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Abstract
The tolerancing integration in CAD model is among the major interests of most mechanical manufacturers. Several researches
have been established approaches considering the geometrical and dimensional tolerances on the CAD modelers. However, the
hypothesis of rigid parts is adopted in the digital mock-up. Thus, several physical factors are neglected; especially the deforma-
tions. In this regard, this paper presents a model for considering both tolerances and deformations in CAD model. The dimen-
sional and geometrical tolerances are taken into account by the determination of assemblies configurations with defects basing on
the worst case tolerancing. The finite elements (FE) computations are realized with realistic models. A method for modeling the
realistic mating constraints, between rigid and non-rigid parts, is developed. Planar and cylindrical joints are considered. The
proposed tolerance analysis method is highlighted throughout two cases study: the first comprises planar joints and the second
comprises cylindrical parts in motion.

Keywords CAD .GD&T . Realistic mating . Non-rigid component and tolerance analysis

1 Introduction

The design of a mechanical assembly is a dynamic activity that
is not limited to its geometric modeling. Thus, the design im-
provement requires the integration and the consideration of
other technical approaches and disciplines for the analysis of
assembly functional behavior to meet the standards and the
functional requirement (FR). Several research studies approved
the hypothesis of the need to consider tolerances in the calcu-
lation and the simulation stages of the product [1, 2]. However,
the modeling of the assembly functional behavior requires the

consideration of two factors: the geometrical and dimensional
defects as well as the deformations caused by external loads.
The above defects subsequently affect the FR and the efficiency
of the assembly [3].This paper establishes a new CAD tool for
tolerance analysis of non-rigid parts assemblies. The paper is
organized as follows. First, a literature review of tolerancing
methods of rigid and deformable parts are presented, followed
by a synthesis section. Section 3 describes the proposed toler-
ance analysis method of non-rigid parts assemblies. The meth-
od to define mating constraints between non-rigid and rigid
parts is highlighted. Two case studies are given in Section 4
to illustrate the validity of the proposedmethod. The conclusion
and perspectives for this work are presented at the end.

2 State of the art

This paper can be positioned under the research works belong-
ing to two themes: (1) Tolerancing of rigid parts; (2)
Tolerancing of non-rigid parts.

2.1 Tolerancing of rigid parts

Based on models for the representation of a toleranced geom-
etry [4, 5], several studies contributed to the development of
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tolerancing approaches taking into account the tolerance
stuck-up, such as the T-Map [6], the linearization of the transi-
tion matrix [7], and the domains [8].Additionally, CAT tools, as
independent packages or inserted in commercial CAD mod-
elers, provide tolerance analysis and synthesis [9], e.g.,
tecnomatix variation analysis (VSA), 3-DCS integrated into
Catia V5©, and mechanical advantage from Cognition Co
[10]. These tools are based on the parametric approach as well
as the worst case and the statistical tolerancing. An analyzed
dimension (FR) is expressedwith an algebraic function to quan-
tify the relationships between CAD assembly dimensions. This
mathematical function is exploited in a Monte Carlo simulation
in order to analyze the sensitivities and to extract the variation
contributors list according to their effects on the FR [11]. The
major limitations of these tools are the consideration of dimen-
sional defects in most cases for tolerance analysis and the use of
Monte Carlo method which is characterized by an important
simulation time as well as the lack of a clear and automated
strategy for the redefinition of assembly constraints. Zhu et al.
proposed a new CAD method for tolerance analysis of rigid
planar parts based on the Skin Model Shape (SMS) concept
to represent a toleranced geometry [12].The new approach
overcomes the limitations of (3DCS), a CAT tool incorporated
into CATIA V5©, that consist on the use of SMS concept to
represent dimensional variations or form defects in assembly
[13]. Indeed, the authors improved SMSmethod by considering
positional and orientation defects during the tolerancing pro-
cess. The assembly process (assembly sequences (AS)) and
the contact evolution between parts are neglected in the above
models and tools. Thus, Anselmetti et al. [14] and Dantan et al.
[15] proposed approaches considering these two aspects. Tlija
et al. [16] and Louhichi et al. [9] established a model allowing
the use of the assembly with defects in digital mock-up (DMU)
for the inspection of the tolerance impacts on the FR during the
assembly operation (parts motion). Jbira et al. improved the
above model to consider form defects [17].

2.2 Tolerancing of non-rigid parts

Liu et al. proposed a method for the tolerance analysis of an
assembly of flexible sheets metal. In order to estimate the
assembly FR, a mathematical model, called method of influ-
ence coefficients (MIC), is proposed in the case of sheets
metal arranged together in series or in parallel configurations
[18]. Subsequently, this model evaluates the deformations ef-
fects on the choice of individual components tolerances.
Camelio et al. improved the above method by considering
the case of multi-station compliant sheet metal assembly lines
[19, 20]. In order to analyze the dimensional variations, the
method considered part deviations, fixture variations, and
tooling errors. Säderberg et al. presented an approach to in-
vestigate the impact of the spot welding position deviations on
the geometrical quality of sheet metal assemblies [21]. The

position defects of the spot welding are caused by parts geo-
metrical variations, variation in the positioning of the parts to
be assembled, and tooling errors. The CAT software, RD&T
[22, 23], is used to conduct the simulation. Wärmefjord et al.
established a control chart for monitoring the variations
caused by deviations in the contact between parts and locators
in the assembly fixtures [24]. Lee et al. proposed a tolerance
analysis approach by considering the weld distortion effects
for precision control in ship block assembly process [25].
Hermansson et al. established a model for the control of the
geometrical variations of flexible cables and hoses in automo-
tive industry [26]. In order to avoid interference between the
final assembly components, this method computed the opti-
mal tolerance envelopes for each deformable part. Samper et
al. presented a tolerancing approach useful in the case of hyper
static mechanisms or assemblies with external loads [27]. This
approach considers the 3D elastic displacements of flexible
components during the 3D tolerancing process through the
using of four models. Mazur et al. presented a multi-
objective tolerances analysis and synthesis tool. This process
integration and design optimization (PIDO) platform con-
siders an assembly subjected to loads [28]. PIDO integrates
CAD/CAE and uncertainty quantification tools (Monte Carlo
or expansion chaos polynomial (PCE)) [29] as well as multi-
objective genetic algorithms [30]. Stuppy considered the de-
viation due to the deformation factor for tolerance analysis of
a crank mechanism [31]. Jeang et al. developed a method for
the statistical dimension and tolerance design for mechanical
assembly under thermal impact [32]. Pierre et al. considered
thermos-mechanical strains in the strategy of tolerance analy-
sis [33]. Irfan et al. used the FE simulation as a virtual tool to
establish a model for tolerance allocation in assembly design
[34]. Jayaprakash developed an optimal tolerance design ap-
proach for mechanical assembly considering both thermal im-
pact and inertia [35]. Benichou et al. considered the thermal
expansion of parts integrated within functional tolerancing
[36].Ting et al. improved the Jacobian torsor model to consid-
er non-rigid parts for tolerances analysis and synthesis [37].
The model computes the influence of several factors, e.g.,
gravity, temperature, and mounting stresses. Guo et al.
established a tolerance analysis method considering geomet-
rical deviations and parts deformations [38].The geometrical
defects are computed by homogeneous transformation matrix.
The part deformations are deduced from FE simulation taking
into account the normal and friction forces on the contact
surface. An elastic contact model between planar surfaces of
deformable parts is developed. The method is tested using an
assembly of two machined parts.

2.3 Synthesis

Despite their importance as tools for tolerance analysis and
synthesis of rigid part assemblies, the approaches presented
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in [4–17] do not satisfy the industrial needs to consider defor-
mation factor in the tolerancing process. The methods in
[18–26] investigated the assembly variation propagation of
thin-wall parts such as automotive bodies. Those methods
are limited to the cases of fixed and welding process and
unusable with assemblies including other mechanical links
as planar and revolute joints. Moreover, most of the methods
developed in [18–38] using non-rigid parts for tolerancing are
still limited since they are based on mathematical and statisti-
cal computations without a realistic representation of a
toleranced geometry in CAD tools. The AS and the contact
evolution during the assembly operation should be considered
in the tolerance analysis step. Thus, this paper proposes a new
CAD method for tolerance analysis of non-rigid parts assem-
blies while considering the geometrical defects and deforma-
tion impacts.

3 Tolerance analysis method of non-rigid
parts assemblies

The developedmethod combines between several engineering
disciplines such as CAD, the FE calculation, and tolerancing.
Thus, this method is a multidisciplinary tool allowing the
analysis of geometrical and dimensional tolerances. The flow
chart in Fig. 1 presents an overview of the proposed method
and the main steps are as following:

3.1 Extract CAD data

The CAD data are extracted from the assembly model while
considering the following aspects as inputs:

& The assembly sequence (AS) is deduced according the
mating order specified in the tree of CAD feature
manager.

& Functional requirement (FR): The FR is read from the
assembly model.

& Assembly sequence: The fixed component is considered
as the assembly base. The joint type is determined accord-
ing to the mating constraints linking each parts couple.

3.2 Generation of assembly components
with geometrical and dimensional defects

This step is based on the model established by Tlija et al. [3]
and Louhichi et al. [9]. In fact, the dimensional tolerances are
taken into account by the representation of the components in
two worst configurations: the maximum and the minimum
material configurations. The geometric deviations between
the ideal and realistic configurations of a part are defined by
the small displacement torsor (SDT) and the worst case toler-
ance theory.

Form defects are neglected compared to those of position
and orientation. All realistic configurations are generated by
the modeling of the geometrical tolerances by the displace-
ments of the corresponding faces. This task depends on the
type of tolerance, the shape of the tolerance zone, and the
tolerance value already assigned.

3.3 FE simulation of the most stressed component

This step focuses on the simulation of loads applied on the
most stressed component in the assembly considered as non-
rigid with dimensional and geometrical defects, using the FE
computation. Using the results of the FE simulation, the ex-
traction of the mesh nodes coordinates and the nodal displace-
ments is established.
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3.4 Determination of points cloud of the deformed
model

The final points coordinates of each deformed face are com-
puted by adding the values of the displacements resulting from
the FE calculation to the points coordinates of initial face
(Eq. 1). This step is automated using visual basic for applica-
tion (VBA) of Solidworks and MS Excel. In Eq. 1,[Cn] is the
matrix of the final nodes coordinates of the deformed face, [D]
is the matrix that contains the nodal displacements of the ini-
tial face after deformation and [C] is the matrix of the initial
nodes coordinates of a face (before deformation).

Cn½ � ¼ D½ � þ C½ � ð1Þ

3.5 Reconstruction of deformed faces

The above points cloud are triangulated and converted to
stereolithography (STL) format using digitized-shape editor
module of CATIAV5. The reference surface of each triangle
is generated as described in Fig. 2. Thus, the deformed face is
modelled by elementary faces.

3.6 Updating constraints of realistic assembly

The assembly of components with defects requires the update
of the initial mates between parts while respecting an objective
function of the assembly (OFA) specified by the designer. The
OFA is deduced automatically from the nominal CAD assem-
bly and comprises the following data:

& AS (scenario) order.
& The joint type.
& The direction corresponding to each AS.
& No-interference between components assembly.
& Contact between components.

In this paper, the developed method for updating mates is
limited to the case of joint defined between planar or cylindri-
cal faces of a couple of rigid parts (Rigid/Rigid (R/R))or be-
tween a rigid part and non-rigid one (rigid/non-rigid (R/NR)).

3.6.1 Case of assembly with planar joint

In nominal configuration, coincidence constraint between two
nominal faces (Co: F&F) is considered. In realistic configura-
tion, the above constraint is conserved or redefined according
to the OFA. In the case of R/R joint, the sub-algorithm detailed
in [9] is used. In the case of R/NR joint, three mate types are
defined as indicated in Fig. 3, such as (n) is the number of the
assembly constraints:

& Co: F1&F2: F2 is a reference plane defined by three tri-
angulation vertices (non-aligned).Those vertices are the
closest three points to the rigid face F1 according to the
AS direction.

& Co: F1&E: The edge E is defined by two triangulation
vertices closest to F1 according to the AS direction.

& Co: F1&V: The Vertex E is the closest to F1 according to
the AS direction.

3.6.2 Case of assembly with cylindrical joint

In case of an assembly with cylindrical joint, the mating con-
straint between two nominal parts as a hole H and a pin P is
generally provided by a coaxiality constraint between two
ideal axes La and Lb (Co: La&Lb), such as La and Lb are the
nominal axes of the cylindrical surfaces Ha of H and Pb of P
respectively. In the realistic configuration, two algorithms are
developed to extract the new axes L′a and L′b respectively of
the realistic surfaces H′a and P′b:

& The realistic axis L′b of the pin is obtained basing on the
oriented bounding box (OBB) of P′b. The start and the end
points of the axis L′b represent the centers of the most
distant sides of the OBB (Fig. 4a).

& The realistic axis L′a of the hole is determined using
a sub-algorithm based on the concept of the feature
operation (Association, Construction, etc.) of ISO-
GPS standard [39, 40] and using the steps in Fig. 5
[41].

& After obtaining H′a and P′b, the coaxiality constraint in the
nominal configuration (Co: La&Lb) (Fig. 4b) can be re-
placed by a coincidence relation between two realistic
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axes L′a and L′b (Fig. 4c)or between the realistic axis L′a
and a vertex Von L′b (Fig. 4d) according to OFA.

3.6.3 Constraints validation

The detection of the interferences and the contact between
each components couple is necessary for the final validation
of all constraints. Thus, the elementary triangular surfaces of a
deformed face are particularly exploited for the detection of
interferences between components in the realistic assembly
(Fig. 6).

Without losing generality, the method used to establish the
contact between two functional faces Fm and Ff of two

components, in the case of an assembly with planar joint, is
based on the following steps:

& According to AS, a first part is fixed and the second is
considered as movable (Fig. 6a. Fm and Ff are the realistic
faces to be in contact of the movable and fixed parts
respectively.

& Project Qi points on a plan P according to AS direction,
such as P is a tangent plan to Ff and Qi (i = 1 to n; n is the
total number of points) are the triangulation vertices ofFm.

& Determine the closest points Qm, among Qi, to P accord-
ing to AS direction. According to the type of coincident
constraint, Qm are three, two, or one vertices. Qm are used
to apply a coincident constraint with Ff.

& Evaluate the contact between components by measuring
the distance between Qm and Ff. In other words, Qm must
belong to the face Ff.

3.7 Check the respect of FR

This step allows the assembly tolerance analysis bymeasuring
the value of FR in each realistic assembly configurations. If
FR is not respected in one realistic configuration, then an
optimization step must be carried out to correct initial compo-
nent tolerances values.

3.8 Search for optimal tolerance values

In this step, the designer chooses the tolerance to be modified
and an increment Δt. Generally, it is the less expensive toler-
ance. An iterative sub-algorithm is developed to optimize the
tolerance values of parts. For each iteration, the FR is tested.
The optimal tolerance allows the respect of FR in all realistic
configurations.
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4 Case study

4.1 Assembly with rigid joint

To validate the approach already developed, a first case study
without allowed motion is illustrated in this section. An as-
sembly, named RGB (Fig. 7), is considered and composed of
three planar parts:

& Part B in blue color considered as rigid perfect (without
defects).

& Part R in red color considered as rigid with positional
defect (Tr = 0.2 mm).

& Part G in green color considered as non-rigid part with
positional defect (Tg = 0.3 mm).

& Two lateral locking parts assumed to be rigid and fixed on
part B. Both lateral faces F1 and F2 of locking parts are in
contact with faces Gl and Gr respectively.

A functional requirement (J = 40±0.25 mm) is defined be-
tween two faces Gb and B1. According to geometrical toler-
ances values and SDT, all realistic configurations with defects
of parts G and R are obtained using Solidworks Application
Programming Interface (API). The first column of Table 1
shows initial mating constraints.

The most stressed part G is isolated and subjected to a FE
study (elastic deformation) in order to simulate part loads. Nodal
displacements of deformed faces G′f and G′b (corresponding to

Gf and Gb respectively) are deduced. A sub-algorithm is devel-
oped using Solidworks API to automate the FE simulation while
considering boundary conditions and loads (Table 2).

After the FE computation, the deformed faces Gf′ and Gb′
are reconstructed as described in steps 4 and 5 of proposed
approach. Thirty-six assembly realistic configurations are de-
duced with the update of mating constraints. For example, the
second column of Table 1 shows the AS and constraints in the
21st realistic configurations. The coincident constraint initial-
ly between faces Rb and Gf is replaced either by a constraint
Rb′&3V, Rb′&2V, or Rb′&Vaccording to realistic configura-
tions of parts, such as Rb′ is the realistic configuration of Rb
and V is a vertex from Gf′ (V can be one, two (2V), or three
(3V) vertices).

4.1.1 Results analysis

The tolerance analysis, using the initial tolerance values (Tg =
0.3 mm and Tr = 0.2 mm) and considering G part deformation,
shows that J is not respected for some realistic configurations.
This result validates our initial assumption considering the
deformation impact of the tolerances attributed especially to
non-rigid parts on the assembly operation. The new tolerance
(Tg opt = 0.29 mm) of G part, computed using the sub-
algorithm of tolerances optimization, respects J with consid-
eration of deformation factor and positional defects (Fig. 8). In
this case, the correction is equal to 0.01 mm. In the case of an
assembly with a large number of components, the corrected
error will certainly be more significant.
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4.2 Assembly with parts motion

The second case study consists on an assembly comprising a
set of cylindrical and planar parts (Fig. 9).

The bolt is considered as non-rigid with coaxiality defect
(Tc = 0.6 mm), the support part is assumed to be rigid with
perpendicularity defect (Td = 0.3 mm), and the wheel, fixed
with the bolt, is considered as a rigid part without defects.

The FR of the assembly consist of keeping the
clearances(e1 > 0 and e2 > 0) between the wheel and the sup-
port in order to avoid all risk of contact or friction during the
rotation of the wheel. The AS and the constraints of the as-
sembly are illustrated in Table 3.

The assembly used in this case study is dynamic: The bolt
rotation causes the wheel rotation. The bolt is considered as
the most stressed component in the assembly. Before applying
the FE calculation, a stable static position of the bolt according
to each specific geometric defect is required to predict the
direction of the force due to the weight effect of the wheel
on the non-rigid bolt (Fig. 10). The restraints and loads used
for the FE are follows: the face 8 is considered as a fixed
feature and a force (F = 200 N) is applied as shown in Fig. 10.

After the FE computation, the point’s cloud of the de-
formed face 5 of the bolt are extracted and triangulated in
order to reconstruct the realistic face 5′ as presented in Steps
5 and 6.The new axis L′R of 5′ is generated based on the OBB
tool (Step 6). Sixteen realistic configurations are deduced by
updating the mating constraints. The second column of
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Table 1 AS and constraints in nominal and 21st realistic configurations

AS N°. Constraints in
nominal configuration

Constraints in 21st
realistic configuration

1 Co: Rbo&B9 Co: Rbo&B9

2 Co: Rl&F1 Co: Rl&F1

3 Co: Rr&B8 Co: Rr&B8

4 Co: Gbo&B9 Co: Gbo&B9

5 Co: Gl&F1 Co: Gl&F1

6 Co: Gf&Rb Co: V&Rb′

Table 2 Boundary conditions and loads

Faces Fixtures Force/pressure

Gbo Fixed face –

Gt – Pressure P = 10 MPa

Gl, Gr Reference geometry
(translation along Z
direction Tz = 0)

–
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Table 3 illustrates the AS and the new constraints in the 10th
realistic configuration, such as L′R and L′B are the realistic
configurations of the axes LR and LB respectively.

For each worst case configuration of faces 4 and 5,
deduced from SDT, e1 and e2 are computed during the
wheel rotation. Table 4 illustrates the values of e1min
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and e2min corresponding the most critical rotation angle of the
wheel.

4.2.1 Results analysis

The tolerance analysis, using the initial tolerance values (Tc =
0.6 mm and Td = 0.3 mm) and considering the deformation
effect of the non-rigid bolt, shows that FR (e1 > 0 and e2 > 0) is
not respected for the majority of the realistic configurations
(Table 4).

By applying the iterative process, the tolerance value Tc is
modified and becomes equal to 0.30 mm. Using the above

tolerance, the new values of clearances (N.e1min and
N.e2min) are computed for each worst case configurations of
components. Table 4 shows that the FR is respected for all
configurations with consideration of deformation factor and
geometrical defects.

5 Conclusion

In this paper, a new CAD approach for considering non-rigid
parts in tolerance analysis is presented. Geometrical defects
are taken into account by the determination of the worst case

Table 3 AS and constraints in
nominal and 10th realistic
configurations

AS N°. Constraint in nominal configuration Constraints in 10th realistic configuration

1 1.Co: LR&LB 1.Co: L′R&L′B
2 2.Co: 1&7 2.Co: 1&Vertex(V) ϵ 7

3 3.Co: LM&LN 3.Co: LM&LN

4 4.Co: 11&9 4.Co: 11&9

5 5.Relative fixation (wheel & bolt) 5.Relative fixation (wheel & bolt)
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Rotation around ( +X ) axis , ∝ =Arctg ( 0.6 / 86 ) 
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Fig. 10 Determination of the force direction applied to the bolt according to each initial geometric defect in the worst case
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configurations of assembly components. The deformation
simulation, using a model with geometrical deviations, allows
to estimate the tolerances impact on part displacements. The
reconstruction of deformed part faces contributes to obtain
deformedmodels with geometrical defects. The determination
of assembly realistic configurations requires the development
of a new strategy to update mating constraints, while respect-
ing assembly sequences. The assembly of the above parts
permits the quantification of the effects of both tolerances
and deformations on function requirement during the assem-
bly operation. An iterative algorithm is developed to obtain
adequate tolerances. The proposedmodel is a decision support
tool integrated into DMU commonly used in industry. The
majority of the steps are automated contributing to a simple
use of the method, in spite of the fact that the runtime increases
according to parts and specifications number. The approach is
being improved to be applied on complex assemblies inspired
from the industrial environment. Future research works will
be interested in the consideration of the form defects on the
CAD model through another type of tolerancing approach.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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