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Abstract
In the technology of thermal error compensation for CNC machine tools, it is particularly important to select modeling variables
which can stably reflect the relationship between temperature field and thermal expansion in terms of modeling. This paper
analyzes the theories and experiments on the thermal properties of the temperature-sensitive points distributed on one-dimension
pole. It is found that the prediction model performs better in prediction accuracy and robustness when established with linear
points as independent variables than with nonlinear ones. However, because of the complicated structure of machine tools, it is
rather hard to fix the positions of linear points, which consequently lead to the proposal of a comprehensive temperature-feature
extraction method that uses feature extraction algorithm and weight optimization to construct linear temperature-sensitive points.
Experimental facilities verified the feasibility of its proposal. What’s more, based on the effectiveness of building linear mea-
suring points, it is proposed to arrange the temperature sensors along the deforming direction.With the feeding system of a gantry
machine tool as the testing platform, the thermal error model established according to the proposed method is actually tested
under different working conditions. The result shows this proposed method has higher prediction precision and robustness.

Keywords CNC machine tool . Temperature-sensitive point . Thermal error . Model variable . Thermal properties . Feature
extraction

1 Introduction

During the precision finishing process of CNC machine tools,
thermal error has become one of the main reasons for the less
precise manufacture of parts, accounting for 50~70% of the
entire manufacturing error of a machine tool [1, 2]. Now, the
impact caused by thermal error can be lessened through many
ways, such as the symmetric design in structure, the use of
materials with low thermal expansion coefficient, the temper-
ature control in workshops, and the thermal error

compensation [3], where thermal error compensation has been
regarded as the most cost-effective method.

In the technology of thermal error compensation, the core
point is to build up a thermal error model with excellent per-
formance in prediction accuracy and robustness, which, how-
ever, critically depend on the selection and arrangement of
temperature-sensitive points.

At present, temperature-sensitive points are selected and
optimized through firstly laying out many temperature sensors
on the machine tool according to engineering experience and
then using finite-element analysis or the statistical analysis to
pick out a few temperature sensors for modeling.M.H. Attia et
al. [4], for example, used finite element analysis to analyze the
temperature field of the entire machine tool. The temperature
field was divided into many regular units. In this way, the
positions and quantity of sensitive points were worked out
according to the simulation of temperature field and the cor-
relation between units. However, finite element method is
greatly restricted in application because of the great difficulty
in defining its boundary conditions. Lo et al. [5] from the
University ofMichigan realized the selection and optimization
of sensitive points through correlation analysis, group-based
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searching, and optimizing. Jiri Vyroubal [6] divided a machine
tool into several parts, each of which was correspondingly
equipped with a temperature sensor. Finally, the error predic-
tion model was established according to the temperature-
sensitive points which were found to be the most related to
thermal error through correlation analysis. Using the mini-
mum residual sum of squares as the evaluation function, Lee
et al. [7] picked up the temperature-sensitive points efficiently
after the sensitive points were optimized by the combination
of linear regression and relational analysis. For modeling op-
timization, Yang et al. [8, 9] adopted gray relational analysis
method to screen out the top five temperature-sensitive points
by calculating and comparing their gray correlation between
thermal error and temperature sensor. Since the gray correla-
tion and fuzzy clustering have an advantage in sensitive point
classification and optimization, other researchers also studied
them [10, 11]. To avoid the impact caused by the
multicollinearity among temperature-sensitive points. Miao
et al. [12, 13] optimized modeling variables by principal-
component method, which achieved quite a favorable effect
on the testing machine tool. By Wang et al. [14], the 20 tem-
perature sensors distributed on the machine tool were selec-
tively optimized through fuzzy clustering method, by which
three measuring points were finally chosen as the variables for
modeling. However, according to the analysis in literature
[12], the optimal measuring points were found variable along
with the changes of working conditions during the air cutting
experiment on the Leaderway-V450 machine tool. Therefore,
the great difference between the actual and modeling working
conditions caused by improper temperature-sensitive points
will lead to a terrible performance of the thermal error predic-
tion model in accuracy and robustness [15]. With the spindle
of a machine tool simplified to a one-dimension pole, Yang et
al. [16] located linear sensitive points at the position of about
0.4 L of the slender pole after theoretical and experimental
analysis, which, however, leaves out of consideration that
some dynamic changes of a machine tool-like heat source
strength and contact thermal resistance may cause the position
shift of linear measuring points. With the awareness that the
dynamic changes of a machine tool may influence its robust-
ness, Xia et al. [17] simplified the ball screw to a one-
dimension pole and made theoretical and experimental analy-
sis on dynamic thermal characteristics, showing that there is
“advancement” and “hysteresis” between temperature-
sensitive points and thermal deformation. After the analysis
on the thermal dynamic deformation of one-dimension poles,
Yang et al. [18] from the University of Michigan built up the
model directly with the information collected from
temperature-sensitive point, which, however overlooked the
influence caused by multicollinearity.

What’s more, with the increasing machining of large parts,
the thermal error of the feeding system on large-sized machine
tools has captured plenty of attention [19, 20]. But a large

machine tool requires a great number of sensors to get the
accurate information of temperature field because of its size.
For that reason, this paper focus on the thermal error of the
feeding system on large-sized machine tools, aiming to solve
two problems: (1) at the beginning, try to arrange as few
measuring points as possible, as long as the information on
temperature variation is certain to be reflected accurately; (2)
make sure to establish highly robust models at the selected
temperature-sensitive points, when the working conditions
of the machine tool are changed.

To solve the problems mentioned above, some basic hy-
potheses have to be considered: if an approximate linear rela-
tion can be found between measuring point and thermal error,
the thermal-property identification model will be able to have
its accuracy and robustness greatly improved and its difficulty
greatly reduced, because of the favorable interpolation and
extrapolation performances of linear prediction models.

To prove the above hypothesis, the lead screw was simpli-
fied to be a one-dimensional pole in this paper, so as to realize
theoretical analysis by analytical method and finite difference
method. According to the analyzing result, the linear relation
indeed exists between a sensitive point and its thermal expan-
sion. However, because of the complicated structure, the ma-
chine tool is simultaneously influenced by the contact thermal
resistances among different surfaces, which makes it rather
hard to find this measuring point immediately. Therefore, this
paper put forward a temperature-feature extraction method to
construct this linear measuring point, which was verified on
the feeding system of a gantry machine tool. Experimentally
comparing with a model which was established on the basis of
fuzzy clustering and gray correlation method, the thermal pre-
diction model proposed in this paper is proved to be more
effective in prediction.

2 Analysis for thermal expansion

The thermal error of feeding system originates from the heat
generation when the ball screw is running. For that reason, it is
necessary to conduct some analysis on the entire heat trans-
mission of feeding system before the thermal error is studied.
Ball screw feeding system is shown as Fig. 1 where the left
bearing is used to fasten the ball screw and the right bearing
only offers support to the ball screw rather than stop its move-
ment from side to side. The motor and bearings are the main
heat source for ball screw feeding system. Therefore, ball
screw system can be simplified to be a one-dimensional heat-
ed pole structure shown in Fig. 2, if it is assumed as below: (1)
the ball screw has an even heat distribution in the redial direc-
tion; (2) with the surface grooves neglected, the ball screw is
simplified to be a solid rod; (3) the influence of lube on heat
transmission is neglected; (4) the contact heat resistances be-
tween machinery parts are neglected; (5) the heat exchange
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between ball screw and surrounding air is mainly realized by
convective heat loss. Small temperature gap between them
will lead to low heat exchange which can be neglected. (6)
the screw of the gantry machine tool is long enough to avoid
the temperature coupling of the two screw ends.

2.1 Theoretical analysis

Shown as Fig. 2, the left end is fastened and the right end is
free. L is the pole length. The red arrow in the picture means
the running direction of heat. Its differential equation of heat
conduction is

k
ρc

∂2T
∂x2

¼ ∂T
∂t

þ 4αhcg
kA

T−T að Þ ð1Þ

where kmeans heat conductivity; ρ refers to the density of ball
screw; c means specific heat capacity; T(x,t) is the function of
position x and time t, standing for the temperature at some
point on the pole; αh is the synthetic heat release coefficient
of air; cg is the perimeter of cross section;A is the cross section
of the pole; and Ta is environment temperature.

T x; 0ð Þ ¼ T 0 ð2Þ

When boundary condition is x = 0 and x = L,

∂T
∂x

����
x¼0

¼ −
q
kA

ð3Þ

where q means heat flux density.

∂T
∂x

����
x¼L

¼ −
hr
k
T L; tð Þ−T0½ � ð4Þ

where hr is the surface heat transfer coefficient per unit area
and L is the length of the one-dimensional pole.

The region of definite solutions is divided into a grid by
time stepΔt and space stepΔx. nodes(xi, tj) are shortened to be
(i, j) where xi = iΔx,i = 0,1,…, m, Δx ¼ L=m, tj = jΔt, j =
0,1,2,…n. The finite difference equation formulated by CE
(group explicit) algorithm [21] is
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where T j
i ¼ T i; jð Þ is the solution of Eq. (1)at the discrete

point (i, j), r ¼ Δt
�
Δx2 is the ratio of mesh, and

b1 ¼ rT j
0; 0;…; 0; rT jþ1

m

� �
. Taking the mesh size as Δt =

1 min and Δx = 25 mm, and the mesh number as n = 180
and m = 40, the temperature rise at a random point can be
worked out according Eq. (5) when the material parameters
in Table 1 are taken into Eq. (1).

The thermal expansion of the one-dimensional pole can be
acquired through Eq. (6)

ΔL ¼ ∫L0ε T x; tð Þ−T0½ �dx ð6Þ

Fig. 1 Sketch of ball screw
feeding system

Fig. 2 The simplified one-dimensional model of ball screw

Table 1 Material
parameters of lead screw Parameters Value

k 46.5 w/(m·k)

ρ 7830 kg/m3

C 443 J/(kg·°C)

αk 12.5 w/(m2·°C)

Cg 60 π mm

A 900 π mm
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where ε refers to the heat expansion coefficient.
With Eqs. (5) and (6), it is able to calculate the temperature

and thermal expansion at a random point on the one-
dimensional pole. The correlation curve between them is
shown in Fig. 3 where there are totally ten measuring points
included. T1 is close to the heat source and T10 is 720 mm
away from the heat source. A measuring point is selected
every 80 mm to calculate its temperature and thermal expan-
sion which is shown by the curve in Fig. 3. From Fig. 3, the
temperature varies faster than thermal expansion at T1 the
closest point to the heat source whose curve is concave; with
the measuring point going farther from the heat source, tem-
perature is fading and the curve is consequently getting less
concave, which makes the curve of temperature and thermal
expansion gradually go linearly just like the curve of T3 in Fig.
3. At the point of T4 which is much farther from the heat
source, its curve is in a convex shape, which means thermal
expansion varies faster than temperature. Therefore, it can be
concluded that there must be a point whose curve of temper-
ature and thermal expansion is approximate to a straight line
while the thermal error curve is turning from the concave to
the convex. This point is called as linear temperature-sensitive
point, while other measuring points are called as nonlinear
sensitive point.

Besides, the relation between measuring point and thermal
expansion of pole under different conditions can be simulated
by choosing different heat flux density. With different heat
flux densities, the relation curve of temperature and thermal
expansion at T1, T3, and T4 can be acquired through Eq. (5)
and (6), which is shown as Fig. 4. From Fig. 4(a, c), it can be
seen that the relation between temperature and thermal defor-
mation at T1 and T4 is nonlinear, and the shape of its thermal
error curve also changes as the heat flux density changes,
which theoretically reveals the reason [10] why the optimal
temperature-sensitive point would be different and the thermal
error prediction model would be less robust when working
condition changed. However, as Fig. 4(b) shows, when heat

flux density changes, there is an approximately linear relation
between temperature and thermal deformation at T3, which is
almost unaffected by the changes of heat flux density.
Therefore, it can be concluded that when linear measuring
points are used as independent variables for modeling, the
approximately linear relation between temperature and ther-
mal deformation is able to guarantee the model’s robustness
no matter how the working condition changes.

According to the above theoretical analysis on the relations
between the temperature and thermal error of the one-
dimensional pole, it can be concluded as below: (1) within
the limited lengthen of the pole, there must be a sensitive point
which is linearly related with thermal error. According to ex-
periment and engineering experience, linear sensitive points
are generally distributed within a distance of 400 mm from the
heat source; (2) when heat flux density changes, the linear
point is still able to keep the linear relation with thermal de-
formation. Such a linear relation is of strong robustness; (3)
the farther the distance from the linear measuring point, the
clearer the nonlinear features get.

2.2 Experimental verification

To test the above conclusions of theoretical analysis, the
experiment system was designed as Fig. 5 shows. A
GCr15SiMn steel rod with the length of 1000 mm was
used as the one-dimensional pole in the experiment.
One end of the steel rod was fixed on the workbench,
while the other end is free; when the left end is heated,
a GL-C803 temperature controller was used to realize
the heat control by controlling the heating ring, and an
ANRITSU METER temperature sensor (E-type MG-
24E-GW1-ANP, measurement accuracy is ± 0.2 °C)
was used to measure the temperature. At the right end,
an electric eddy sensor was used to measure the axial
deformation of the rod. The model number of this data
acquisition instrument is NI-USB-6216.

Heat source intensity was respectively selected to be 12,
1000, and 700 w/m2·s; temperature rising lasted for 1 h and
temperature reduction lasted for 2 h; the temperature measur-
ing points were respectively selected to be 25 mm (T1),
160 mm (T3,) and 240 mm (T4) away from the heat source.
The relation curve of measured temperature and thermal de-
formation is shown as Fig. 6.

By comparing Figs. 4 and 6, it can be seen that
theoretical calculation is basically consistent with the
experimental result, except for a slight discrepancy that
the curve of temperature and thermal expansion in Fig.
6(b) has a better linearity than that in Fig. 4(b).
However, when the temperature sensor was moved from
160 to 180 mm, the curve acquired was basically in the
same shape of the curve in Fig. 4(b). That means the
location of the linear measuring point can be influencedFig. 3 Curve of temperature and thermal deformation from T1 to T10
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by some factors like the contact thermal resistance be-
tween heating ring and metal rod and the control accu-
racy of the temperature controller. As a result, because
of the complicated structure and contacting relations
within machine tools, it is actually rather hard to iden-
tify the accurate position of the linear measuring point
in practice.

Therefore, is it possible to show the temperature fea-
tures of the linear point by the feature information of
the nonlinear points which are classified into a concave
group and a convex group according to the different
shapes of their thermal deformation curves with temper-
ature changing, so as to construct the thermal error pre-
diction model of high precision and strong robustness.
The details will be demonstrated in the following
section.

3 Construction of optimal independent
variables and temperature sensor layout
method

3.1 Variable optimization

For thermal error compensation modeling, it is expected that
the most all-sided features of temperature variation can be
expressed with a minimum number of independent variables,
so that the model operation can be sped up to a certain extent.
At the same time, there is always multicollinearity among
original temperature-sensitive points, which will influence
the prediction accuracy of this model [12]. However, feature
extraction algorithm is an effective solution to the problems on
the quantitative optimization and multicollinearity of sensitive
points.

Fig. 4 Curve of temperature and
thermal deformation in different
heat flux densities

Fig. 5 Composition sketch of
experimental system
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3.1.1 Feature extraction principle

For a multivariable research subject done by statistical analy-
sis technique, too many variables may make the research more
complicated. In many cases, temperature variables can be cor-
related to each other in some way, which also means that the
two variables reflected some overlapped information.
However, feature extraction principle, as a kind of statistical
approach, changes a group of possibly related variables into a
group of linear unrelated ones with orthogonal transformation,
by which a relatively minimum number of new unrelated var-
iables will be produced by cutting out some unnecessary re-
peated variables (closely related variables). And these new
variables will reflect the original temperature information as
much as possible.

3.1.2 Feature extraction algorithm

Set the temperature variable as

X ¼ x1; x2;⋯; xp
� �T ð7Þ

Its n groups of measured valued are expressed as

xi ¼ xi1 xi2⋯xip
� �T

; i ¼ 1; 2;⋯; n ð8Þ

(1) The structure of sample matrix

X ¼
xT1
xT2
⋮
xTn

2
664

3
775 ¼

x11 x12 ⋯ x1p
x21 x22 ⋯ x2p
⋮ ⋮ ⋯ ⋮
xn1 xn2 ⋯ xnp

2
664

3
775 ð9Þ

where xij represents the jth variable value among the
temperature data in group i.

(2) After conversing the sample matrix X, the calculation
arrives at Y = [yij]n × p, where

yij ¼
xij
−xij

�
ð10Þ

where xij refers to positive index and −xij refers to inverse
index.

(3) After Y is transformed by standardization, the calculation
arrives at

Z ¼
zT1
zT2
⋮
zTn

2
664

3
775 ¼

z11 z12 ⋯ z1p
z21 z22 ⋯ z2p
⋮ ⋮ ⋯ ⋮
zn1 zn2 ⋯ znp

2
664

3
775 ð11Þ

Fig. 6 Relation curves of
temperature and thermal
deformation at different
measuring points
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where

zij ¼
yij−y j
s j

ð12Þ

y j and sj respectively represents the average value and stan-

dard deviation of column j in matrix Y.

(4) Calculate the sample-relation numerical matrix of the
standardized matrix Z

R ¼ rij
� �

p�p ¼
ZTZ
n−1

ð13Þ

(5) Work out the eigenvalues

R−αIp
�� �� ¼ 0 ð14Þ

by which p eigenvalues are acquired, α1 ≥ α2… ≥ αp ≥ 0;

(6) To make the information of temperature feature have a
coverage of above 85%, m is determined through:

∑
m

j¼1
α j

∑
p

j¼1
α j

≥0:85 ð15Þ

For each αj,j = 1,2,…m, to solve Rb=αjb, unit vector is
expressed

b0j ¼
bj

b j
		 		 ð16Þ

(7) Solve the feature component ofzi = [zi1, zi2,⋯, zip]
T

uij ¼ zTi b
0
j ; j ¼ 1; 2;…;m

decision matrix is as follows:

U ¼
uT1
uT2
⋮
uTp

2
664

3
775 ¼

u11 u12 ⋯ u1m
u21 u22 ⋯ u2m
⋮ ⋮ ⋯ ⋮
up1 up2 ⋯ upm

2
664

3
775 ð17Þ

Among them, ui is eigenvector of the ith variable.

3.1.3 Weight optimization of variables

By the extraction of feature variable, two temperature feature
variables are acquired from those two kinds of temperatures,
so as to finally achieve a comprehensive feature variable
which has a linear relation with thermal expansion value. To
get that comprehensive feature variable, the abovementioned
problem is solved by a constraint optimization problem.

Max corcoef T ;Eð Þð Þ
s:t: T ¼ a� Ta þ b� Tb

aþ b ¼ 1
a≥0; b≥0

ð18Þ

where coecoef() is a correlation function, T refers to compre-
hensive temperature feature variable, E is the value of thermal
expansion, Ta and Tb are the temperatures of feature extraction
after feature extraction algorithm is practiced, and a and b are
variable coefficients.

With Eq. (18), the variable coefficients a and b can be
acquired by using Lagrange function.

3.1.4 Construction step of optimal independent variable

The optimal independent variable is constructed as Fig. 7
shows. The first step is to get temperature sequence and ther-
mal error sequence through the thermal error test for machine
tools; next, the measuring points are to be classified according
to their curves of temperature and thermal deformation which
are concave or convex; then, the temperature feature for

Fig. 7 The modeling process of temperature feature variables
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expressing convexity or concavity is extracted by the feature
extraction algorithm. The final step is to construct the optimal
independent variable.

3.2 Effect of optimal independent variable

In this section, the effectiveness of temperature feature
variables is going to be experimentally verified. With the
temperature and thermal deformation data acquired when
the heat source intensity is 1000 w/m2, the verification
will be conducted in the system shown in Fig. 5. Since
T3 point at the distance of 160 mm has the best linear
relation with thermal deformation, this method can be
proved effective as long as the linear correlation coeffi-
cient between the constructed feature variable and ther-
mal deformation is greater than the correlation coefficient
between T3 and thermal expansion.

Firstly, T1~T4 are treated as one group and T5~T10

are treated as the other group based on their curve
shape of temperature and thermal deformation: concave
or convex.

With Formulas (9)–(14), the feature values of group 1 (T1–
T4) and group 2 (T5–T10) are worked out as Tables 2 and 3
show.

With Formula (15), coverage rates are worked out as Tables
2 and 3 show.

According to Tables 2 and 3, both of group 1 and group 2
have their coverage rates of the first features over 85%.
Therefore, the first feature components in both groups are
used to produce independent variables.

By putting each αj(j = 1, 2,…, m) shown in Tables 2 and 3
into the formula Rb = αjb, feature vectors can be achieved as
below:

Ua ¼ 0:375 0:089 0:101 0:215½ �

Ub ¼ 0:117 0:026 0:159 0:213 0:052½ �

Therefore, the comprehensive feature variable for groups
T1~T4 is as follows:

Ta ¼ 0:375T 1 þ 0:089T2 þ 0:101T3 þ 0:215T4 ð19Þ

Similarly, the comprehensive feature variable for groups
T5~T10 is as follows:

Tb ¼ 0:117T 5 þ 0:026T6 þ 0:159T7 þ 0:213T8

þ 0:052T9 þ 0:097T10 ð20Þ

The two coefficients of the comprehensive temperature
feature variables Ta and Tb are worked out with Eq. (18),
which are 0.379 and 0.621 respectively. Therefore, the expres-
sion for the optimal independent variable is as follows:

T ¼ 0:379Ta þ 0:621Tb ð21Þ

The optimal variable T and the measuring point T3 are
shown in Fig. 8; it is obvious that the optimal independent
variable T has a better linear relation than temperature-
sensitive point T3, by which this method is proved to be
effective.

3.3 Temperature sensor layout method

A linear measuring point can be constructed with the tempera-
ture sequence near the linear measuring point, whichmeans it is
feasible to arrange some temperature measuring points along
the axis in deforming direction. Therefore, this paper proposed
to lay out temperature sensors every 100 to 150 mm along the
central axis of deforming direction within a distance of 500mm
from the heat source. The sketch is shown in Fig. 9. This

Fig. 8 Linear effect of the optimal independent variable

Table 2 Coverage rate of feature values (group 1)

Feature (j) Feature value (α) Coverage (%)

1 4.23 89

2 0.31 7

3 0.21 4

Table 3 Coverage rate of feature values (group 2)

Feature (j) Feature value (α) Coverage (%)

1 3.11 86

2 0.24 8

3 0.16 4

4 0.08 2
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method overcame the disadvantages of the traditional experi-
ential arrangement by which a large number of sensors were
required and arranged disorderly.

4 Experimental verification for modeling
effect

The effectiveness of the optimal variable was experimentally
verified in previous section. In this section, the thermal error
model established according to the proposed method will be
further proved to be effective on a gantry machine tool.
According to the international standard Test Code for
Machine Tools—Part 3: Determination of Thermal Effects
(IS0 2303:2001 IDT) [22], five batches of thermal error ex-
periment were carried out at specific feed rate and on different
seasonal conditions. Prediction accuracy and robustness was
analyzed for the thermal error model which was established
according to the experimental data. Besides, to verify its su-
periority, the proposed model was compared with the model
optimized by fuzzy clustering theory and gray correlation
theory.

4.1 Experimental design

The feeding system of a highly precise gantry five-axis
boring-milling machining center was taken as the exper-
imental platform. The machine tool structure is shown
in Fig. 10. The temperature sensor from T1 to T10 was
used to achieve the temperature data of the feed system.
According to the proposed layout method, temperature
sensors were installed, the installation position of tem-
perature sensors is shown in Table 4, and the layout of
temperature sensors on the machine tool is shown in
F ig . 11 . Loca t i on e r ro r wa s measu r ed by a
RenishawXL-80 laser interferometer, whose gauging
head is shown as the enlarged view in Fig. 10. In total,
five groups of no-load experiments were carried out on
the feed system. The running parameters for each group
are listed in Table 5.

4.2 Prediction performance analysis

The model was established with the temperature and position
error of C3. And the prediction accuracy and robustness of the
model was verified with the data of C1, C2, C4, and C5.

4.2.1 Optimal independent variable modeling

In this paper, the motor and left bearing in the ball screw
feeding system were considered as one heat source which
was measured from T1 to T6, and the right bearing was con-
sidered as the other heat source which was measured from T7

to T10. For T1~T6, the two of the acquired feature independent
variables Ta1 and Tb1 are

Ta1 ¼ 0:374T 1 þ 0:168T3 þ 0:215T6

Tb1 ¼ 0:298T 2 þ 0:452T4 þ 0:185T5

According to Formula (18), the optimal independent vari-
able can be worked out as below.

Tab1 ¼ 0:276Ta1 þ 0:724Tb1 ð22Þ

Similarly,

Ta2 ¼ 0:431T 7 þ 0:379T10

Tb2 ¼ 0:3831T8 þ 0:428T 9

Tab2 ¼ 0:362Ta2 þ 0:638Tb2

ð23Þ

According to the theory on the comprehensive error model-
ing for feeding system [23, 24],

E1 ¼


3:17þ 0:062δy−1:87δ2y

þ1:67� 10−6δ3y−3:65� 10−9δ4y

�
þ −2:31þ 0:124Tab1 þ 0:059Tab2ð Þ � δy−δ0

� � ð24Þ

Equation (24) is the thermal error prediction model for
feeding system, in which Tab1 and Tab2 can be worked out
through Eqs. (22) and (23), δy refers to the y coordinate value
of the position where the machine tool is located, and δ0 refers
to the zero point of the y axis in the machine tool coordinate.

4.2.2 Fuzzy clustering and gray correlation modeling

According to fuzzy clustering theory and gray correla-
tion theory, T1, T5, T7, and T10were screened out to be
the temperature variables for modeling. Similarly, ac-
cording to the theory on the comprehensive error

Fig. 9 Sketch of sensor layout method
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modeling for feeding system, fuzzy clustering and gray
correlation model is shown as Eq. (25)

E2 ¼ 3:17þ 0:378δy þ 0:961δ2y þ 3:872� 10−6δ3y−3:989� 10−9δ4y


 �

þ 2:51−0:605T 1 þ 0:484T5 þ 0:532T7 þ 0:278T 10ð Þ � δy−δ0
� � ð25Þ

In this paper, the optimal independent variable model and
the fuzzy-clustering gray-correlation model are respectively
represented by Model I and Model II.

4.2.3 Accuracy comparison

According to the experimental data acquired under working
condition C3, the optimal independent variable model (Model
I) and the fuzzy-clustering gray-correlation model (Model II)
were established. Then, Model I and Model II were respec-
tively used to make predictions for working conditions C1, C2,
C4, and C5. Their prediction effects of forward direction are
shown in Fig. 12. Among them, the forecasting effect of C1

operating condition are shown as Fig. 12(a), the forecasting
effect of C2 operating condition are shown as Fig. 12(b), the
forecasting effect of C4 operating condition are shown as
Fig. 12(c), and the forecasting effect of C5 operating condition
are shown as Fig. 12(d).

From Fig. 12(c) and Table 6, it can be seen that the
working condition C3 for modeling is quite similar to the
predicted working condition C4, for which both Model I
and Model II have a favorable prediction effect. However,
from Fig. 12(a, b, d), and Table 6, it can be seen that when
there is a great difference between the predicted and

Table 4 Location of
temperature sensors on
the machine

Location Sensor numbers

Electric motor T1,T2
Left bearing support T3,T4,T5,T6

Right bearing support T7,T8,T9,T10

Fig. 11 Layout of temperature
sensors in feeding system

Fig. 10 Structure chart of the
testing machine tool
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modeling working conditions, Model I still has a great per-
formance in robustness, although its prediction accuracy

declines slightly. But by contrast, Model II has quite a ter-
rible prediction effect.

The prediction effects of backward direction are shown in
Fig. 13 and Table 7. The effects of backward direction are
similar to those of the forward direction.

According to the analysis described above, it is shown that
when the difference between the modeling and predicted
working conditions is slight, both models can have an excel-

lent prediction effect; however, if the working condition dur-
ing machining is quite different from that for modeling, the

Fig. 12 Effect of forward
direction prediction

Table 6 Forecasting accuracy of
Model I and Model II (forward
direction)

Standard deviation (μm) Max-residual error(μm) Residual sum of squares (μm)

Model I Model II Model I Model II Model I Model II

C1 4.12 16.39 8.361 27.78 663 10,478.85

C2 5.02 16.01 8.29 29.61 986.29 10,000.03

C4 3.74 3.12 7.524 6.45 545.62 376.01

C5 4.46 19.99 8.18 29.43 777.89 15,588.21

Table 5 Experiment parameters

Category Feed rate (m/min) Ambient temperature (°C)

C1 1 5.6–9.8
C2 1 11.7–17.9
C3 5 13.4–19.6
C4 5 18.3–21.5
C5 10 19.7–23.2
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model proposed in this paper is able to realize high prediction
accuracy and robustness.

5 Conclusions

(1) According to the theoretical and experimental anal-
ys is on the measur ing points on the one-
dimensional pole, it was found that there are linear
and nonlinear temperature-sensitive points. What’s
more, along with heat source intensity varying, the
linear measuring point has a generally unchanged
linear feature on the relation between its tempera-
ture and thermal expansion, while the nonlinear

measuring points have accordingly varying curves
about the relation between temperature and thermal
expansion.

(2) Because the construction of linear measuring points
is effective, this paper proposed to lay out temper-
ature sensors along the axis of deforming direction,
which can, with effect, avoid the large demand on
sensor quanti ty that is caused by disorder
arrangement.

(3) A range of air cutting experiments was performed on the
feeding system of a highly precise gantry five-axis bor-
ing-milling machining center. The results show that the
optimal independent variable model has a greater robust-
ness and precision accuracy.

Table 7 Forecasting accuracy of
Model I and Model II (backward
direction)

Standard deviation (μm) Max-residual error (μm) Residual sum of squares (μm)

Model I Model II Model I Model II Model I Model II

C1 4.07 14.17 7.45 26.63 614 9875.04

C2 4.98 16.25 8.3 28.29 895.85 9943.03

C4 3.23 3.11 8.31 6.97 542.31 402.89

C5 4.55 18.82 7.15 26.56 675.12 9739.87

Fig. 13 Effect of backward
direction
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