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Abstract
Chatter vibration in milling process is a major obstacle that limits the machining quality and productivity, which may be avoided
by using stability lobe diagrams (SLDs). Many traditional models developed to predict chatter stability assume that dynamic
parameters of the machine tool remain constant under operational conditions. However, these parameters such as natural
frequencies, damping ratios, stiffness, and cutting force coefficients vary depending upon different aspects including spindle
speed, tool wear, and machining position, reducing the accuracy of chatter prediction. In this study, a robust chatter prediction
method based on conventional analytical milling stability models is presented by employing the Edge theorem and Zero
Exclusion condition. In this method, optimal combinations of spindle speeds and machining positions are firstly researched to
obtain higher critical depths of cut, based on the conventional stability model, modal fitting technique, Kriging model, and
improved particle swarm optimization. At each combination, related nominal modal parameters and cutting force coefficients are
identified, and their left and right worst-case deviations are also determined. Critical stable condition for each combination is
detected by a graphic approach within the minimum and maximum bounds of uncertainties. Accordingly, a robust stability lobe
diagram is obtained with related spindle speeds and critical cutting depths. The proposedmethodwas verified by chatter tests on a
real vertical machining center, demonstrating its reliability in chatter prediction compared to the conventional stability lobe
diagram.
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1 Introduction

Chatter is a self-induced vibration phenomenon that can be
ascribed to the variation of chip thickness under operational
conditions. Its occurrence leads to poor surface finish, low
productivity, increased tool wear, machine tool failure, and
serious noise, which is the main obstacle to improving the part
quality and maximize material removal rate (MRR) [1–3]. In
view of the significance to avoid chatter, the mechanisms of

dynamic machining process have been examined in detail for
decades [4–6]. The developed stability lobe diagram (SLD)
technique stating the relationship between the spindle speed
and depth of cut is usually applied to predefining the appro-
priate chatter-free combinations of machining parameters
[7–9].

Since Taylor first made the description of chatter vibrations
in 1907, several other authors have contributed a lot of re-
searches on this topic [10–12]. Tobias and Fishwick [7]
established a chatter model and first utilized the SLD to pre-
dict the chatter stability, which was consistent with the defini-
tion that region below the lobe was stable and the above one
was unstable. Subsequently, many other researchers conduct-
ed in-depth investigations of the different processing forms.
Altintas and Budak [8, 12, 13] had developed a two degree of
freedom (2DOF) analytical chatter model specifically for mill-
ing operations, where they introduced the Fourier approxima-
tion method and obtained the chatter-free machining parame-
ters in the frequency domain. As this approach was proved to
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be efficient in determining the SLD, it lays a foundation to
predict chatter stability. Later, the semi-discretization method,
full-discretization method, and time-domainmethod were also
developed to evaluate machining stabilities. The groundbreak-
ing work contributed by the researchers benefit operators in
appropriately selecting machining parameters.

However, in a real machining application, the deviations
between the measurements and predictions are still observed.
This problem can be mainly attributed to the assumption that
system dynamics (machine, tool, and workpiece) and machin-
ing conditions are constant and time invariant when adopting
the numerical methods to calculate stability diagrams.
Nevertheless, under operational condition, there are many fac-
tors that cause the variations of system dynamics and machin-
ing conditions, leading to inaccurate predictions. For instance,
wearing of the cutting edge can change the tool geometry, and
then affect the cutting force coefficients [14, 15].

Uncertainty in chatter stability prediction has already been
addressed in recent researches. Duncan et al. and Zhang et al.
[16, 17] described several different sources that can cause tool
tip responses and cutting force coefficients varied, including
the measurement errors, tool wear, and nonlinear behavior. To
further investigate how these uncertainties affect the chatter
stability, the probabilistic theory is applied (e.g., Monte Carlo
simulations) [16]. But it can be time-consuming and unavail-
able to identify the detailed statistic distributions of uncertain
parameters since extensive experiments and simulations are
needed to be conducted. Consequently, two types of ap-
proaches are generally used to estimate the robust chatter sta-
bility. One approach is based on the fuzzy arithmetic. Sims et
al. [18] employed fuzzy arithmetic techniques to choose ro-
bust machining parameters and justified the deviations be-
tween theoretical and experimental behaviors. Haman et al.
[19] applied fuzzy arithmetic to calculate two-dimensional
stability limits, and developed fuzzy sensitivity analysis to
quantify the effect of given uncertain parameters. Another
type is based on the Edge theorem that examines whether
the edges of a family of polynomials are stable. Park and
Graham [20–22] considered uncertainties in natural frequen-
cies and cutting coefficients, and combined Edge theorem and
Zero Exclusion principle to develop a robust model that pre-
dicted the most conservative set of stability lobes.

In general, uncertain parameters are focused on modal pa-
rameters and cutting force coefficients [23]. When applying
the aforementioned approaches, the uncertain parameters’
nominal values and related bounds should be predetermined.
Therefore, the factors that can cause uncertainties are identi-
fied to obtain more accurate nominal and extreme values.
However, the works on robust chatter prediction considering
the influences of machining position variations were ad-
dressed little. Ignoring the position-dependent milling behav-
ior will narrow down the left and right worst-case deviations.
Conversely, taking whole machine tool work volume into

account will extend the bounds and provide a more conserva-
tive SLD, limiting the machining efficiency. Though re-
searches have already investigate the effects caused by the
position variations on modal parameters of tool tip frequency
response functions (FRFs) and thus on milling stability
[24, 25], applications of which in uncertain predictions are
relatively few.

This paper presents a new method to facilitate robust pre-
diction of milling stability in entire machine tool work vol-
ume, avoiding complicated theoretical calculations and pro-
viding relatively higher critical cutting depths. First, a Kriging
model is established to predict the modal parameters de-
pendent on machining position and spindle speed. Then,
the related tool tip FRFs are reorganized using modal
fitting technique. Furthermore, position with higher critical
axial cutting depths at each given speed is obtained by
combining the milling stability theory and the improved
particle swarm optimization (IPSO) algorithm. At these
optimal positions, a robust model considering uncertainties
in related modal parameters and cutting force coefficients
is developed by extending the conventional chatter stabil-
ity theory, based on the Edge theorem and Zero Exclusion
condition. Accordingly, a conservative SLD guaranteeing
higher reliability can be obtained.

Henceforth, the remainder of this paper is organized as
follows: the analytical derivation of using the Kriging model
and the IPSO algorithm to determine a better machining posi-
tion is presented in Section 2. A description of the Edge the-
orem and Zero Exclusion condition is presented in Section 3.
And a theoretical approach of plotting the robust stability lobe
under optimal configurations of machining positions and spin-
dle speeds is also provided. This is followed by the case study
and results discussion to verify the approach through experi-
mental procedure in Section 4. Finally, conclusions from the
current research are summarized in Section 5.

2 Methodology for obtaining optimal
configuration of machining position
and spindle speed

Since the varying machining position and spindle speed can
cause effects on tool tip modal parameters and thus on milling
stability, the configuration of machining position and spindle
speed with higher critical axial cutting depths is obtained first-
ly based on two substeps. One is establishing the Kriging
model to predict modal parameters dependent on spindle
speed and machining position in x and y directions, and using
the modal fitting technology to reorganize the related tool tip
FRFs. The other is combing the analytical milling stability
theory and the improved particle swarm optimization algo-
rithm to find the optimal machining position at each given
spindle speed in whole machine tool work volume. Then,
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the further analytical robust prediction is based on the obtain-
ed optimal conditions.

2.1 2DOF milling stability theory

In general, a 2DOF system shown in Fig. 1 is usually used in
analytical chatter stability prediction. The tool is considered to
have two orthogonal degrees of freedom in x and y directions.
Related stiffness and damping coefficients are labeled as kx, ky,
cx, and cy. The general equations of motion for the 2DOF
milling system can be expressed as follows:

ΔFx tð Þ
ΔFy tð Þ

� �
¼ apKtcN

2π
axx axy
axy ayy

� �
Δx
Δy

� �
¼ apKtcN

2π
A½ � Δx

Δy

� �
ð1Þ

where ap is the axial cutting depth, Ktc is the tangential cutting
force coefficient, and [A] represents average directional
factors:

axx ¼ 1

2
−cos 2φjl

� �
þ 2Krtφjl−Krtsin 2φjl

� �h iφex

φst

axy ¼ 1

2
2φjl þ sin 2φjl

� �
−Krtcos 2φjl

� �h iφex

φst

ayx ¼ 1

2
−2φjl þ sin 2φjl

� �
−Krtcos 2φjl

� �h iφex

φst

ayy ¼ 1

2
cos 2φjl

� �
þ 2Krtφjl þ Krtsin 2φjl

� �h iφex

φst

ð2Þ

where Krt is the ratio of the radial to tangential cutting
force coefficient and φst and φex are the start and exit an-
gles of the cutting tooth. Equation (1) can be transformed
into the frequency domain:

Ff geiωt ¼ apKtcN
2π

A½ � 1−e−iωcτ
� 	

G iωcð Þ½ � Ff geiωct ð3Þ

G(iωc) is the transfer function matrix in x and y directions,
which is usually represented by the tool tip FRFs since the
workpiece system is more rigid than the tool system.
Characteristic equation of Eq. (3) is as follows:

det I þ Λ G1 iωcð Þ½ �j j ¼ 0 ð4Þ

where

Λ ¼ −
apKtcN
4π

1−e−iωcτ
� 	 ¼ ΛI þ ΛR

G1 iωcð Þ½ � ¼ axx axy
axy ayy

� �
Gxx iωcð Þ Gxy iωcð Þ
Gyx iωcð Þ Gyy iωcð Þ

� � ð5Þ

where Gxx(iωc), Gxy(iωc), Gyx(iωc), and Gyy(iωc) are the
direct and cross tool tip FRFs corresponding to x and y
directions and Λ is the eigenvalue, which can be directly
calculated from Eq. (4). Then, the axial critical cutting
depth aplim can be determined with Eq. (5):

aplim ¼ −
2πΛR 1þ ΛI=ΛRð Þ2

h i
KtcN

ð6Þ

Equations (1) to (6) show that the milling stability is mainly
dependent on the tool tip FRFs and cutting force coefficients.
Thus, variations of these parameters will lead to uncertain
predictions of milling stability.

2.2 Position and spindle-dependent tool tip FRF

According to the modal theory, direct transfer functions can be
described by modal parameters:

G sð Þ ¼ ∑
N

r¼1

ωnr=ker
s2 þ 2ξrωnrsþ ωnr

2
ð7Þ

where ωnr, ker, ξr, and s are the natural frequency, damping
ratio, modal stiffness, and the Laplace variable respective-
ly. If modal parameters of each mode are obtained, they
can be used to reorganize G(s) utilizing modal fitting tech-
nique. Since Kriging method considers the spatial correla-
tion and variability of variables [26–28], it is adopted to
establish the mathematic model to describe the relationship
among modal parameters, spindle speed, and machining posi-
tion. A Kriging approximate model is generally expressed as
follows:

ŷ̂ tð Þ ¼ ∑
p

l¼1
βl f l tð Þ þ z tð Þ ¼ f T tð Þβ þ z tð Þ ð8Þ

where fT(t) is a regressionmodel which is a linear combination
of p chosen functions, βl is the regression coefficient, and z(t)Fig. 1 2DOF milling system
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is a random function with normal distribution N (0, σ2) and its
covariance matrix is the following:

cov z tlð Þ; z t j
� 	� 	 ¼ σ2R tl; t j

� 	 ð9Þ

where R(tl, tj) is usually represented by the Gauss function and
exponential function:

R tl; t j
� 	 ¼ ∏exp θk tlk−tjk



 

2� �
R tl; t j
� 	 ¼ ∏exp θk tlk−tjk



 

� 	 ð10Þ

where θk is the undetermined parameter and tlk and tjk are the
kth components of tl and tj. Then, a correlation matrix can be
formed:

R ¼
R t1; t2ð Þ ⋯ R t1; tnsð Þ

⋮ ⋯ ⋮
R tns; t1ð Þ ⋯ R tns; tnsð Þ

2
4

3
5 ð11Þ

A detailed derivation of Kriging predictor is presented in
[25], and Eq. (8) can be transformed as Eq. (12):

ŷ̂ tð Þ ¼ f T tð Þβ* þ rT tð ÞR−1 YT−Fsβ
*� 	

¼ f T tð Þβ* þ rT tð Þγ* ð12Þ

where Y is the response matrix corresponding to the sample
points, and β* is:

β* ¼ Fs
TR−1Fs

� 	−1
Fs

TR−1Y ð13Þ

where Fs is the expendedmatrix on the basis of designed sites T:

Fs ¼ f t1ð Þ; f t2ð Þ;⋯ f tnsð Þ½ �T ð14Þ

According to Eq. (12), the sample matrix Yand T should be
determined in advance. For establishing the Kriging model to
predict modal parameters, the matrix Y contains sample modal
parameters including natural frequencies, damping ratios, and
modal stiffness, and the matrix T contains the spatial coordi-
nates and spindle speeds. These sample modal parameters are
identified from the related tool tip FRFs using the modal
fitting technique [29].

However, during the operational state, the sample tool tip
FRFs cannot be obtained directly through impact testing. Thus,
finite element (FE) technology is used to establish a whole
machine tool FE model considering the joint dynamics and
spindle speed effects in the virtual environment. At a certain
speed, different displacement combinations of themoving com-
ponents are arranged to simulate different machining positions
to achieve the tool tip FRFs. Then, with the sample information,
the Kriging model can be established according to Eq. (12):

ωr x; y; z; nð Þ
ξr x; y; z; nÞð
Ker x; y; z; nð Þ

2
4

3
5
T

¼ f T x; y; z; nð Þβ* þ rT x; y; z; nð Þγ* ð15Þ

2.3 Optimal machining position identification

Since the improved particle swarm optimization algo-
rithm has faster convergence speed and higher accuracy,
it is adopted to find the optimal machining position. This
algorithm is combined with the Kriging model and mill-
ing stability theory to perform the optimization shown in
Fig. 2. The improved particle swarm optimization algo-
rithm is a population-based optimization technique,
which is initialized as a set of random solutions and
searches for the optimal value iteratively [30]. In D-di-
mensional space, N particles are assumed to form a com-
munity. Characteristics of each particle are represented
by the position Xi = (xi1, xi2,..., xiD), velocity Vi = (vi1,
vi2,..., viD) and fitness value fi. Positions of these parti-
cles represent potential solutions to the optimization.
Fitness value of each solution is evaluated based on the
objective function to determine the optimal position.
After one iteration, the particle best and the global best
labeled as Pbest and Gbest are updated respectively. The
two optimums are used to determine the velocities and
then modify the positions of particles in the next itera-
tion as follows:

vkþ1
id ¼ wvkid þ c1r1 Pbest

k
id−x

k
id

� 	þ c2r2 Gbest
k
id−x

k
id

� 	
xkþ1
id ¼ xkid þ vkþ1

id

�
ð16Þ

where w is the inertia weight, k is the iterative number, c is the
velocity weighting factors equaling 0 or positive constant, and
r is the random numbers between 0 and 1.

A larger w will accelerate the convergence rate and ben-
efit the global search, but the solution can be less accurate.
A smaller w will slow the convergence rate, which can
benefit the local search and obtain more accurate solution.
Thus, in the iteration, w is dynamically modified based on
the particles’ properties. According to an IPSO algorithm,
favg is the average fitness value of all particles, fmax is the
maximum fitness value in the current iteration, and fhavg is
the average fitness value of the particles with fitness values
greater than favg. Then, the modification can be performed
as follows [31]:

(i) If fi ≤ favg, a larger w is selected considering the improve-
ment of global research ability:

w ¼ 1:2−
1−exp − f max þ f havg

� �
1þ exp − f max þ f havg

� � ð17Þ

(ii) favg ≤ fi ≤ fhavg indicates these particles have better in-
dividual and global research abilities simultaneously.
Thus, a larger w is determined in the initial phase, and
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it is decreased gradually to improve the local research
ability:

w ¼ w− w−wminð Þ 1−exp −
t

tmax

� �� �
0≤ t≤ tmax

wmin t ¼ tmax

8<
: ð18Þ

(iii) if fhavg < fi ≤ fmax, w can be decreased appropriately to
improve the local research ability:

w ¼ w−wmin
f i− f havg
f max− f havg

ð19Þ

In Eqs. (17) to (19), w on the right side is still linear de-
creasing:

w ¼ wmax−
wmax−wmin

kmax
� k ð20Þ

where kmax is the determined maximum iterations. Furthermore,
to avoid the premature convergence of the particle swarm opti-
mization algorithm, a mutation operator is adopted to reinitialize
properties of the particles with a certain probability Pm [32]:

Pm ¼ 0:5−
1

1þ exp −k
�
f max− f havg

h i k > 0 ð21Þ

The above optimization is summarized as Fig. 3. When
applying the IPSO algorithm, positions of the particles are

represented by the spatial coordinates of the machining posi-
tions labeled as the displacements in x, y, and z directions. The
fitness value is set as the axial critical cutting depth which can
be calculated by Eq. (6). According to Fig. 2, the spindle speed
is firstly taken as the global variable. At a certain spindle speed,
the IPSO algorithm controls the particles’ positions, and the
Kriging model predicts the corresponding modal parameters
to calculate the fitness value based on the milling stability the-
ory. Thus, the machining position with a higher axial critical

Fig. 2 Flow chart for obtaining optimal combination of spindle speeds and machining position

Fig. 3 Flow chart of the IPSO algorithm
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cutting depth is searched in whole machine tool work volume.
Then, the optimization moves to another spindle speed.

3 Robust milling chatter stability

Milling operation is a dynamic process, in which several pa-
rameters such as tool tip FRFs and cutting force coefficients
are not constant. Considering the effects of varying parame-
ters, a robust prediction of milling chatter stability is devel-
oped by extending the traditional chatter stability theory,
based on the Edge theorem and the Zero Exclusion principle.
The Edge theorem can be utilized to predict the uncertain
time-delay systems that contain parameters varying within a
certain range bounded by a minimum and maximum extreme
value. According to the Edge theorem, for a polynomial with
uncertain parameters, p, every combination of the extreme
values will form a family of polynomials. These extreme poly-
nomials are evaluated at a given frequency to form the vertices
in the complex plane. If the edges between each pair of verti-
ces are stable, then the system is robustly stable.

For applying the Edge theorem to the prediction of milling
stability, Eq. (4) is transformed into the following form by
ignoring the effects of cross FRFs:

a0Λ
2 þ a1Λþ 1 ¼ 0 ð22Þ

where

a0 ¼ GxxGyy axxayy−axyayx
� 	

a1 ¼ axxGxx þ ayyGyy
ð23Þ

Equation (22) represents the characteristic equation,
and can be expanded in the Laplace domain to obtain
Eq. (24) by introducing Eq. (7). The denominator of
the transfer function with the dominant mode in Eq. (7)
is multiplied on both sides of Eq. (24) to have a poly-
nomial form, which is the system polynomial and
expressed as Eq. (25). Then, every combination of the
extreme values of the uncertain parameters is substituted
to Eq. (25) to get the family of polynomial equations, P.
In this research, modal parameters of the dominant
modes in x and y directions and the cutting force coeffi-
cients in radial and tangential directions are assumed to
vary within their minimum and maximum values. Thus,
different combinations of the extreme values will form
the family of polynomials as Eq. (26):

0 ¼ Gxx s;ωnð ÞGyy s;ωnð Þ αxxαyy−αxyαyx
� 	

−
N
4π

aKtc 1−e−sT
� 	� �2

þ αxxGxx s;ωnð Þ þ αyyGyy s;ωnð Þ� 	
−
N
4π

aKtc 1−e−sT
� 	� �

þ 1

ð24Þ

0 ¼ Gxx s;ωnð ÞGyy s;ωnð Þ αxxαyy−αxyαyx
� 	

−
N
4π

aKtc 1−e−sT
� 	� �2

"
þ αxxGxx s;ωnð Þ þ αyyGyy s;ωnð Þ� 	

−
N
4π

aKtc 1−e−sT
� 	� �

þ 1

�

� s2 þ 2ξiωn;isþ ω2
n;i

� �
ð25Þ

P ¼ p1 s; vð Þ; p2
�
s; v

�
;⋯; pi

�
s; v

�n o

v ¼ ωn; ξ; k;Ktc;Krc½ � ⇐

ωn∈ ωnmin; ωnmax½ �
ξ∈ ξmin; ξmax½ �
k∈ kmin; kmax½ �
Ktc∈ Ktcmin; Ktcmax½ �
Krc∈ Krcmin; Krcmax½ �

8>>>><
>>>>:

ð26Þ

where i is the number of equations. If the number of uncer-
tainties is k, i equals 2k.

With Eq. (26), vertices can be calculated at each given
frequency. The Zero Exclusion principle states a graphi-
cal technique to evaluate the stability of the edges effi-
ciently. It states that if the zero of the complex plane is
not located within the polygon generated by forming
edges between each vertex, the system is stable. A four-

sided polygon shown in Fig. 4 is taken as an instance. In
order to check whether the zero lies in the interior of the
polygon, a method based on quadrant distributions and

Fig. 4 Relationships between origin and polygon
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arguments of the vertices is proposed. Five cases are
studied as follows:

& Case I: All vertices locate in the same quadrant, and the
system is stable as the zero is outside the polygon.

& Case II: Vertices locate in two adjacent quadrants as I-II,
II-III, III-IV, and IV-I, and the system is stable.

& Case III: Vertices locate in diagonal quadrants as I-III and
II-IV.

& Case IV: Vertices locate in three quadrants as I-II-III, II-
III-IV, III-IV-I, and IV-I-II.

& Case V: Vertices locate in four quadrants, and the system is
unstable as the zero is enclosed.

The minimum and maximum argument of each quadrant
labels as φk

− and φk
+ respectively (k = 1, 2, 3, and 4). For case

III, k equals 1 or 2, and the system is stable ifφk + 2
+-φk

− < π or
φk + 2

--φk
+ > π. For case IV, the conditions for obtaining the

stable system are expressed in Table 1.
Therefore, the robust milling stability prediction is trans-

formed into a graphical problem. Uncertainties are deliberate-
ly introduced into the nominal modal parameters and cutting
force coefficients. At each spindle speed, the nominal values
of the modal parameters are derived from the tool tip FRFs at
the related optimal position. An algorithm summarized in
Fig. 5 is developed to obtain the chatter stability lobe bound-
ary based on the above formulations of the robust prediction.
For a given cutting depth and spindle speed, a frequency range
is determined, and the extreme polygon at each frequency is
calculated and graphically checked. If the formed polygon is
stable for all frequencies, the cutting depth is increased, and
the aforementioned procedure is repeated until an unstable
point is detected. The related cutting depth is recorded as the
limit for the current spindle speed. Then, the algorithm moves
onto the next spindle speed to detect another unstable point.
For each combination of spindle speed, cutting depth, and
frequency, the system stability is detected through the algo-
rithm, until the focused spindle speed range is swept.

4 Case study and discussion of results

The above-described techniques for better prediction of robust
chatter stability are applied to a real three-axis vertical machin-
ing center. In the case studies, first, machine tool FE model is

constructed and analyzed to obtain sample information.
Second, the Kriging model and IPSO algorithm are combined
to predict the optimal machining positions in the spindle speed
range. Finally, the upper and lower bounds of the uncertainties
are determined, and then the robust chatter stability is predict-
ed and discussed.

4.1 FE analysis within machine tool work volume

For the studied machining center, the movements of workta-
ble, saddle, and headstock in x, y, and z directions respectively
contribute to the varying machining position. The related trav-
el limitations are x-0.4, y-0.55, and z-0.4 mm. The spindle
speed range is from 0 to 15,000 rpm. Since it is experimentally
difficult to directly identify the operational tool tip responses,
FE technique is used to simulate the operational state. As the
machine tool is an assembly, the joints dynamics at the
connecting interfaces are first identified to establish an accu-
rate FE model. These joints include linear guide joints, bolt
joints, bearing joints, and ball screw joints, and their dynamic
properties are simulated by spring-damper elements as shown
in Fig. 6.

These joints connect conditions and approaches to identify
these dynamic parameters were concretely discussed earlier
by the authors in refs. [33–35]. The identified dynamic

Fig. 5 Flow chart of the algorithm for robust chatter prediction

Table 1 Conditions for a
stable system Quadrant Condition

I-II-III φ3
+-φ1

− < π

II-III-IV φ4
+-φ2

− < π

III-IV-I φ3
−-φ1

+ < π

IV-I-II φ4
−-φ2

+ < π
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stiffness and damping coefficients for the linear guide joints
are 6.07 × 108 N/m and 5280 N•s/m respectively. The axial
stiffness between the nut and screw obtained from the manu-
facturer is 7.33 × 108 N/m. The bolt joints dynamic properties
are identified based on the measured FRFs using the
substructuring method; the obtained normal and tangential
stiffness coefficients for the key bed-column joint are 4.9 ×
l010 N/m and 6.9 × l09 N/m, respectively, and the obtained
normal and tangential damping coefficients are 1.1 ×
106 N•s/m and 9.8 × 104 N•s/m, respectively; and these bolt
joints dynamic parameters are applied to the machine tool FE
model to obtain the natural frequencies and the spindle tip
FRFs, and small differentials between the simulated and tested
results were observed [36].

The dynamic model of the spindle-holder-tool assembly is
described in Fig. 7, and the identified dynamic interface pa-
rameters for the idle state are given in Table 2 [25, 37]. For the

spindle bearing joints, the front and rear bearings are the same
type and their basic information are described in Table 3.
Since the centrifugal forces and gyroscopic moments caused
by high spindle speeds will change the bearing dynamics
[38–40], the algorithm proposed in [41] is used to calculate
the axial and radial bearing translational stiffness described in
Fig. 8. An inflection point is observed for the radial stiffness
curve, and this phenomenon can be ascribed to the following
reason: when the heat effect is ignored, the centrifugal force of
the roller increases as the spindle speed increases, and then the
inner ring and outer ring contact angle increases and decreases
respectively as shown in Fig. 9; under this condition, the con-
tact load between the roller and the inner ring decreases while
the contact load between the roller and outer ring increases,
but the radial stiffness still has a decrease; however, as the
spindle speed further increases, the centrifugal force increases
sharply and the roller begins to climb along the inner ring (the
direction of the movement shown in Fig. 9); thus, the inner
ring contact load and the radial stiffness increase instead;
therefore, in a wide spindle speed range, the radial stiffness
will initially decrease and then begin to increase above a crit-
ical speed value. In addition, the calculated speed-dependent
radial stiffness curves under different preloads show that a
higher preload corresponds to an inflection point with a higher
spindle speed. Since the studied bearing preload is 96 N (an
extra light preload), the inflect point of the radial stiffness
occurs at a lower spindle speed (around 10,000 rpm).

Taking the three-dimensional displacements and the spin-
dle speed as the variables, 27 positions with the coordinates in
Table 4 are arranged, and six spindle speed values at each
position are determined [25]. The spindle speed samples areFig. 7 Dynamic model of the spindle-holder-tool assembly

Fig. 6 Joints in machine tool and their equivalent forms
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0, 3000, 6000, 9000, 12,000, and 15,000 rpm respectively.
The radial and axial stiffness related to these spindle speeds
are given in Table 5. The machine tool FE model shown in
Fig. 10 was reconstructed to meet the machining positions. At
each position, the bearing stiffness related to the spindle speed
samples were applied to the FE model in sequence to perform
the modal and harmonic response analyses. Therefore, each
FE model considered the spindle speed effects on bearing
stiffness, and the related tool tip responses were obtained in
both x and y directions. The direct tool tip FRFs vary with

different operational conditions. For instance, Fig. 11a pro-
vides the FRFs at the column’s top, middle, and bottom posi-
tions in x and y directions under stationary conditions, and
Fig. 11b describes the FRFs related to three different spindle
speeds at the same position. Shifts in natural frequencies and
variations in amplitudes are observed. Investigating all the
obtained FRFs at the 27 positions in the focused frequency
range, four modes were determined for each direction. The
identified natural frequencies, modal stiffness, and damping
ratios in x and y directions were taken as the 162 × 24 sample
responses matrix Y, and the related coordinates and spindle
speed values were taken as the 162 × 4 sample inputs matrix T.

Fig. 8 Calculated operational bearing stiffness

Table 3 Basic parameters of the bearings

Type Outer diameter
D/mm

Inner diameter
d/mm

Width
B/mm

Contact
angle β

Combination
type

Preload
P/N

Stiffness of bearing

Axial/(N/m) Radial(/N/m)

7012C 95 60 18 15 2 row (DB) 96 0.53 × 108 3.45 × 108

Table 2 Dynamic properties of the spindle-tool-holder interfaces

Translational stiffness
(N/m)

Rotational stiffness
(N• m/rad)

Translational damping
(N• s/m)

Rotational damping
(N•m• s/rad)

Spindle-holder interface 5.79 × 108 4.21 × 106 76 142

Tool-holder interface 6.25 × 107 3.86 × 106 175 0.14

Fig. 9 Geometry of an angular contact ball bearing under operational
state
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4.2 Optimal combination of machining position
and spindle speed

Based on previously determined matrix Y and T, a two-order
polynomial was adopted to determine the regression model,
and the widely used Gauss function was first utilized to cal-
culate the correlations. The correlation function parameters θx,
θy, θz, and θn were solved with MATLAB toolbox, and they
were 3.46, 0.56, 8.23, and 10.68 respectively. Then, a Kriging
predictor was established to calculate the modal parameters
dependent on the machining position and spindle speed. For
validation purposes, six positions labeled as a, b, c, d, e,
and f in Fig. 10 were selected to perform the impact testing
with an impact hammer (PCB 086D05, sensitivity of
0.23 mV/N). The vibration of a relatively rigid carbide
end mill whose diameter was 25 mm with 80 mm gauge
length and four teeth was measured at the tool tip using an
accelerometer (ICP, sensitivity of 99.8 mv/g) with mass of
4.0 g. Since the tool diameter and gauge length were rela-
tively larger, tool tip responses were measured under sta-
tionary conditions assuming that the mass of the acceler-
ometer had a negligible effect on the dynamics [42]. The
tested and predicted modal parameters in x direction are
provided in Fig. 12. Smaller deviations indicate that the
Kriging predictor has a reasonable accuracy.

To obtain the optimal combinations of machining position
and spindle speed, the spindle speed was initially taken as the
global variable ranging from 0 to 15,000 rpm, and it was
discretized at an interval of 100 rpm according to Section
2.3. At each certain spindle speed, the IPSO algorithm con-
trolled the variations of the machining position; then, the po-
sition and speed-dependent tool tip FRFs were reorganized

based on themodal fitting technique and the modal parameters
predicted by the validated Kriging model; the reorganized
FRFs were applied into the analytical milling stability model
to calculate the axial critical cutting depths, and these calcu-
lated values were compared after each iteration; the higher
values were used to update the particle best and global best,
and then the iteration moved on to another; when the number
of iterations met the upper limit, the final global best was the
optimal machining position. The entire optimization terminat-
ed until the spindle speed met its upper limit.

For the IPSO algorithm, the number of the particle swarm
was initialized as 50, and each particle had three dimensions
representing the displacements of x, y, and z directions. The
initial value wmax and wmin were 0.9 and 0.4, c1 and c2 were
both set as 2, and the number of iterations was 400. The
displacement limits of three directions were used as the con-
straints. And the particles’ initial positions and velocities were
set randomly and further updated based on Eqs. (16) to (21).
The updates depended on the fitness values calculated from
the milling stability theory through Eqs. (1) to (6). The stabil-
ity analysis was for end milling ASTM 1045 steel with the
cutter of four teeth; the tool tip FRFs were reorganized from
the modal parameters predicted by the established Kriging
model; the radial immersion and feed values were set as con-
stants for simplicity; and the tangential and radial cutting force
coefficients of the work-material were 1977 and 754 MPa
respectively.

The obtained stability lobe diagram describing relation-
ships between the spindle speed and the cutting depth is
shown in Fig. 13. This SLD is compared with another SLD,
which is plotted at the column’s middle position under station-
ary condition using the conventional analytical chatter

Table 4 Experiment plan and the sample information

No. Displacement/mm No. Displacement/mm No Displacement/mm No Displacement/mm No Displacement/mm

x y z x y z x y z x y z x y z

1 380 530 380 7 20 530 380 13 200 530 200 19 380 530 20 25 20 530 20

2 380 275 380 8 20 275 380 14 200 275 200 20 380 275 20 26 20 275 20

3 380 20 380 9 20 20 380 15 200 20 200 21 380 20 20 27 20 20 20

4 200 20 380 10 20 20 200 16 380 20 200 22 200 20 20

5 200 275 380 11 20 275 200 17 380 275 200 23 200 275 20

6 200 530 380 12 20 530 200 18 380 530 200 24 200 530 20

Table 5 The speed-dependent
bearing stiffness for the samples Bearing stiffness

(×108 N/m)
Spindle speed (rpm)

0 3000 6000 9000 12,000 15,000

Radial 3.45 3.39 3.32 3.26 3.21 3.30

Axial 0.53 0.51 0.48 0.43 0.36 0.31
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stability theory. As seen from Fig. 13, distinct deviations oc-
curred as the machining position and spindle speed varied.

4.3 Robust chatter prediction at optimal position

In the milling process, modal parameters and cutting force
coefficients are uncertainties. According to the Edge theory,
the number of polynomials is determined by the number of
uncertainties. As the tool tip FRFs usually have more than one
mode, taking all modal parameters into consideration will in-
crease the number of polynomials and add practical difficul-
ties to the robust chatter prediction. Therefore, for simplicity,
dynamic parameters for one mode are assumed to simulta-
neously reach their maximum and minimum values. Since
the studied tool tip FRFs has four modes, the natural frequen-
cies, damping ratios, and modal stiffness in x and y directions

determine eight sets of uncertainties. The tangential and radial
cutting force coefficients determine two uncertainties. An au-
tomated algorithm aforementioned in Section 3 was developed
in MATLAB software to predict and plot the robust chatter
stability lobe, which was composed by the predictions at each
combination of machining position and spindle speed. For
each combination, the initial cutting depth was 0, and an incre-
ment of 0.01 mm was set. The frequency range was from 200
to 2000 Hz, and an increment of 10 Hz was set. The algorithm
terminated until the spindle speed met the upper limit.

When determining the upper and lower bounds of the mod-
al parameters, effects of the machining allowances are consid-
ered since the tool will move deviating from the optimal ma-
chining position. At each spindle speed, taking the related
optimal position as a standard value, the limiting displace-
ments of the tool motions in three directions may form a small

Fig. 10 Whole machine tool and its FEM

Fig. 11 a Comparisons of FRFs at top, middle, and bottom positions. b Comparisons of FRFs at different spindle speed values
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machining box as shown in Fig. 14, in which the maximum
and minimum values of the position and speed-dependent
modal parameters are searched based on the Kriging model.
These extreme values are regarded as the initial left and right
worst-case deviations of uncertain modal parameters. Further
considering that other factors will introduce uncertainties,
such as the simulation errors and thermal effects, another ±
3% variation for each parameter was taken for simplicity. For
instance, at a given optimal position, the three-dimensional
information of the machining box is 180 × 120 × 50 mm3,
and the identified extreme values are listed in Table 6. The
ultimate upper and lower bounds of the modal parameters are

also summarized in Table 6. For the cutting force coefficients
1977 and 754 MPa, they were identified based on the tested
average cutting forces and the analytic force model. The con-
stant coefficients are not applicable for different combinations
of the machining parameters. Thus, a ± 5% variation was tak-
en for the tangential and radial cutting forces coefficients con-
sidering the effects due to theoretical error, tool wear, mea-
surement technology, and so on. Therefore, with the founded

Fig. 12 Validation of the Kriging model

Fig. 14 Description of machining boxFig. 13 Comparisons of different stability lobes
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system parameters and their variations, the robust chatter sta-
bility lobe diagram was plotted and outlined in Fig. 15.

4.4 Experiments and discussion

Using the real milling system in Fig. 8, chatter tests were per-
formed with different combinations of spindle speed and cut-
ting depth to detect if chatter occurred. During machining, a
microphone and a dynamometer were used to measure the
sound and force signals. Based on the sensor data acquired in
the frequency domain, the occurrence of chatter was deter-
mined for each spindle speed and cutting depth combination.
For stable condition, changes in these signals are less promi-
nent with a noticeable variation in magnitude and peaks occur
less often. And the tooth passing frequency shown in Fig. 16b
can be observed. Therefore, when chatter is detected, a prom-
inent peak occurs at a chatter frequency can be observed. For

instance, the spectrogram for the combination of spindle speed
10,000 rpm and cutting depth 4.05 mm is described in Fig. 16a,
where a sudden peak occurs around 756 Hz near the dominant
vibrational mode of the tool tip; besides, in the force spectrum
described as Fig. 16c, a peak around 738 Hz is also observed.

Determinations of whether chatter occurred were swept
through the arranged machining combinations, and the results
are labeled in Fig. 15. The figure shows that majority of the
chatter-free points are below the robust boundary, indicating
that the experimental chatter tests have a good correlation to
the predicted robust stability lobe. To further illustrate the
feasibility of the predicted robust SLD, the obtained SLDwith
the optimized depths of cut in Fig. 13 is also plotted in Fig. 15.
It can be observed that many of the detected unstable points
locate below the boundary of the optimal lobe. Since uncertain
parameters may fall anywhere within a given range in real
machining, stable and unstable points are both observed in
the region between these two SLDs. This shows the main
advantage of the proposed robust chatter evaluation method
in that it predicts the milling stability more conservatively. The
robust prediction considers the effects caused by variations of
uncertain parameters in the full range, and then produce the
relatively conservative combinations of spindle speeds and
depths of cut to ensure a stable machining with higher opera-
tional reliability. However, since the robust prediction is based
on the optimal combinations of machining positions and spin-
dle speeds, it still has a higher stability limit when compared
with the conventional SLD such as the one plotted in Fig. 13.
Accordingly, using the robust SLD to guide the selections of
cutting parameters will enhance the practicality, for the con-
ventional stability lobes are only applicable for milling system
with a constant value of parameters.

Table 6 Modal parameters and their limits at a given optimal position

Direction Modes Natural frequency, f (Hz) Damping ratio, ξ (%) Modal stiffness, K (× 106 N/m)

X 1 484 ↑ 492 × (1 + 3%) 2.72 ↑ 2.77 × (1 + 3%) 20.3 ↑ 20.8 × (1 + 3%)

↓ 474 × (1–3%) ↓ 2.64 × (1–3%) ↓ 19.5 × (1–3%)

2 784 ↑ 801 × (1 + 3%) 3.57 ↑ 3.64 × (1 + 3%) 3.34 ↑ 3.42 × (1 + 3%)

↓ 758 × (1–3%) ↓ 3.51 × (1–3%) ↓ 3.27 × (1–3%)

3 968 ↑ 985 × (1 + 3%) 2.62 ↓ 2.68 × (1 + 3%) 9.58 ↑ 9.76 × (1 + 3%)

↓ 957 × (1–3%) ↑ 2.56 × (1–3%) ↓ 9.43 × (1–3%)

4 1836 ↑ 1877 × (1 + 3%) 2.65 ↑ 2.71 × (1 + 3%) 11.2 ↑ 11.6 × (1 + 3%)

↓ 1793 × (1–3%) ↓ 2.59 × (1–3%) ↓ 10.7 × (1–3%)

Y 1 656 ↑ 671 × (1 + 3%) 3.51 ↑ 3.57 × (1 + 3%) 8.84 ↑ 9.07 × (1 + 3%)

↓ 644 × (1–3%) ↓ 3.45 × (1–3%) ↓ 8.65 × (1–3%)

2 792 ↑ 818 × (1 + 3%) 2.41 ↑ 2.47 × (1 + 3%) 2.04 ↑ 2.10 × (1 + 3%)

↓ 775 × (1–3%) ↓ 2.34 × (1–3%) ↓ 2.03 × (1–3%)

3 1216 ↑ 1241 × (1 + 3%) 1.69 ↑ 1.76 × (1 + 3%) 29.5 ↑ 30.2 × (1 + 3%)

↓ 1190 × (1–3%) ↓ 1.63 × (1–3%) ↓ 28.5 × (1–3%)

4 1844 ↑ 1882 × (1 + 3%) 3.80 ↑ 3.91 × (1 + 3%) 12.3 ↑ 12.6 × (1 + 3%)

↓ 1796 × (1–3%) ↓ 3.69 × (1–3%) ↓ 11.7 × (1–3%)

Fig. 15 Predicted robust chatter stability lobe
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5 Conclusion

Regenerative chatter is a common vibration phenomena oc-
curred in real machining, which can affect the machining qual-
ity, limit the productivity, and damage the cutting system.
Accordingly, accurate chatter prediction is significant in mill-
ing operations. Under operational state, the system dynamics
and cutting force coefficients may become uncertain parame-
ters. Variations in these system parameters severely affect the
prediction accuracy, since the conventional mathematical
model describing chatter vibrations are based on the assump-
tion that the system parameters are constant. This paper dem-
onstrates an analytical method for robust prediction of the
chatter stability lobe, in which the optimal configurations of
the machining positions and the spindle speeds are taken into
account. Therefore, the FE technique is initially combined
with the modal fitting technique to establish a Kriging model
to reorganize the tool tip FRFs dependent on machining posi-
tion and spindle speed; the IPSO algorithm is used to search
the position with the highest cutting depth at each given spin-
dle speed using the traditional milling stability theory; and
then, the robust chatter prediction is performed at these opti-
mal positions by extending the milling stability theory based
on the Edge theorem and the Zero Exclusion principle. For
this research, uncertainties are artificially introduced into the
modal parameters of tool tip FRFs and the cutting force coef-
ficients. Based on every combination of extreme values of
uncertain parameters, a robust chatter stability lobe with rela-
tively higher cutting depths is simulated ultimately.

Chatter tests were carried out on a three-axis vertical ma-
chining center to validate the proposed method. Different
combinations of the spindle speed and cutting depth were
determined from the obtained robust SLD to perform the chat-
ter tests. Occurrences of the chatter were detected by studying
the frequency spectrums of the sound and force information.
The experimental results show that all combinations below the
lobe boundary and partial combinations above the lobe
boundary can provide a stable machining. This indicates that
the robust prediction may not capture all stable points;

however, it allows a conservative chatter stability prediction
to ensure the reliability. These experimental results were also
compared to the optimized conventional stability lobe.
Unstable points were still observed below the boundary of
the conventional SLD, further validating that the robust pre-
diction can simulate a boundary below which the stability is
guaranteed. The proposed robust chatter prediction method
may be easier to apply and provide more reliable results.
Nevertheless, the boundary of the stability lobe is still depen-
dent upon the accuracy of the uncertainty bounds on system
parameters, which are difficult to be determined in practice.
Additionally, since only the tool tip FRFs are considered in the
robust chatter prediction, the proposed method is not appro-
priate for the machining condition that the workpiece system
is less rigid than the tool system. Accordingly, in further re-
search, taking the dynamic properties of the workpiece system
into consideration and conducting an investigation into
obtaining more accurate extreme values of the uncertainties
and extending the robust approach to consider more changing
parameters are the main subjects.
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