present work involves the effective arrangement of
given facilities along a straight row by minimizing the total
material handling cost among the facilities subject to the
following two types of constraints:

(1) Positioning constraints: Some facilities are to be
placed in specified fixed positions.

(2) Ordering constraints: Some pairs of facilities are to
be placed in specified orders, with or without allowing
the placement of other facilities in between an ordered
pair.

2.1 The cSRFLP formulation

As per above discussion, the cSRFLP model can be defined
as a problem seeking the effective arrangement of n number
of given facilities along a straight row with some facilities
in fixed positions and some pairs of facilities in specified
orders with or without allowing any other facilities in
between an ordered pair.

Accordingly, the following notations are defined for
formulating the problem (constraint related parameters are
denoted by uppercase alphabets):



Int J Adv Manuf Technol (2018) 98:2173–2184 2175

Indices

i, j : Indices of facilities and positions
k: Index of ordered pairs

Fixed parameters

n: Number of facilities to be arranged
li : Length of facility i

cij : Material handling cost between facilities i and j ;
i �= j

Ti : Indicator of the fixed position for facility i; Ti ∈ {yes,
no}

Pi : Specified fixed position of facility i (positioning
constraint)

Oi : Indicator for ordering facility i on left side (ordering
constraint); Oi ∈ {yes, no}

Mi : Number of facilities to be placed on the right side of
facility i; Mi = 0 if Oi = no

Rik: Facility in pair k to be placed right to facility i

(ordering constraint); k = 1, 2, . . . ,Mi

Aik: Indicator for placing other facilities in between
facility i and its pairing facility in pair k; Aik ∈ {yes,
no}

Variables

π : Index of a permutation of given n facilities
rπ
i : Facility placed at position i of π

xrπ
i
: Centroidal distance of facility rπ

i from the left corner
of the row

f π : Total material handling cost among the facilities
of π

In terms of the above notations, the cSRFLP model
for permutation π can be expressed mathematically as
follows:

Minimize f π =
n−1∑

i=1

n∑

j=i+1

crπ
i ,rπ

j

∣∣∣xrπ
j

− xrπ
i

∣∣∣ (1)

Subject to Prπ
i

= i ; if Trπ
i

= Y ; i = 1, 2, . . . , n (2)

j = i + 1 ; if

{
Orπ

i
= Y ; Rrπ

i ,k = rπ
j ; Arπ

i ,k = N
k = 1, 2, . . . ,Mi ; i, j = 1, 2, . . . , n

(3)

j � i + 1 ; if

{
Orπ

i
= Y ; Rrπ

i ,k = rπ
j ; Arπ

i ,k = Y
k = 1, 2, . . . ,Mi ; i, j = 1, 2, . . . , n

(4)

where xrπ
i

= lrπ
1

2
+ 1

2

i∑

j=2

(
lrπ

j−1
+ lrπ

j

)
. (5)

In Eq. 1, f π is the objective function for permutation π .
The positioning constraints are expressed by Eq. 2, where
Prπ

i
is the specified fixed position of rπ

i when it is subject
to the positioning constraint. On the other hand, Eq. 3
represents the ordering constraints without allowing the
placement of other facilities in between an ordered pair
of facilities (Arπ

i ,k = N), where Rrπ
i ,k = rπ

j means that
facilities rπ

i and rπ
j are ordered in pair k with rπ

j right to
rπ
i . Similarly, Eq. 4 also represents the ordering constraints,
but allowing the placement of other facilities in between
an ordered pair of facilities (Arπ

i ,k = Y). Finally, xrπ
i
in

Eq. 5 is the centroidal distance of rπ
i from the left corner of

permutation π .

2.2 The true optimum of the cSRFLPmodel

Since the number of permutations of a string is finite, a
cSRFLP instance can easily be solved by coding all the
permutations of the given facilities. In this process, the
feasible permutations may be sorted out first by checking

the satisfactions of the constraints given by Eqs. 2–4, and
then the optimum permutation (solution) can be identified
by evaluating only the feasible permutations using Eqs. 1
and 5.

In such an attempt to find the true optimal solutions,
a small illustrated cSRFLP instance of ten facilities is
investigated here. The assumed length vector of the facilities
and the material handling costs among them are given in
Eq. 6.

Length vector, l = {6, 4, 8, 5, 7, 3, 1, 2, 10, 9}

Material handling cost matrix, c =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 2 1 0 0 0 2
0 3 7 7 2 4 5 2 4
0 4 4 2 2 3 1 1
0 2 4 2 2 4 2
0 3 3 2 4 4
0 3 3 1 1
0 2 2 1
0 2 1

cij = cji 0 2
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)
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Table 1 Constraints imposed to the illustrative cSRFLP instance of ten facilities (“Y” means “yes” and “N” means “no”)

Facility (i) 1 2 3 4 5 6 7 8 9 10

Whether to be placed in fixed position (Ti ) N N Y Y N N N N N N

Specified fixed position (Pi ) – – 8 7 – – – – – –

Whether to be ordered on left side (Oi ) N Y N N Y Y N Y N Y

Number of facilities to be placed on right side (Mi ) – 1 – – 1 1 – 1 – 1

Ordered facility on right side (Rik) – 9 – – 9 5 – 7 – 6

Other facilities allowed within the pair (Aik) – Y – – Y Y – N – N

Consider that facilities 3 and 4 of the illustrative instance
are to be placed in the eighth and seventh positions,
respectively. Also, facility 2 should be placed before
facility 9, facility 5 is before facility 9, and facility 6 is
before facility 5. Similarly, facility 8 should be placed
before facility 7 and facility 10 before facility 6, but each
of these two pairs should come together. Speaking in terms
of the constraints imposed to the cSRFLP model as stated
above, facilities 3 and 4 are to be placed in fixed positions,
the pair of facilities 8 and 7 as well as that of facilities 10
and 6 are to be ordered without allowing any other facilities
in between a pair, while the pair of facilities 2 and 9 as
well as those of facilities 5 and 9 and facilities 6 and 5
are to be ordered allowing the placement of other facilities
in between a pair (in fact, all the facilities of the instance
are constrained except facility 1). For convenience in the
implementation, all the constraints imposed to the instance
are arranged in Table 1 in a matrix form in terms of the
notations Ti through Aik defined in Section 2.1. The value
“Y” (yes) to Ti means that facility i is to be placed at a
fixed position, which is specified by Pi . Similarly, values to
Mi , Rik , and Aik are required for that facility only, which is
paired (i.e., Oi = Y) with other facilities for arranging on
its right side.

The illustrative instance, having the length vector
and material handling cost matrix given by Eq. 6 and
the constraints given in Table 1, is investigated here
under five cases—without any constraint, with positioning
constraints (Eq. 2) only, with positioning and ordering
constraints allowing placement of other facilities in

between an ordered pair of facilities (Eqs. 2 and 4),
with positioning and ordering constraints without allowing
placement of other facilities in between an ordered pair
of facilities (Eqs. 2 and 3), and with positioning and
ordering constraints both allowing and without allowing the
placement of other facilities in between an ordered pair of
facilities (Eqs. 2, 3, and 4). The detail results obtained in this
exhaustive search based investigation are given in Table 2.
Further, the optimum permutation (solution) of the fifth case
of Table 2 is shown in Fig. 1, where the constrained facilities
are shown in cyan color and the unconstrained one in gray
color.

It is observed in Table 2 how drastically the number of
feasible permutations as well as the required computational
time for evaluating the functions reduce with the increasing
number and/or complexity of constraints imposed to a
cSRFLP instance. It is also observed that the optimum
objective value (i.e., the minimum material handling cost)
in a constrained solution (i.e., a solution of the cSRFLP
model) is likely to be higher than that in an unconstrained
solution (i.e., a solution of the SRFLP model). However,
the true optimum cSRFLP solutions (SRFLP solutions as
well) can be obtained through such an exhaustive search for
small-size instances only. This is because of the inadequacy
of today’s computer to code the permutations of a large
string (sizes beyond 15 or so) at a reasonable time. For
example, the time required to code all the permutations
of 10, 11, 12, 13, 14, and 15 were found to be 0.13 s,
1.35 s, 15.94 s, 208 s (≈ 3.5 min), 2877 s (≈ 48 min) and
42978 s (≈ 12 h), respectively. It depicts how exponentially

Table 2 Results of the exhaustive search for an instance of 10 facilities under the constraints given in Table 1

Case Optimum f Optimum permutation Number of feasible Computational

(type of constraints) (Eq. 1) permutations time (sec)

— 1441.5 9-3-4-6-8-7-2-5-10-1 3628800 175.64

Eq. 2 1483.5 9-5-6-7-8-2-4-3-10-1 40320 2.15

Eqs. 2 and 4 1585.5 1-10-6-5-2-7-4-3-8-9 5040 0.60

Eqs. 2 and 3 1596.5 1-10-6-2-8-7-4-3-5-9 528 0.35

Eqs. 2, 3, and 4 1596.5 1-10-6-2-8-7-4-3-5-9 75 0.33
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1 10 6 2 8 7 4 3 5 9

Fig. 1 The optimum solution of the fifth case of Table 2 (constrained
facilities are shown in cyan color and others in gray color)

the required time increases in coding the permutations with
the increasing size of a string. This is the reason why the
implementation of some metaheuristics to such problems
is sought for obtaining an approximate optimum at an
allowable computational time.

3 The proposed cpGA for solving the cSRFLP
model

The genetic algorithm (GA) is a metaheuristic that mimics
the mechanisms of the Darwinian evolution based on
the concept of the survival of the fittest. It works with
a population comprising a set of individuals, where an
individual is usually codified as an array (or some other
complex forms) of the decision variables of a problem
and represents a complete solution of the problem. The
population is gradually evolved towards the optima of the
problem through the repeated application of some operators
analogous to those from natural evolution, namely the
selection, crossover, and mutation operators. A selection
operator is engaged for identifying the better individuals
in the current population, and then a crossover operator
generates some new individuals by exploiting the better
individuals identified by the selection operator. Finally, a
mutation operator explores the neighborhood of the new
individuals generated by the crossover operator. In this way,
the process of evolution of the population is continued until
some termination criteria are met, usually until a predefined
maximum number of generations are performed.

Initially, the GA was considered to be a problem-
independent algorithm, i.e., it could be applied as a
general algorithm to different classes of problems. It
was realized sooner that all problem-specific complexities
cannot be resolved without intelligence, implying that
the incorporation of certain problem-specific components
in the GA (as well in other evolutionary algorithms)
is necessary in order to compete with other problem-
specific classical optimization methods, what was termed by
Wolpert and Macready [42] as the no free lunch theorems
for optimization. Combinatorial problems, including the
facility layout problem studied in the present work,
belong to that category which cannot be solved effectively
without incorporating problem-specific information in an
optimizer. Further, as shown in Section 2.2 that the
size of the search space (i.e., the number of feasible
solutions) of a cSRFLP instance decreases drastically
with the increasing number/complexity of constraints, a

general-purpose metaheuristic may not be able to explore
such limited number of feasible solutions. Accordingly, a
novel GA, named as the constrained permutation-based
GA (cpGA in short), is proposed here by incorporating the
constraint-information of the cSRFLP model in the general
GA, so as to generate only feasible solutions by limiting the
GA search in the feasible region of the problem. The cpGA
is explained in detail in Sections 3.1–3.5.

3.1 Individual representation and population
initialization

An individual of the cpGA is taken as an array to represent
a permutation of a string (i.e., the number of facilities
to be arranged). The value of an element of the array
represents a facility with the index of the element as the
position of the facility in the permutation. Unlike in many
real or integer-valued problems, a random initialization of
an individual is likely to generate an invalid permutation
by repeating many facilities, while omitting some others.
Further, even if a valid permutation is generated, it might
not be a feasible solution of the cSRFLP. Therefore, a
heuristic is proposed here for initializing an individual
with a feasible solution of the cSRFLP by satisfying the
positioning and ordering constraints expressed by Eqs. 2–4.
The step-by-step working procedure of the heuristic, based
on downward complexities for initializing an individual, is
explained below:

(1) Placement of the fixed-positioned facilities: Place all
the fixed-positioned facilities, if any, in their respective
specified positions in the cpGA individual.

(2) Placement of the ordered facilities: For placing the
ordered facilities in the cpGA individual, first arrange
the facilities in descending order of number of other
facilities to be placed on their right side. Then place
the facilities one by one in randomly selected vacant
elements of the cpGA individual, leaving the minimum
number of vacant elements on the right side of a given
element for placing those facilities which should come
on its right side. For example, there are q number of
facilities to be placed on the right side of facility i

and that number of vacant elements in the cpGA
individual are available after its vth element (n −
v � q, where n is the total number of elements of
the cpGA individual). Then facility i will be placed
in a randomly selected vacant element in the range
of (1, v). Further, for two ordered facilities without
allowing any other facilities in between them, two
consecutive vacant elements are to be obtained in the
cpGA individual, if required by sliding some already
placed facilities towards left or right without violating
their any constraint requirement.
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The above technique for placing ordered facilities
is illustrated with the help of the instance of Fig. 1,
whose facilities are arranged in Table 1 with respect to
the imposed positioning and ordering constraints. As
shown in Fig. 2a, in the first chain, there are a total
of four facilities (6, 5, 2, and 9) on the right side of
facility 10, three facilities (5, 2, and 9) on the right
side of facility 6, and two facilities (2 and 9) on the
right side of facility 5. There are only two facilities in
the second chain shown in Fig. 2a, requiring facility 7
to be placed on the right side of facility 8. In Fig. 2a,
facilities 10 and 6, as well as facilities 8 and 7,
are shown jointly as these are to be placed together
without allowing any other facilities in between them.
Further, facilities 2 and 9 are shown disconnected as
their placements are independent of each other. Now
coming to the cpGA individual (the top version in
Fig. 2b), its elements 7 and 8 are already filled with
the fixed-positioned facilities 4 and 3, respectively.
Hence, an element for placing facility 10, leaving a
minimum of four vacant elements on its right side for
the four facilities in the chain of this facility, is to be
searched in the range of [1, 4]. Further, the immediate
next element is also to be vacant for placing facility 6,
which is paired with facility 10 without allowing
any other facilities in between them. Say the random
search selects element 2 for facility 10. Accordingly,
facilities 10 and 6 are placed in elements 2 and 3,
respectively. Since facility 6 is already placed, the
search is continued in a similar way for selecting
suitable elements for the remaining 3 facilities (5, 2,
and 9) of this chain (the placement of all the five
facilities of this chain is illustrated in Fig. 2b by the
middle version of the cpGA individual). In the case of
facilities 8 and 7 lying in the second chain in Fig. 2a,
two consecutive vacant elements are required, which
are not available in the present (middle) version of
the cpGA individual shown in Fig. 2b. Hence, two
such elements are to be obtained by sliding some
already placed facilities towards left or right, the
possible options for which include the sliding either
of facilities 10 and 6 through one element towards

left (vacating elements 3 and 4) or right (vacating
elements 1 and 2), or the sliding of facility 5 through
one element towards left (vacating elements 5 and 6)
or right (vacating elements 4 and 5). Say, as shown in
the bottom version of the cpGA individual in Fig. 2b,
the search selects facilities 10 and 6 to slide towards
left vacating elements 3 and 4 for facilities 8 and 7,
respectively.

(3) Placement of the unconstrained facilities: It is obvious
that all the left out unplaced facilities are uncon-
strained and their number is equal to the number
of existing vacant elements of the cpGA individ-
ual. Therefore, these unconstrained facilities, if any,
can be assigned randomly to the vacant elements
of the cpGA individual. For this, all the left out facil-
ities are first arranged serially in a temporary array.
Then, the vacant elements of the cpGA individual are
filled up one by one with the facilities taken from the
randomly selected elements of the temporary array.
Each time a facility is transferred to the cpGA indi-
vidual, the temporary array is updated by eliminating
the element of that facility. The process is contin-
ued until all the facilities of the temporary array are
exhausted.

3.2 Selection operator

The binary tournament selection operator [8] is used for
forming a mating pool with above-average individuals of
the cpGA population (the crossover operator explained in
Section 3.3 will generate new individuals by exploiting the
mating pool). This selection operator takes two random
individuals at a time from the cpGA population and stores
in the mating pool a copy of the best one based on their
objective values evaluated using Eq. 1. The process is
repeated until the size of the mating pool equals that of the
cpGA population.

3.3 Crossover operator

The problem-specific crossover operator of the cpGA,
developed here for the cSRFLP model, generates new

Fig. 2 Facilities of the instance
of Fig. 1 in descending order of
number of facilities to be
arranged on the right side of a
given facility (ordering
constraints). a Ordered facilities.
b cpGA individual

21 3 4 5 6 7 8 9 10

21 3 4 5 6 7 8 9 10

21 3 4 5 6 7 8 9 10

4 310 6 5 9 2

4 3

4 3 9 210 6 8 7 5

10 6 5
2

9

78

(a) Ordered facilities. (b) cpGA individual.
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feasible individuals (i.e, solutions of the cSRFLP) by
exploiting parent individuals from the mating pool gener-
ated by the binary tournament selection operator. It first
chooses two random parent individuals from the mating
pool and then a new individual is generated by crossing
them with a predefined crossover probability as follows:

(1) Placement of the fixed-positioned facilities: The fixed-
positioned facilities, if any, are placed in the new cpGA
individual exactly in the same way as explained in
Step (1) of Section 3.1.

(2) Placement of the ordered facilities: Positions of each
pair of ordered facilities are checked in both the
parent individuals if the facilities can be placed in the
positions of the new individual corresponding to those
of any of the two parent individuals, taking care of
two cases: (i) the placement of two ordered facilities
without allowing any other facilities in between them
and (ii) the availability of minimum number of
vacant positions on the right side of a facility for
placing other facilities in its chain as illustrated in
Fig. 2a. In the case where a pair of facilities can be
placed in the new individual corresponding to both
the parent individuals, the positions corresponding to
one of the randomly selected parent individual are
considered. If any further pair of ordered facilities
is left, which cannot be placed according to any
of the two parent individuals, then those are placed
randomly in the vacant elements of the new individual
exactly in the same way as explained in Step (2) of
Section 3.1.

(3) Placement of the unconstrained facilities: It is obvious
in this case also that all the left out unplaced facilities
are unconstrained and their number is equal to the
number of existing vacant elements of the cpGA
individual. Positions of each of these facilities are
checked in both the parent individuals if the facility
can be placed in any of the corresponding position
of the new individual. In the case where both the
corresponding positions in the new individual are
vacant, the facility is placed randomly in one of them.
If any further facility is left, which cannot be placed

in the same position(s) of any of the two parent
individuals, then those are placed randomly in the
vacant elements of the new individual exactly in the
same way as explained in Step (3) of Section 3.1.

3.4 Mutation operator

The mutation operator of the proposed cpGA is a very
simple one. It chooses two random elements of a new
individual, generated by the crossover operator, with a low
mutation probability. Then, the values of those two elements
are simply swapped, provided no positioning or ordering
constraint of the cSRFLP is violated, i.e., ensuring the
formation of another feasible individual. Since no value is
altered, but two elemental values are interchanged only, the
operator successfully explores a feasible neighborhood of a
given individual.

3.5 Elite preservingmechanism

Although expected, the random crossover and mutation
operators of a genetic algorithm may fail to generate better
individuals at some generations, or may even push the
search away from the optimum of a problem by generating
individuals worse than those of the current population.
In order to prevent such a situation, generally the elite
individuals of the population are preserved over generations.
For this purpose, the elite preserving mechanism proposed
by Deb et al. [9] is used in the cpGA, which first combines
the old and new populations of a generation, and then the
population for the next generation is formed by the best 50%
of the combined individuals based on their objective values
evaluated through (1).

4 Computational experiment

The cpGA explained in Section 3 is coded in C program-
ming language implementing the cSRFLP model formu-
lated in Eqs. 1–5 and it is executed in Fedora 15 Linux
environment. The numerical experimentation is performed
in two parts. Firstly, three case studies of the operation

Fig. 3 Operation precedence
graph for the first case study of
Section 4.1
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Table 3 Precedence cost matrix for the first case study of Section 4.1

Succeeding operations

A1 A2 B1 B2 B3 B4 B5 C1 C2 D1 D2 E1 E2 F1 F2 G

A1 0 1 999 999 999 999 999 999 999 999 999 999 999 999 999 999

A2 999 0 10 999 999 999 999 999 999 999 999 999 999 999 999 999

B1 999 999 0 2 999 999 999 2 999 999 999 999 999 999 999 2

B2 999 999 999 0 2 999 999 2 999 999 999 999 999 999 999 2

B3 999 999 999 999 0 2 999 999 999 999 999 999 999 999 999 999

B4 999 999 999 999 999 0 1 999 999 999 999 999 999 999 999 999

B5 999 999 999 999 999 999 0 2 999 2 1 2 999 999 999 2

C1 999 999 2 2 999 999 999 0 2 2 999 999 999 999 999 2

C2 999 999 999 999 999 999 999 999 0 2 999 999 999 999 999 2

D1 999 999 999 999 999 999 999 2 999 0 2 2 999 999 999 2

D2 999 999 999 999 999 999 999 999 999 999 0 2 2 2 999 999

E1 999 999 999 999 999 999 999 999 999 2 999 0 2 2 999 999

E2 999 999 999 999 999 999 999 999 999 999 2 999 0 2 2 2

F1 999 999 999 999 999 999 999 999 999 999 2 2 2 0 2 2

F2 999 999 999 999 999 999 999 999 999 999 999 2 2 999 0 2

G 999 999 2 2 999 999 999 2 2 2 999 999 999 2 2 0

sequencing problem in process planning are solved as spe-
cial cases of cSRFLP, and then some large-size instances as
general cSRFLP.

A well-established fact about metaheuristics, including
GA, is that their performance may get influenced by the
algorithmic parameter values. Hence, researchers sometime
attempt to tune algorithmic parameter values by applying
some transition rules, so as to tackle the problem at
hand effectively using the obtained such values [4, 5, 7,
15, 30]. However, the prime aim of the present work is
not to investigate how the performance of an algorithm
can be improved, but to introduce an effective procedure
for handling the proposed cSRFLP problem successfully.
Accordingly, skipping the issue of fine tuning the parameter
values for the cpGA, those based on some trial runs are fixed
as follows: the population size is 60, crossover probability
is 75%, mutation probability is 1%, and the maximum

number of generations to be performed is 500. Using these
parameter values, 30 independent runs of the cpGA are
performed for each problem instance with different sets of
initial solutions.

4.1 Operation sequencing in process planning

It is stated in Section 1 that operation sequencing in process
planning is a practical manufacturing problem which can
be handled as a special case of the proposed cSRFLP
model with ordering (i.e., precedence) constraints only.
Hence, three such case studies are taken from literature for
demonstrating the application of the cSRFLP model. Since
the operation sequencing problem seeks the manufacturing
operations to be sequenced in a way to minimize the
total machining cost arising from the relative machining
cost between each pair of successive operations, the objective

Fig. 4 Operation precedence
graph for the third case
study (having size of 80) of
Section 4.1
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Table 4 Comparison of the best results for the first case study of
Section 4.1

Result Ref. [19] Ref. [29] Present work

Machining cost 36 36 36

Number of function evaluation – – 3840

Computation time (in seconds) 18 7 0.442

Number of optimal sequences 1 6 2

function of the general cSRFLPmodel given by Eq. 1 can be
modified for the operation sequencing problem as expressed
by Eq. 7.

Minimize f π ≡
n−1∑

i=1

crπ
i ,rπ

i+1
(7)

The first case study, introduced by Krishna and Rao
[19], is a hand spike whose different features are pre-
pared by 16 machining operations. These operations
are rough plain milling (A1), finish plain milling (A2),
milling the bose (B1), drilling (B2), boring (B3), ream-
ing (B4), finish reaming (B5), drilling (C1), milling (C2),
drilling (D1, E1, F1), tapping (D2, E2, F2) and drilling (G).
The precedence relations among the operations are shown
in Fig. 3, where an operation connected with another oper-
ation by an arrow denote that the latter precedes the former,
e.g., A1 precedes A2 and A2 precedes C1. The directed rel-
ative costs between each pair of the machining operations
are shown in Table 3 which is to be read row-wise first and
then column-wise, e.g., the relative machining cost between
A1 and A2 is 1 if A1 precedes A2 and that between them is
999 if A2 precedes A1.

The other two case studies of the sequencing problem
of sizes 70 and 80 are taken from Yun et al. [43]. In order
to demonstrate their complexity, the precedence relations
among the operations of the case study of size 80 are
shown in Fig. 4 in the same way as in Fig. 3, with the
only difference that the operations in Fig. 4 are denoted by
1,2,. . . ,80 (refer Yun et al. [43] for other detail of these two
case studies).

For the first case study, the cpGA could find two solutions
having the already reported best objective value (i.e., the
total machining cost of 36) just in 46 generations taking
0.442s of computational time (note that the computational
time is not a good measure for comparison as it would
vary significantly with specifications of computers as well

Table 6 Comparison of the best objective values for the case studies
of sizes 70 and 80 investigated in Section 4.1

SN No. of operations Best objective value (machining cost)

Ref. [44] Ref. [43] Ref. [26] Present work

1 70 392 384 314 312

2 80 426 423 366 363

as programming skills also). Further, although the same
best-known objective value is obtained, the corresponding
sequences of operations are different from that reported
by Nallakumarasamy et al. [29]. The comparison of
the obtained best solutions and the corresponding new
sequences of operations are reported in Tables 4 and 5,
respectively.

On the other hand, the cpGA could improve the best-
known objective values of the investigated other two case
studies of operation sequencing, i.e., the instances of sizes
70 and 80. Comparison of the obtained best objective values
is presented in Table 6 marking the so far known best values
in italics, and the sequences of operations corresponding to
the best objective values obtained in the present work are
shown in Table 7.

4.2 Benchmark instances

After solving three operation sequencing instances in
Section 4.1 as special cases of cSRFLP, a set of 5 SRFLP
instances each of size 100, introduced by Anjos and Yen [3],
are studied in order to demonstrate the potentiality of the
proposed general cSRFLP procedure on large-size instances
with all types of constraints as explained in Section 2.1.
For convenient and easy recognition, the constraints are
imposed to the same facilities of all the instances. In the
case of the positioning constraints, two facilities, namely
facilities 1 and 60, are restricted to be placed at the first
and sixtieth positions, respectively. Similarly, the ordering
constraints are imposed to two pairs of facilities, seeking the
pair of facilities 20 and 30 to be ordered without allowing
any other facilities in between them, while the second pair
of facilities 25 and 10 to be ordered allowing the placement
of other facilities in between them.

The best results obtained in terms of the objective
function values (i.e., the overall material handling cost
among the facilities) for the considered problem instances

Table 5 The obtained best sequences of operations for the first case study of Section 4.1

SN Sequence of operations Machining cost

1 A1 → A2 → B1 → B2 → B3 → B4 → B5 → C1 → D1 → E1 → F1 → D2 → E2 → F2 → G → C2 36

2 A1 → A2 → B1 → C1 → B2 → B3 → B4 → B5 → D1 → E1 → F1 → D2 → E2 → F2 → G → C2 36
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Table 7 The obtained best sequences of operations for the case studies of sizes 70 and 80 investigated in Section 4.1

SN No. of operations Sequence of operations Machining cost

1 70 3 → 4 → 1 → 2 → 7 → 6 → 8 → 5 → 9 → 13 → 17 → 12 → 10 → 11 → 14 → 312

18 → 15 → 23 → 28 → 16 → 22 → 21 → 20 → 26 → 27 → 19 → 25 → 24 →
29 → 30 → 31 → 32 → 33 → 35 → 34 → 39 → 38 → 37 → 36 → 40 → 41 →
47 → 42 → 46 → 45 → 43 → 44 → 48 → 50 → 49 → 55 → 54 → 61 → 51 →
60 → 52 → 53 → 59 → 58 → 64 → 63 → 68 → 57 → 65 → 56 → 62 → 66 →
69 → 67 → 70

2 80 2 → 3 → 4 → 8 → 1 → 7 → 6 → 5 → 9 → 13 → 11 → 10 → 12 → 14 → 19 → 363

16 → 15 → 18 → 17 → 20 → 24 → 25 → 26 → 27 → 21 → 32 → 22 → 31 →
30 → 23 → 28 → 29 → 34 → 33 → 35 → 37 → 36 → 38 → 42 → 43 → 41 →
40 → 44 → 39 → 45 → 46 → 49 → 54 → 51 → 48 → 47 → 52 → 50 → 53 →
58 → 57 → 59 → 56 → 60 → 66 → 55 → 61 → 62 → 65 → 64 → 63 → 68 →
70 → 69 → 74 → 67 → 73 → 75 → 72 → 79 → 71 → 78 → 76 → 77 → 80

are shown in Table 8, where the constrained facilities are
shown in italic fonts.

Since it is the introductory work on constrained
SRFLP (i.e., cSRFLP), the results presented in Table 8 could
not be compared with any existing similar work. Therefore,
the best known unconstrained SRFLP objective values of
the instances, as reported by Kothari and Ghosh [18], are

also shown in Table 8 for comparing with the same obtained
for the cSRFLP model. It is observed that the overall
material handling costs (i.e., the objective function values)
of the cSRFLP instances are marginally inferior to those of
the SRFLP instances, which is obvious due to the presence
of the considered positioning and ordering constraints in the
cSRFLP model.

Table 8 The best cSRFLP results obtained for the 5 instances of Anjos and Yen [3] and comparison of their objective values (overall material
handling costs) with the best known corresponding SRFLP values reported by Kothari and Ghosh [18]

ID Instance Material handling cost Permutation of the facilities (cSRFLP model)

SRFLP cSRFLP % increase

1 100-01 378234.0 378814.0 0.2 1 65 78 18 97 37 71 83 39 79 91 33 15 6 11 95 74 55 25 13 5 63 77 57 27 28 31 54 75 80 34

2 14 43 49 52 16 88 22 32 62 9 89 94 84 19 86 87 68 59 98 8 4 96 56 93 42 69 24 60 67 85

99 20 30 73 40 81 26 51 46 64 90 44 47 100 70 66 72 38 92 82 36 61 41 48 50 23 12 21 17

7 53 35 29 76 58 10 45 3

2 100-02 2076008.5 2104507.5 1.4 1 78 33 91 97 99 27 18 5 88 32 77 25 71 94 95 11 54 31 22 64 20 30 85 13 43 63 14 81 4 79

83 52 16 67 46 57 34 55 74 6 80 75 37 15 28 49 2 89 19 44 90 86 23 82 56 51 87 21 60 98

47 70 45 96 66 69 92 100 8 84 59 38 72 7 35 62 9 68 3 36 40 26 73 50 41 48 42 24 93 76 61

12 39 53 10 65 17 29 58

3 100-03 16145614.5 16527157.5 2.4 1 97 78 39 28 89 49 33 80 54 24 21 5 91 31 71 37 13 83 2 16 11 65 63 27 14 94 43 85 75 73

9 67 52 18 25 10 95 55 15 6 77 79 74 57 34 84 93 22 32 88 20 30 81 42 98 96 17 4 60 26 46

59 64 7 12 23 56 50 62 99 36 51 38 72 48 19 86 87 41 70 90 29 68 69 66 40 100 82 61 47

53 92 45 76 58 8 44 35 3

4 100-04 3232522.0 3291610.0 1.8 1 39 71 49 79 42 25 32 5 97 18 93 94 52 83 68 8 98 9 16 22 88 33 43 21 27 75 80 24 67 31

19 74 86 28 54 89 15 56 59 37 65 96 85 4 91 57 63 55 13 78 62 11 77 61 50 81 92 48 60 90

100 38 46 26 82 69 53 35 72 66 70 36 51 10 40 20 30 47 73 14 41 87 34 64 95 44 29 23 12

17 99 2 76 58 45 84 6 3 7

5 100-05 1033080.5 1056445.5 2.3 1 78 90 55 63 25 13 58 6 10 65 84 74 54 28 75 15 24 80 37 71 39 83 11 31 95 27 19 77 79

43 22 89 94 14 5 33 91 57 18 97 16 9 2 88 34 32 49 93 42 81 68 46 40 26 73 67 87 41 60 64

44 85 99 20 30 66 70 36 56 82 100 53 35 21 8 4 29 96 7 98 47 61 59 51 69 62 12 23 17 52

38 92 86 72 45 48 50 3 76
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5 Conclusion

Although the single-row facility layout problem (SRFLP)
is studied as an unconstrained design optimization problem
by placing given facilities along a straight row without
any restriction, a practical problem may be constrained to
place some facilities in specified fixed positions and/or
orders. Accordingly, a constrained SRFLP (cSRFLP) model
is introduced here by imposing positioning and ordering
constraints to some facilities. Owing the difficulties for
any general algorithm to come out of such constraints, a
novel constrained permutation-based genetic algorithm is
also proposed with problem-specific operators for exploring
only the feasible space of the cSRFLP. Applying the
proposed procedure in the numerical experimentation, three
case studies of operation sequencing in process planning
are studied first as special cases of the cSRFLP model
with ordering constraints only, and then some large-size
instances of the general cSRFLP model are presented which
could serve as benchmark instances in future work on the
cSRFLP. In the case of the operation sequencing problem,
new sequences of operations having the already known best
objective values are obtained for the first case study, while
the best-known solutions for the other two case studies
could be improved also.

Since genetic algorithm is a well-established population-
based metaheuristic for decades, its customization is pre-
sented here for solving the proposed cSRFLP model with-
out going through its merits and demerits over other
similar techniques. However, other appropriate techniques
may also be attempted for solving the problem. Further,
practical application of the introduced cSRLFP model may
be investigated by applying it to more real-life problems,
such as process and assembly operation sequencing prob-
lems. Moreover, apart from the material handling cost,
other classical criteria, such as machining time, transporta-
tion time, quality, etc., may also be considered simultane-
ously.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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27. Miljković Z, Petrović M (2017) Application of modified multi-
objective particle swarm optimisation algorithm for flexible
process planning problem. Int J Comput Integr Manuf 30(2–
3):271–291

28. Müller J (2016) MISO: Mixed-integer surrogate optimization
framework. Optim Eng 17(1):177–203

29. Nallakumarasamy G, Srinivasan PSS, Raja KV, Malayalamurthi
R (2011) Optimization of operation sequencing in CAPP using
simulated annealing technique (SAT). Int J Adv Manuf Technol
54(5–8):721–728

30. Nguyen TT, Yang S, Branke J (2012) Evolutionary dynamic
optimization: a survey of the state of the art. Swarm Evolutionary
Comput 6:1–24

31. Ozgormus E (2015) Optimization of block layout for grocery
stores. PhD thesis. Auburn University, USA

32. Padgaonkar AS (2004) Modelling and analysis of the hospital
facility layout problem Master’s thesis. Department of Indus-
trial and Manufacturing Engineering, New Jersey Institute of
Technology
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