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Abstract
Monitoring and controlling of metal cutting processes is an essential task in any modern precision machining setup. The
implementation of proper monitoring process leads to promising results in terms of cutting tool life, machining costs, and
production rates. Several techniques have been used to detect, monitor, and analyze different parameters associated with the
cutting processes such as cutting tool wear, chip breakage and fracture, chatter vibrations, and formation of built-up edge (BUE).
In this work, a review study is presented to discuss the research activities using the acoustic emission (AE) signals to monitor and
control various machining processes. The discussed work does not only present an investigation of the AE signals, measured
variables, and AE sensor setup during machining processes, but also shows several methods used for analyzing and processing
the AE signals. The work focuses on studies, which employed AE in monitoring, and analyzing some specific characteristics
such as chip formation andmorphology, surface quality, and tool wear evolution for different machining operations andmaterials.
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Nomenclature
AE Acoustic emission
BUE Built-up edge
RMS Root mean square
H-P filter Hodrick-Prescott filter
L-P filter Low-pass filter
FFT Fast Fourier transform
WT Wavelet transfer
DCT Discrete cosine transform
DFT Discrete Fourier transform
STFT Short-time Fourier transform
CWT Continuous wavelet transform
HHHT Hilbert and Hilbert-Huang transform

AEr.m.s The root mean square value of AE
signals

Ra Average surface roughness
A/D Analog to digital
AEMARSE Acoustic emission energy counts
DSP Digital signal processing
ANN Artificial neural network
MAMP-MVMP The mean average and mean variance

of mean power
LPCC Linear predictive cepstrum coefficient
MVD Mean value deviance
MERSE Measured area under the rectified

signal envelope
β Beta distribution
CFRP Carbon fiber reinforced polymer

1 Machining monitoring technique
background

During machining processes, cutting tools encounter some
challenging phenomena such as chipping, breakage, chatter,
and built-up edge (BUE). Therefore, monitoring these phe-
nomena is crucial as it can provide a good process character-
ization to maximize the production output by selecting
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optimal cutting conditions. Besides, applying monitoring
techniques has an effective role in improving the work safety
conditions and the quality of product/process. Lauro et al. [1]
discussed many monitoring techniques for cutting processes
through different literature studies which focused on studying
cutting forces, tool life, cutting temperature, and chip forma-
tion mechanisms. They investigated the machining monitor-
ing processes and found that monitoring techniques can be
divided into two main categories: direct approach and indirect
approach. On the one hand, the direct approach (off-line) is
mainly focused on the actual values of the measured cutting
characteristics, and it gives a high degree of accuracy.
However, it has a limited practical access, which makes it a
non-effective tool for detecting machining phenomena. On the
other hand, the indirect approach (on-line) depends on using
empirical correlations to obtain the actual values of machining
characteristics by processing and analyzing measured signals.
However, it offers less accuracy than the direct approach; it
has an advantage of on-line detection for the cutting phenom-
ena especially for the cutting tool monitoring as was presented
and discussed by Teti et al. and Zhu et al. [2, 3]. The indirect
approach usage can offer promising results in improving
product/process quality as it focuses on high-quality control
inspection. Nevertheless, Garcia et al. [4] claimed that for
applying an optimization chain between sensor selections,
characterization and processing of measured signal predictive
correlation models need to be established. Some examples of
the indirect approach are as follows:

& Cutting forces: on-line prediction of the cutting forces can
clarify several machining phenomena such as chip forma-
tion mechanism, estimation of tool wear evolution, resul-
tant cutting temperature, and energy consumption as has
been discussed by Deng et al. [5]. The cutting forces can
be measured using the two main methods: direct and in-
direct measurements. The direct measurements can be ob-
tained bymounting the tool/workpiece on a dynamometer,
and it gives highly accurate values for both direction and
magnitude. The indirect methods offer less accurate pre-
dictions of generated cutting forces than direct methods;
however, specific cases just need some force predictions
deduced from the workpiece/tool interaction as has been
presented by Childs [6].

& Vibrations: on-line monitoring for the induced vibration
during the cutting processes is an important factor as it
affects the surface quality, machining component perfor-
mance, and tool conditions as presented by Devillez and
Dudzinski [7]. Also, the vibration signatures can be used
for the tool wear mode prediction using a correlation be-
tween vibration frequency domain and the tool wear evo-
lution as presented and discussed by Dimla [8].
Accelerometers are mainly used to measure the induced
vibrations as they can be mounted on spindle and tool

holders; however, they have limitations to measure the vi-
bration frequency and amplitude as previously discussed
by Devillez and Dudzinski in a previous work [7].

& Temperature: the heat generated near the cutting edge
causes several problems such as tool wear, high sur-
face roughness, and difficult chip formation. Several
attempts [9–11] have been introduced in the open lit-
erature to reduce the amount of heat generated using
sustainable cooling approaches; however, measuring
the cutting temperature to evaluate these approaches
is still a challenge. There are two basic variables while
monitoring the cutting temperature: measuring the
temperature distribution along cutting region (espe-
cially above 700 °C) and the average temperature of
chip/tool contact area [6]. Moreover, the cutting tem-
perature has a significant role in chip formation pro-
cess through specific characteristics such as plastic
deformation, the degree of corrosion and diffusion,
fatigue properties, workpiece microstructure, and tool
wear as presented by Byrne [12]. Thermocouples are
commonly used sensors for the cutting temperature
measurement since they can be mounted in either
workpiece or cutting tool, and their working range is
considered wide enough to analyze the machining per-
formance. Furthermore, they can be easily used and
are not considered as expensive sensors as mentioned
by Sivasakthivel and Sudhakaran [13]. Other measure-
ment methods for cutting temperature distributions
used are infrared radiation pyrometer during grinding
of AISI 1055 annealed and hardness [14], infrared
thermal camera during cutting of AISI 4140 [15],
and milling of Al 7050 aluminum alloy [16].

& Lauro et al. [1] presented a literature survey that in-
troduced more advanced monitoring methods such as
using optical surface measurement methods, charge-
coupled device camera, inductive sensor, and ultrason-
ic waves in order to monitor and predict several ma-
chining quality characteristics such as surface rough-
ness, tool wear, and cutting forces.

Another indirect monitoring technique is using acoustic
signals, which is the focus of this paper. This research
reviewed several literature review studies related to vari-
ous applications using acoustic emission (AE) methods
during cutting processes. Besides introducing several
methods for analyzing and processing the measured sig-
nals, this work analyzed numerous studies that used AE
signals in monitoring and predicting some machining
characteristics such as cutting tool conditions, chip-tool
interaction, chip formation mechanism, and surface qual-
ity. In the next section, an introduction to AE signals,
measured variables, and AE sensor setup during machin-
ing processes is given and discussed.
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2 Acoustic emissions

Acoustic emissions (AE) are defined as a directly tran-
sient elastic energy generated from mechanical deforma-
tion stress waves induced into different materials. Stress
waves are considered the main sources of AE. Thus, anal-
ysis and detection of these stress waves at material struc-
ture surface can be investigated using AE monitoring sys-
tems. Hence, the damage and fracture mechanisms can be
located, identified, quantified, and detected through AE
techniques as has been presented and discussed by
Holford [17]. They analyzed the AE signal sources and
found that they can be divided into two main categories:
primary and secondary AE sources. Primary AE sources
include the fracture mechanics parameters and the growth
of fatigue cracks while other sources whether they include
cracks or not are categorized as secondary AE signals.
Examples of primary AE sources are ductile tearing, in-
clusions, cleavage, and micro-fracture. On the other hand,
secondary AE sources are the crack closure processes and
crack developments (e.g., crack detection, leakage, loose
parts identification, fretting). The recorded AE signals can
be expressed using several basic parameters, namely av-
erage frequency, peak signal amplitude, rise time, and
ring-down count. These parameters are function of the
sensor frequency response, propagation medium, sensor
damping characteristics, structure frequency response,
gain of the amplifier, voltage threshold, and sensitivity
of the sensor [17]. Analysis and processing of recorded
AE signals can be established using time and/or frequency
domains. Crouse [18] mentioned that AE signals are used
to inspect and monitor the functional performance of sev-
eral applications such as pressure vessels, aircraft, pipe-
lines, bucket trucks, welding processes control, storage
tanks, and characterization of ceramic and composite
components.

Grosse and Ohtsu [19] identified the advantages of AE
signal usage as follows:

& Highly effective in preservice testing, leakage detection,
on-line monitoring of systems and components, and char-
acterization and testing of mechanical properties

& Good material anisotropy
& Less geometrical sensitivity and intrusiveness
& Remote scanning and real-time evaluation
& Higher performance/price ratio

While, on the other side, the AE disadvantages are as
follows:

& Lower repeatability as AE is stress unique and it has dif-
ferent loading effects

& Acoustic stress wave attenuation

& AE signals are very sensitive to the extraneous noise

During tests, one should note that acoustic emission sen-
sors work at much higher frequency than microphones and
their physical structures are different than microphones.
Also, they should be strategically located around the
workpiece/tool zone to monitor anomalies, and accordingly
detect cracks, leaks, or any other phenomena. Although the
microphones are limited in frequency response to about
20 kHz, they would provide some qualitative measure of
anomalies for such cases where AE sensor cannot be physi-
cally attached. Furthermore, some phenomenon would pro-
duce acoustic emission within the same frequency range of a
microphone (i.e., within 20 kHz), and therefore, it is not eco-
nomically wise to use AE sensors as they are much more
expensive than microphones.

3 Technology of acoustic emission
measurements in cutting processes

This section discusses the AE signals, the measured variables,
and the AE sensor setup duringmachining processes. As men-
tioned before that the AE is defined as a directly transient
elastic energy induced from material due to deformation or
fracture, this AE energy depends mainly on material deforma-
tion rate, material volume, and applied stresses [20–22]. AE is
considered as one of the significant and advanced nondestruc-
tive tools in the applications of real-time process monitoring.
A sensor/transducer acoustically attached to a sample can de-
tect the emitted elastic energy and undergo dynamic changes
as reported by Raj and Jayakumar [23]. AE signals during
machining processes have been classified into two main cate-
gories: continuous and burst. Continuous AE can be noticed
during cutting ductile materials at the plastic deformation zone
while burst waves can be observed during the crack growth of
material like cutting edge and chip breakage, chatter vibration,
and chip tangling [24–26]. Karimi et al. [27] concluded that
the use of AE sensors to monitor the machining processes is
an effective on-line detection/monitoring technique as its sen-
sitivity and reliability provide significant results in investigat-
ing and analyzing several machining characteristics and
malfunctions. Several measured AE variables are used to in-
vestigate and monitor the cutting process. The pressure sound
can be obtained through three different measurements: peak,
average, and root mean square (RMS). Basically, RMS signals
are obtained by squaring the input signals, average of filtered
low-pass frequency, and outputs a square root conversion.
Root mean square values are commonly used since it provides
a direct relationship to the energy content of the signal.
However, the frequency character of the raw signal may ef-
fectively express the frequency response of the used sensor
better than RMS signals as mentioned in a previous work by
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Webster et al. [28]. It should be stated that the operations
involved in determining the RMS signals could negatively
affect its potential to use, especially for detecting events such
as cracks and burn on the part as mentioned and discussed by
Aguiar et al. [29]. Another variable is energy density, and it
obtains the amount of energy per unit volume of a sound
wave. Energy density depends on density, speed of sound,
and root mean square of sound pressure. Furthermore, inten-
sity is another AE variable since it represents the acoustic
energy mean value, which crosses a unit area perpendicular
to the direction of propagation in a unit time. This has been
discussed and confirmed by Egan and Kinsler et al. [30, 31].

Rogers [32] investigated the piezoelectric sensor technolo-
gy and they showed promising capabilities in measuring AE
during various machining processes. Most of machining pro-
cess phenomena can be monitored and detected using these
sensors, which have dynamic bandwidth within the range of
100 to 900 kHz. AE signal processing are performed using
effective data acquisition systems; Fig. 1 shows schematic of
AE signal processing. As shown in Fig. 1, a pre-amplifier/
buffer amplifier is used to process the recorded AE signals
since it has a high input impedance and low output impedance.
Regarding analog signal processing, H-P and L-P filters and
RMS converter are used for filtering and segmentation, then
the analog-digital converter can be applied. Also, frequency
domain analysis needs to be obtained as it can provide more
information related to the feature extraction and selections
especially for the cutting processes [2, 33, 34]. Researchers
did not stop on that but they continued to develop many tech-
niques for transformation digital time domain signals into fre-
quency domain signals such as fast Fourier transform (FFT)
and wavelet transfer (WT).

Regarding AE sensor location, Woulfe [35] found that the
mounting of AE sensor needs a coupling element between the
workpiece surface and sensor itself and this element should be
free of any inclusions since it may affect the acoustical cou-
pling efficiency. Hutton and Hu [36] and Li et al. [37] used a
non-intrusive coupling fluid in their investigations to couple
the AE sensor with the spindle drive shaft, and they observed
good results in AE signal processing. In addition, Inasaki [24]
and Karpuschewski et al. [38] implemented radio frequency
transmission, slip rings, and inductive coupling to transmit AE

signals from sensors to AE coupling. Another study by
Jemielniak [39] showed that mounting the AE sensor on the
cutting tool inner structure surface can lead to longer duration
of signal recording. Woulfe [35] focused on mounting the AE
sensor of the workpiece side; however, it can be noticed that
varying the distance between the AE sensor and source should
be taken into account as it can affect the AE processing of the
signals. Thus, the current study concludes that many difficul-
ties can be observed in mounting AE sensors. Therefore, the
use of AE coupling elements is very necessary to avoid any
problems and barriers in AE signal processing.

Finally, it is well known that the acoustic emission sen-
sors work at much higher frequency than microphones and
their physical structures are different than microphones.
Also, they would be strategically located around the
workpiece/tool zone to monitor anomalies, and accordingly
detect cracks, leaks, or any other phenomena. Although the
microphones are limited in frequency response to about
20 kHz, they would provide some qualitative measure of
anomalies for parts where you can not physically attach an
AE sensor. Furthermore, some phenomenon would produce
acoustic emission within the same frequency range of a mi-
crophone (i.e., within 20 kHz), and therefore, it is not eco-
nomically wise to use AE sensors as they are much more
expensive than microphones.

4 Processing and analysis of the measured
signals during machining processes

Selecting the suitable processing technique of AE signals is a
crucial factor to address the acquired signals, which can de-
tect, analyze, and investigate the desired machining phenom-
ena. Various techniques have been obtained through literature
[40–42]: the frequency domain analysis using FFT or power
spectral density, time domain analysis using once per revolu-
tion sampling, and WT technique which provides time-
frequency domain analysis. Besides, this research presents
several studies, which focused on implementing these tech-
niques for analyzing and monitoring the recorded signals dur-
ing various cutting processes.

AE
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Fig. 1 Schematic of AE signal processing
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4.1 Fast Fourier transform

Kang et al. [43] applied FFT technique in monitoring spindle
vibration during high-speed machining process through ana-
lyzing the tooth and rotation frequencies of the recorded ac-
celeration signals. Liao et al. [44] showed that, in terms of the
tool condition monitoring, the discrete cosine transform
(DCT) and the discrete Fourier transform (DFT) have shown
promising results in extracting the fundamental frequency
component which can express and analyze the tool wear evo-
lution. Another study by Liu et al. [45] has demonstrated a
high potential in using FFT to filter and avoid the undesired
frequency components and high-noise vibration signals dur-
ing machining process. Short-time Fourier transform (STFT)
is another FFTmethod that is being employed in analyzing the
AE signals. It provided good results in detecting and analyz-
ing the patterns with a well-defined frequency and non-
overlapping events as discussed by Teti and Baciu [46]. In
spite of previous superior applications of FFT, Zhu et al. [3]
highlighted some specific theoretical disadvantages using
FFT especially in the analysis of machining processes signals.

4.2 Wavelet transform

Wavelet transform technique is being applied in different plat-
forms (e.g., applied physics, applied mathematics, engineer-
ing applications) as it can offer time-frequency domain anal-
ysis. Throughout the manufacturing applications, it showed a
promising trend in monitoring and diagnosing of machinery
faults and detecting the tool wear characteristics as discussed
by Zhu et al. and Lauro et al. [1, 3]. Liao et al. [44] presented
various advantages stating that WT has more potential in an-
alyzing and processing the recorded signals than FFT:

& Local time-dependent properties are easily captured using
WTwhile FFT can only obtain global properties

& More fine tuning can be applied
& Providing infinite possible basis functions

Furthermore, this study investigated the other advantages
for using WT rather than FFT during machining processes.
Exploring a descriptive natural shape rather than the sine wave
is one of these advantages. Also, several features for analyzing
the recorded signals have been noticed inWT by Scheffer and
Heyns [47] such as higher derivative discontinuities, break-
down points, and self-similarity. The continuous wavelet
transform (CWT) has a high potential in analyzing the station-
ary and non-stationary signals especially in the application of
tool condition monitoring; however, it takes long computa-
tional time since more data are observed to be redundant.
Thus, the discrete wavelet transform (DWT) has been used
for faster computational time as previously presented by Zhu
et al. [3]. Grzesik and Brol [48] implemented the CWT during

the hard turning process in order to study the properties of
multifractal roughness profile to investigate the cutting tool
effects (standard wiper ceramic). Another study by
Kasashima et al. [49] focused on using DWT for analyzing
the induced cutting forces during milling process of stainless
steel 304. Moreover, Xu et al. [50] used wavelet packet anal-
ysis in building a practical on-line fault diagnosis for tool
condition monitoring and vibration analysis during cutting
processes, and it has shown promising results regarding
extracting features and model robustness.

4.3 Other signal processing and analysis techniques

Hilbert and Hilbert-Huang transform (HHT) is considered an
integral transform like Laplace and Fourier transformations,
and it is being used to solve inverse problems and give infor-
mation about instantaneous phase, amplitude, and frequency
of vibration systems [51]. Cao et al. [52] used the HHT spec-
trum (standard deviations and means) over a sampling fre-
quency of 6.4 kHz to obtain the chatter indices to study the
vibration signals resulting from milling of aluminum 7050.
Furthermore, Kalvod and Hwang [41] have used HHT during
milling of aluminum to investigate and characterize the in-
duced cutting forces and vibrations and their effects on tool
wear state. The significant variations happened in the frequen-
cy peaks using resultant HHT that shows a good correlation to
monitor the cutter wear evolution. Moreover, this study ex-
plored another combined signal processing technique for AE
application using Choi-Williams distribution (CWD), Zhao-
Atlas-Marks distribution (ZAMD), and formant analysis
methods. This method provides better time-frequency domain
resolution which can overcome the non-stationary signal cap-
turing and small spectral peak problems found in a previous
study byMarinescu and Axinte [53]. Also, another processing
technique called principal component analysis (PCA) is being
used for reducing signal data high dimensionality as it can
eliminate the interrelated variables into the recorded signals.
Thus, the significant feature can be extracted easily as dem-
onstrated by Simeone et al. [54]. Table 1 shows different ap-
plications of WTand HHT techniques in processing and anal-
ysis of various recorded signals during machining processes.

Also, the time domain analysis is one of the important and
commonly used techniques to process the AE signals. The
measured AE parameters for the time domain analysis are
the amplitude, energy, RMS amplitude, kurtosis, counts, rise
time, and peak amplitude. Statistical and time series ap-
proaches are usually employed to address the acquired signals,
which can detect, and investigate the desired machining phe-
nomena. For example, Li and He [63] used the time domain
analysis to monitor the induced surface roughness when end-
milling of Inconel 718. In addition, Liang and Dornfeld [64]
employed the time series analysis to monitor the tool wear
behavior. Also, Mukhopadhyay et al. employed the statistical
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analysis techniques to monitor the tool wear when turning
metal matrix composite [65].

Also, artificial intelligent techniques have shown promis-
ing results in processing AE signals with offering a strong
correlation between the measured signals and the machining
phenomena. For example, the fuzzy models were developed
to find a correlation between the measured AE signals and the
grinding wheel surface regularity as presented and discussed
by Alexandre et al. [66]. In addition, artificial neural network-
based models were developed to find a correlation between
the spindle current, spindle vibrations, cutting forces, sound
pressure, and measured flank wear as discussed by Ghosh et
al. [67]. Also, Kwak and Ha [68] achieved an intelligent di-
agnosis using AE signals and artificial neural network to pre-
dict the burning and chatter vibration phenomena.

In the next sections of this study, few studies related to AE
applications in monitoring and detection of the cutting pro-
cesses are presented and discussed. Three main cutting quality
aspects are reviewed: the chip formation and morphology,
surface quality, and cutting tool wear evolution.

5 Chip formation and morphology

This section presents various studies that use AE signals to
monitor and predict chip formation mechanism and chip mor-
phology during different cutting processes.

Uehara and Kanda [69] used the AE signals in measuring
the propagations of workpiece and tool sides and showed
promising results in monitoring the occurrence of BUE.
Also, AE energy levels showed good results in monitoring
saw-toothed chip during cutting of stainless steel and titanium
alloy and discontinuous chip during cutting of brass alloy. In
the case of micro-grinding of brittle materials, AE energy is
higher in the plastic deformation zone than in fracture zone.
Bifano and Yi [70] found that the relation between AE energy
and material removal rate has the similar trend between mate-
rial removal rate and specific cutting energy. Another work by

Kakade et al. [71] focused on using AE signal parameters to
monitor and assess the chip formation processes during face
milling of mild steel. This work illustrated that the continuous
chip formation can be observed at higher AE rise time while
the broken chips were noticed at smaller event duration.
Furthermore, AE signals were used to monitor the rubbing
and deformation of work material, so this study showed that
AE can be a useful tool for chip formation monitoring. Barry
and Byrne [72] analyzed the chip formation processes during
machining of hardened steel. The study showed that the root
mean square value of AE signals (AEr.m.s) was two times its
value compared with the machining of softer steels. The rea-
son behind that was the induced chip morphology as saw-
tooth chips were formed due to the rapid release of elastic
strain energy. Therefore, high AE energy can be noticed.
Another study by Barry et al. [73] used the AE signal param-
eters to study the chip formation mechanism of Ti-6Al-4V. In
addition, welding between tool and chip was noticed due to
the occurrence of the thermoplastic instability. The weld frac-
ture represented the main source of AE signals at cutting speed
higher than 0.5 m/s. Also, Barry and Byrne [74] analyzed the
machining of hardened steel and it showed that no standard
correlation can be observed between AEr.m.s and the depth of
cut as AEr.m.s might decrease or increase or remain the same
with increasing the depth of cut. However, it was concluded
that AEr.m.s is correlated with plastic deformation work rate
and sliding friction.

Furthermore, Mian et al. [75] proposed an indirect method
to analyze the AE signals, so that they can investigate the
minimum chip thickness during micro-milling of various ma-
terials such as aluminum, copper, single and multi-phase steel,
titanium, and Inconel. The main objective was finding a cor-
relation between AE signals during tool engagement below
the minimum chip thickness and cutting at the shear zone.
AEr.m.s was used as an effective indicator to predict the pro-
cessing mechanism. In addition, experimental values were
compared with literature review results, and a good agreement
was provided. The proposed approach has an advantage since

Table 1 WT and HHT applications in machining process monitoring

Type of recorded signal Machining
process

Material Signal processing
technique

Authors

Vibration signals Turning AISI4140 WT [55]

Cutting forces Grinding Ceramic WT [44]

Acoustic emission Drilling Laminated composite WT [56]

Acoustic emission vibration signals Grinding AISI 1045 HHT [57]

Electrical signals Drilling S45C steel WT [58]

Vibration signals Milling Al 7050-T7451 aluminum alloy WT [59]

Acoustic emission Turning AISI-D3 WT [60]

Current forces Milling AISI 1018 WT [61]

Current signals Milling SAE 1045 HHT [62]
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it offers an experimental monitoring technique to predict the
minimum chip thickness; however, all literature techniques
were proposed depending on numerical models, which cannot
be useful in terms of the process monitoring. Thus, a real-time
process monitoring based on AE signals could help in micro-
structure change prediction, which is mainly required with
difficult-to-cut materials because of its higher tendency of
adhesion. In addition, AE signals were used to explore the
energy levels for several deformation mechanisms during
micro-milling processes. Non-ferrous, ferrous, and difficult-
to-cut materials were under examination and they were tested.
The characterization of chip formation and morphology were
correlated with AE energies. Therefore, the size effects of
micro-cutting processes can be easily controlled using this
monitoring technique, which can detect the micro-machining,
shearing, and micro-fracture mechanisms. Moreover, the AE
energy increase is associated with the increase of the unde-
formed chip thickness to width of cut ratio. Microstructure
phase is an important factor in controlling the chip segmenta-
tion for ferrous materials since pearlite phase has a significant
effect on the micro-machining mechanism. However, other
several factors are responsible for the chip segmentation con-
trol for non-ferrous and difficult-to-cut materials. For exam-
ple, stick-slip zone formation on the flank face has an effective
factor for shearing mechanism through micro-milling of tita-
nium [76].

Bhuiyan et al. [77] focused onmonitoring the effect of chip
formation on the tool life using AE signal analysis during
turning of ASSAB-705 medium carbon steel. The study re-
ported that the chip formation frequency range was between
68.3 and 634.83 kHz. Furthermore, higher RMS values of AE
signals, which increased the tool wear, were associated with
the increase in feed rate, cutting speed, and depth of cut at
stable chip formation zones. However, tool wear was de-
creased with chip breakage zones even at higher levels of feed
rate and cutting speed. The proposed setup showed several

advantages of predicting plastic deformation and tool wear,
which cannot be done using the conventional techniques.

Also, Hase et al. [78] and Dhale [79] listed several AE
sources during chip formation process as the follows:

& Shearing process
& Cutting tool/chips/workpiece rubbing
& Cutting tool wear
& Chip breakages and collisions
& Built-up edge formation
& Cutting tool damage
& Entanglement of chips onto the workpiece or cutting tool
& Cutting tool vibrations

Figure 2 shows a schematic of previously mentioned AE
sources during cutting processes.

AE signals were used to study both chip formation and
morphology during micro-end-milling of aluminum alloy
(AA 1100) by Prakash et al. [80]. The discrete wavelet trans-
formation (DWT) and fast Fourier transformation (FFT) were
applied to analyze the AE signals in time and frequency do-
mains. The study found that the built-up edge (BUE) forma-
tion can be easily monitored through AEr.m.s while the micro-
fracture and shearing mechanisms were associated with the
higher order of AE-specific energies. Regarding the chip mor-
phology, low AE amplitude and frequency were effective in-
dicators for tight curl chip formation, while elemental chips
were formed at high AE amplitude and frequency as shown in
Fig. 3.

Similar observations were made by Hase et al. [78] during
turning of SKS3 with cermet tools at different hardness
values. In general, the amplitude of AE signals for serrated
type chips is larger than flow type chips showing that nature of
AE signal is closely related to the type of chips formed. A
recent work presented by Filippov et al. [81] studied the sta-
bility of the peak-less tool turning using AE signals processed

Fig. 2 Sources of AE during machining processes
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by short-time Fourier transformation (STFT). Wertheim et al.
[82] proposed an algorithm to detect the drill position by pro-
cessing of measured AE signals during drilling of carbon
fiber-reinforced plastic (CFRP). Detecting the drill position
precisely would help in fixing different problems when dril-
ling CFRP.

6 Surface quality

In this section, we are presenting a review of many studies
related to the surface quality detection/monitoring for several
types of machining processes using AE signals.

Using different cutting conditions during finish turning of
AISI 1045, the acoustic emission variations were used to pre-
dict the growth of induced surface roughness. Several AE
parameters showed effective results for predicting surface
roughness depending on its frequency band range. For exam-
ple, Diniz et al. [83] found that at frequency band from 50 to
500 kHz, AEr.m.s standard deviations and zero crossing rate in
the raw signal are the most important parameter, while AEr.m.s
and its standard deviation values are suitable in case of 200 to
300 kHz.

Beggan et al. [84] used AE signals to monitor the surface
quality during turning of EN1APb steel. Implementing AE
signals has revealed an effective correlation between average
surface roughness (Ra) and root mean square values of acous-
tic emissions (AEr.m.s). In addition, a comparison between the
modeled and measured values for both average surface rough-
ness (Ra) and AEr.m.s has shown similar trends at medium and
high cutting feed rates and speeds. The study analysis led to

the development of a real-time PC-based as a surface quality
monitoring system (surface quality sensor).

Susič and Grabec [85] proposed a new system to predict the
surface roughness during grinding processes. They applied an
artificial neural network technique to estimate the correlations
between surface and AE characteristics using empirically devel-
opedmodel. They compared the model and experimental values
in order to validate the developed model; however, a high resid-
ual error was obtained at the beginning of the process. This error
was adjusted after the wheel started removing material continu-
ously and themodel accuracy was 80%. The research concluded
that the proposed system and the developed model can effec-
tively describe the surface characteristics during grinding pro-
cess as long as the grindingwheel is not newly dressed and there
is no a significant wear that can lead to unstable process.

A new method was proposed for grinding wheel condition
monitoring using AEr.m.s signals by Gomes de Oliveira and
Dornfeld [86]. The acoustic emission signals resulting from
the contact between diamond tool and grinding wheel are ac-
quired by the AE sensor and transformed into RMS level using
A/D conversion system and finally read by the computer. The
system can be used for a plunge grinding operation by plotting
the average acoustic energy over the whole wheel length vs
grinding time.

Guo and Ammula [87] developed a monitoring system
based on real-time acoustic emission to investigate and mon-
itor the white layer phenomenon which takes place during
hard turning processes. The study presented a promising tech-
nique for the surface integrity estimation. AEr.m.s variations
with cutting time have been observed during hard turning
AISI 52100 using CBN inserts. AEr.m.s value decreases with

Fig. 3 Response graph between AE, machining parameters vs machining time [80]
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increasing flank wear until the appearance of the white layer.
Then, it starts increasing up to a certain limit where a thick
white layer has been formed. In addition, frequency and AE
count rate also showed good correlation with the formation of
the white layer. Hence, these AE parameters can be used as
effective indicators to express this critical phenomenon.

Pittner et al. [88] exploited statistical and AE signal analy-
sis to monitor and control several surface roughness parame-
ters. A good correlation between the cutting speed, cutting
feed, AEr.m.s, and surface roughness indicators was detected.
AEr.m.s showed good results in classifying surface roughness
parameters rather than cutting speed; however, feed rate still
has the highest significant effect.

Monitoring of ultra-precision diamond turning of OFHC
polycrystalline copper was carried out by Dornfeld et al.
[89]. The AE polar map and the chemically etched workpiece
showed a good correlation. Due to digital-to-analog (DA)
converter limitations, grains smaller than 100 μm cannot be
resolved in AEmap; however, larger grains can be quite clear-
ly observed in both AE polar map and chemically etched
workpiece. These large grains have severe effect on surface
finish and homogeneity of the workpiece. Thus, in addition to
act as a tool-workpiece contact sensor, the AE polar map can
be quite satisfactorily used for detecting problem areas and
defective zones on the workpiece surface.

Bourne et al. [90] proposed a tool and workpiece surface
detection system based on AE signals using two different
algorithms: single touch-off and three touch-off operations.
Algorithm based on three touch-off operations can be easily
used in cases of the unknown orientation of workpiece sur-
face. The study used micro-level surface damage using ap-
proach seeds up to 50–100 μs to evaluate the system capabil-
ities. Furthermore, they developed a model to predict the
touch-off undershoot/overshoot as a function of surface
roughness and orientation. The experimental and model
values were compared and the model validation revealed a
promising accuracy within a micron or less.

Min et al. [91] illustrated that the workpiece coordination
setup and accurate measurements of tool length are two chal-
lenges in ultra-precision machining to minimize the work-
piece surface damage. In this work, they used AE sensors to
achieve both two mentioned requirements at the same time as
these sensors have high-precision detection of tool/workpiece
contact. Besides, the study applied two different approaches:
continuous and incremental. They found that a smaller surface
damage was obtained using the incremental method while
reducing setup time was obtained using the continuous ap-
proach. Furthermore, this research used the digital signal pro-
cessing (DSP) as an improvement step to simplify the contact
detection setup and reducing the signal processing time.

Pawade and Joshi [92] discussed the surface integrity re-
sults in Inconel 718 machining using AE signals. The exper-
imental setup of this work is shown in Fig. 4. The deformation

zone activities during the cutting processes can be captured
using AE signals as it could help in investigating or control-
ling the induced surface quality. They correlated several ma-
chining parameters (e.g., cutting speed, feed rate, and tool
edge geometry) with AE characteristics. The study realized
that the cutting speed is the only significant parameter, which
affects the AE signal frequency and amplitude. Also, a better
surface quality was obtained at the lower level of perturbations
of energy and count profiles. They concluded that the surface
anomalies and chip formation mechanism during cutting pro-
cesses of Inconel 718 can be easily detected by studying the
AE signal variations.

Marinescu and Axinte [93] proposed a new method based
on AE energy counts (AEMARSE) and area under the resultant
cutting force to find out region for damaged-free workpiece
surface while machining Inconel 718 using PVD coated and
solid carbide ineserts in an end-milling operation. It can be
seen that during the initial number of cuts, AE values do not
fluctuate too much and with increasing number of cuts, scat-
tering also increases showing too much variations in AE
values.

Gok et al. [94] used many cutting tools with different coat-
ings (TiAlN, TiN, and TiC) during the up- and down-milling
process strategies for EN X40CrMoV5-1 workpiece. Their
work studied the relationship between the generated surface
roughness and cutting sound pressure level for creating con-
cave and convex surfaces. Acoustic sound pressure levels
have obtained higher values in the case of convex than con-
cave surfaces because of the larger contact area between the
tool cutting edge and workpiece in the inner concave surface.

Fig. 4 Experimental setup of Inconel 718 machining using AE signals
[92]
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Higher Ra and acoustic pressure values were observed in the
concave surfaces using up-milling strategy due to the occur-
ring of the chatter mechanism; however, higher Ra and acous-
tic pressure values were observed in the convex surfaces using
down-milling strategy than up-milling due to the overlap of
cutting tool edges on the workpiece. Furthermore, the acoustic
pressure levels were decreased with increasing the milling
position angle during contouring milling operation; however,
no significant changes were noticed in the case of ramping
operation. Also, in order to control the dimensional inaccura-
cy, Gaja and Liou proposed a depth-of-cut monitoring system
to predict the real depth of cut in real time by employing AE
signals and regression techniques [95].

Moreover, several studies [79, 96] confirmed the effective
relationship between the machined surface quality and AE
signal parameters, especially for RMS values. Thus, this tech-
nique offers an on-line monitoring system to control and char-
acterize the quality of machined surfaces.

7 Cutting tool wear

Different attempts [97–101] were made in the open literature
related to the tool design development in order to improve the
tool life and provide self-cooling feature. Also, the tool con-
dition monitoring systems provide a good process characteri-
zation to maximize the production output by selecting optimal
cutting conditions. Throughout this section, several studies are
analyzed to study the implementation of AE to monitor and
identify the cutting tool wear evolution of the machining
processes.

Diei and Dornfeld [102, 103] investigated the relationship
between sensivity of AE signals to chip formation mechanism
in face milling. They noticed significant increase in AE sig-
nals upon chip formation initiation and exit of the tool from
the workpiece.

Diniz et al. [83] studied the tool wear effects on the resul-
tant surface quality during finish turning of 1045 steel. The
most significant frequency range was found between 200 and
300 kHz as it provides good capabilities of tool wear and
surface roughness monitoring. Also, the increase in both flank
wear and surface roughness increased the scatter of AEr.m.s.
Kakade et al. [83] used AE sensor based on piezoelectric
materials to monitor the flank wear during face milling of mild
steel using carbide TiN-coated cutter. In this study, rise time
and some events were used to evaluate and monitor the pro-
gressive tool wear. After initiating a flank wear of 0.22 mm,
there was a rapid increase in AE parameter values which can
be easily noticed, so this experimental approach offered a
promising on-line wear detection technique. Heiple et al.
[104] studied the sliding friction between the tool flank and
the workpiece. Furthermore, they concluded that changes in
the tool wear and AE signals are mainly dependent onmaterial

properties. Ravindra et al. [105] investigated AE signal imple-
mentation to monitor the tool wear evolution during machin-
ing of C-60 steel. The study used many AE parameters, such
as RMS voltage, rise time, and energy; however, RMS values
obtained the highest correlation with the flank wear values.

An additional work by Cho and Komvopoulos [106] fo-
cused on using AE signals to investigate the tool life, and the
results were highly correlated with the tool life determined
using maximum wear land width. They investigated that
changes take place for the interfacial friction coefficient, wear
in tool/workpiece contact area, and cutting tool material prop-
erties have significant effect on AEr.m.s. Hence, AE signals can
be utilized as effectively as a monitoring system for tool wear
behavior. Another study by Dolinšek and Kopač [107] fo-
cused on tool wear identification using AE signals during
cutting of C45 E4 steel by coated carbide tool with TiN and
coated cermet tool. The energy of AE signals was varied in the
frequency range of 100–610 kHz. The power spectrum of AE
signals for cermet tool showed higher effect than carbide tool
due to its higher damping characteristics. Furthermore, useful
information from the power spectrum of AE signals were
correlated with the flank wear results for both types and it
showed a promising practical technique to monitor the pro-
gressive tool wear.

Also, Kopač and Šali [108] used a condenser microphone
to record the sound pressure at 0.5 m from the cutting zone
during turning of CK15 (DIN) using cermet cutting tool with-
out any coating. They applied different levels of cutting speed
and feed rate to find a correlation between the sound pressure
level and flank tool wear. The study noticed that an increase in
the sound pressure amplitude was observed with increasing
the flank tool wear at a frequency between 6 and 20 kHz.
Also, a clear increase in sound intensity was observed with
increasing the feed rate values between 2 and 19 kHz. Another
research by Pai and Rao [109] employed AE signals in face
milling of En-8 steel using uncoated carbide inserts to monitor
the tool condition changes. They performed experimental tri-
als using different numbers of inserts inside the cutter under
several cutting conditions. The root mean square voltage and
ring-down counts related to AE parameters were used to in-
vestigate the tool wear state. The increase of root mean square
voltage value resulted in increasing the flank wear. However,
accumulative ring-down counts showed promising correlation
results than root mean square voltage in terms of monitoring
the progressive tool wear.

In another work by Ansenk and Broens (2004), face mill-
ing monitoring was done using a three-axis CNC milling cen-
ter with an AE sensor directly attached to the workpiece. They
collected the AEr.m.s signal in a continuous manner similar to
the technique used in grinding operation by De oliveira [86].
In AEr.m.s plot, each data point corresponds to one spindle
rotation showing a clear spike due to entrance of tool into
the workpiece. The AE intensity mapping for a total of around
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200 successive spindle rotations is developed. AEr.m.s signals
can be seen in the plot for each cutting insert (numbered 1 to 6)
with a gap of 60° between inserts. During the cutting progress,
AE signals due to rubbing of cutting inserts have been record-
ed. Thus, the tool monitoring could be accomplished using
this mapping technique to investigate the tool contact, tool
failure, and inserts’ positional accuracy in the tool holder.

The high-speed machining offers promising advantages re-
garding productivity, surface roughness, and accuracy.
However, the rapid rate of tool wear is still the main associated
problem with this process. Giriraj et al. [110] applied AE
signals during high-speed machining of aluminum LM-6
using titanium aluminum nitride-coated solid carbide end-
milling tool to investigate the evolution of flank wear over
cutting time. They implemented the design of experiments to
plan the experimental trials for measuring both of AE signals
(millivolt) and flank tool wear (μm). Artificial neural network
(ANN) analysis was conducted for AE and flank wear and a
good correlation was found with a maximum deviation of 4%.
This is indicative of an effective on-line tool wear monitoring
approach. Minimizing the cutting process defects is a signifi-
cant factor to achieve high workpiece quality and process
stability; therefore, developing new proposed monitoring
techniques is highly required. Thus, AE sensors were used
to find a correlation between its signals and flank wear as a
proposed method for on-line detection of tool conditions. Arul
et al. [111] conducted several trials during drilling of woven
glass fabric/epoxy with high-speed steel (HSS) drills. AEr.m.s

showed good results to obtain the flank wear evolution as it
increased progressively during the first ten holes. A steady
state was detected during the second set of trials (11–20),
and finally, a rapid increase was noticed for both flank wear
and AEr.m.s during the third set of trials (21–30). Furthermore,
the study noticed a dominant peak at 70 kHz after drilling of
30 holes and found that more than 30 holes using the same
tool setup and conditions can lead to tolerance defects.

Also, Jemielniak and Arrazola [112] presented an integra-
tion technique for tool monitoring condition during micro-
milling of cold work tool steel. They used two sensors: AE
and cutting force sensors. The proposed technique showed
strong abilities in detecting the tool-workpiece interaction ef-
fects and monitoring the cutting process integrity using the
measured AE parameters and dynamometer resonance vibra-
tions. Another study by Sundaram et al. [113] used AE signals
to monitor the cutting tool conditions during turning of C45
steel (250 HB) using polycrystalline diamond (PCD) insert.
Average and root mean square values were used to explore the
flank wear progress and significant effects were detected in
the flank wear progress after 200 kHz. Also, tool breakage
was predicted using AE peak-to-peak amplitude. Studying
wear stages for drill bits is an important research topic to
achieve stable cutting process. Therefore, it is required to
identify a newly developed technique to detect and monitor

the induced torque and tool wear. During drilling of SAE 1040
steel using HSS tool by Gómez et al. [114], AE signals and
torque were measured and a good correlation was found be-
tween the mean power of AE signals and measured torque
values. The mean average and mean variance of mean power
(MAMP-MVMP) were utilized to monitor the drill bit wear at
different cutting conditions. They showed promising results to
study the effects of cutting parameters on the tool wear evo-
lution, and it can also be used to detect the chip fracture. High-
quality signal processing and data acquisition systems are
necessary for AE monitoring systems to detect several ma-
chining phenomena like tool wear, surface integrity, and chip
morphology as has been mentioned and discussed by Teti et
al. [2].

Patra [115] implemented the AE sensors and wavelet pack-
et transform to explore the drilling tool wear mechanism.
ANN-based data gathered from wavelet packet transform ob-
tained a good correlation to predict the tool wear using acous-
tic signals. Hence, the monitoring of tool wear for automated
drilling process can be accomplished using the proposed
scheme. Prakash and Kanthababu [116] found that during
micro-end-milling of different materials (i.e., copper, steel,
aluminum), the low-order AEr.m.s values can be observed dur-
ing formation of BUE on the flank face of micro-end-mill due
to the occurrence of progressive wear at this region.
Bhaskaran et al. [60] employed the AEr.m.s to monitor the tool
wear behavior during turning hard steel of 60 HRC. Negative
skew values of AEr.m.s were noticed, and they indicated that
the wear land value has passed its threshold, while increasing
kurtosis values of AEr.m.s show high rubbing between the tool
and workpiece. Thus, both of the previous features of AEr.m.s
offered a promising approach to monitor and detect tool wear
behavior.

Also, Mukhopadhyay et al. [65] recorded the AE energy
during turning of aluminum reinforced with silicon carbide to
estimate the cutting tool wear using statistical analysis tech-
niques. AE energy results over cutting period showed signif-
icant changes. Coefficients of variation, variance, and β-
distribution were calculated to determine the relationship be-
tween AE energy and the flank wear. Skewness and kurtosis
variations of β-distribution showed good results, especially in
monitoring flank tool wear at later stages. These variations
have high correlations to detect different wear mechanisms,
such as abrasion, and removal/scratching of tool material.
Also, the peak amplitude distribution of AE signal has a strong
correlation in early stages of the flank tool wear up to 0.4 mm.
Ai et al. [117] exploited linear predictive cepstrum coefficient
(LPCC) orders to monitor the cutting tool wear during the
milling process. This technique obtained good results regard-
ing wear evolution characterization especially at the sixth-,
seventh-, and eighth-order components. Also, Bhuiyan et al.
[118] utilized the AEr.m.s values to explore the effects of feed
rate and depth of cut on the vibration components in x, y, and z
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directions during turning process. The study identified that
tool wear evolution can be represented using x vibration com-
ponent (Vx) results since its magnitude increases with the in-
crease of feed rate and depth of cut levels.

Kosaraju et al. [119] used AE signals to monitor the flank
wear evolution at a different time interval during machining of
titanium (grade 5) using PVD/TiAlN-coated carbide tools.
The study determined that AEr.m.s was significantly increased
with increasing the flank tool wear values in a frequency range
about 30–60 kHz. They proposed a regression model for AE
signals and its maximum residual error was around 2.33%.
Thus, this study offered a promising technique for on-line tool
wear monitoring using AE signal analysis and modeling.
Tamizharasan et al. [120] applied AE signals and design of
experiment technique to study the flank wear during the turn-
ing process. Signal-to-noise ratio analysis for both of AE sig-
nals and flank wear showed a good linear correlation. Figure 5
shows nature of AE signals during turning process at several
cutting conditions which can help in monitoring and
predicting the tool wear behavior as presented and discussed
by Siddhpura and Paurobally [20].

Moia et al. [121] used AE signals to monitor the aluminum
oxide grinding wheel state (sharp or worn). The study
exploited statistical analysis and neural network to analyze
the acoustically recorded data. RMS, mean value deviance
(MDV), and measured area under the rectified signal envelope
(MARSE) of AE signals were used as AE indicators, and they
revealed that the material removal dressing threshold was
about 100 μm. This indication has high importance as it can
prevent workpiece to be ground under unstable conditions of
grinding wheel. However, the study results are still limited to
the previously mentioned case under specific grinding wheel
type and dressing condition, so developing a generalized mon-
itoring approach for dressing process is still required. The tool
life monitoring and prediction were essential keys to improve
the cutting performance quality. Olufayo and Abou-El-

Hossein [122] used the AE parameters to monitor and assess
the tool life during the high-speed end-milling process of the
H13 tool with coated carbide inserts. The main purpose of this
work was finding a correlation between the tool life and AE
features. Wavelet transform, statistical analysis, and neural
network were used to analyze the data created from the pro-
posed multi-sensor approach. Several AE parameters were
implemented such as AEmean, AEr.m.s, AE energy, and wavelet
sum and its corresponding coefficients. AEmean and AEr.m.s
revealed high correlation in terms of tool life monitoring as
shown in Fig. 6.

Seemuang et al. [123] explored the noise magnitudes from
power spectrum and found significant changes using different
levels of cutting speed and feed rate. Also, the flank wear
results provided a good correlation with AE energy using
same settings of cutting parameters. Hence, AE can be effec-
tively used to monitor and detect the flank wear behavior
using a low-cost system for tool wear assessment and moni-
toring. Also, an effective system for tool condition monitoring
was proposed by Uekita and Takaya [124] using a multi-
sensor fusion strategy which includes acoustic emissions and
spindle current. In addition, another work presented by
Yiming et al. [125] employed (AE) signals to identify a cor-
relation between AE features and attrition wear. The AE en-
ergy results using time-frequency domain showed that the
cutting tool is worn when the AE energy deteriorates rapidly.
Another recent work done by Badge et al. [126] focused on
the applications of AE signals on dressing of grinding wheels,
by finding a correlation between the measured AE signal and
dressing energy through a new term called “the specific
acoustic-emission dressing energy”. An additional work by
Boaron and Weingaertner [127] proposed effective AE-
based quick test method in order to obtain the status of grind-
ing wheel topography at different cutting speeds. The pro-
posed technique is a useful tool for wear assessment using
both time and frequency domain analysis.

Fig. 5 AE singles at different cutting tool conditions during turning process [20]
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8 Current research gap and future trends

Monitoring the chip formation, induced surface quality, and
tool wear using AE signals could show effective results during
machining processes as its proper implementation leads to
longer cutting tool life, lower machining costs, and higher
production rates. Despite of the previous advantages, there
are several limitations of employing AE signals to monitor
the machining process characteristics. After reviewing several
literature studies as has been previously discussed, these lim-
itations can be summarized as follows:

& Complex algorithms and feasibility issues in real time
& Signal filtering from noise and signal detection at low

cutting speeds
& Accurate placement and alignment of acoustic sensor due

to limited footprint of tool
& Unfamiliarity with AE technology and interpretation of its

signals

Also, some future trends have been summarized upon in-
vestigating the previous limitations. These future trends are:

& Developing a smart and standardized industrial AE sensor
which can be fit and robust for different applications

& Implementing an integrated artificial intelligent system
(e.g., artificial neuro-fuzzy interface system) which could

effectively handle the noise and signal processing at low
cutting speeds

& Proposing a general guideline for AE sensor setup and
location for different machining operations to avoid any
obstacles in processing and analyzing the measured
signals

Developing and employing these future techniques could
lead to enhance the effectiveness of using AE signals in ma-
chining processes and consequently better results would be
achieved in terms of improving the cutting tool performance,
minimizing the machining costs and increasing the production
rates.

9 Conclusions

Machining process monitoring is an integral part of process
automation and control which is essential part of any modern
manufacturing enterprise. A successful implementation of the
process monitoring process is the first set to ensure the product
quality and maximize production output. One of the effective
techniques used to monitor the machining processes is analyz-
ing the induced acoustic emissions. Studying and understating
its mechanisms and finding a correlation between its online
measured values and the cutting quality characteristics is still a
challenge. In this work, a state-of-the art review is presented to

Fig. 6 Correlation between tool wear behavior and AE features along specific distance [122]
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provide a solid background about the applications of AE sig-
nals in monitoring and controlling various machining phe-
nomena. Also, it presents the measurement technology of
acoustic signals. The research to date proved that AE signals
offer an effective on-line monitoring technique for the charac-
terization of the chip formation and its morphology, surface
quality, and the progression of tool wear. AE sources during
cutting processes were identified and discussed, namely
breakage and collisions of chips, cutting tool wear, and for-
mation of built-up edge. Fast Fourier transformation (FFT),
wavelet transformation, and Hilbert and Hilbert-Huang trans-
formation (HHT) techniques show a high potential for appli-
cation of AE signal processing and analysis in different ma-
chining applications. Also, research investigations showed
that the frequency domain spectrum analysis is better than
the time domain for finding an adequate correlation between
AE signals and various machining characteristics. Despite
high usage of AE signals as an effective signal to monitor
machining process, AE sensor setup and location are very
influencing factors that affect the successful application of
the monitoring technique.
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