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Abstract
Performance of machine tool tends to deteriorate in the production process. This deterioration increases the processing energy
consumption and leads to more defectives and corresponding energy waste. Maintenance can be taken to restore the performance
of machine tool and improve the energy efficiency, which has a significant impact on the total energy consumption and
productivity. This paper proposes an approach to improve the energy efficiency of the production process through scheduling
the maintenance actions of the machine tool, taking into account productivity, product quality, and energy consumption. The
deteriorating machine tool is modeled as a discrete-time, discrete-state Markov process. Partially observable Markov decision
process (POMDP) framework is applied to develop the maintenance decision-making model, where the joint observation of
processing energy consumption and quality of manufactured workpiece is used to infer the status of the machine tool. An optimal
maintenance policy maximizing the total expected reward about energy efficiency over a finite horizon is obtained, which
consists of a sequence of decision rules corresponding to the optimal action for each belief vector. The characteristics of the
optimal policy are illustrated through a numerical example and the effects of parameters on the policy are analyzed.

Keywords Energy efficiency .Machine tool . Maintenance control . Partially observableMarkov decision process

1 Introduction

Industrial sector consumes a large amount of energy and re-
sults in serious greenhouse gas emissions, where the
manufacturing plays a crucial role. According to Abdelaziz
et al. [1], the energy consumption of industrial sector in
China accounts for 70% of the national total energy usage,
of which the manufacturing consumes 85.2% of the final in-
dustrial energy usage. A comparison of the gas emissions
between machine tool and sports utility vehicle (SUV) indi-
cates that improving the energy efficiency of machine tool is
of great importance [2]. Due to increasing energy demand and
environmental concerns, energy efficient manufacturing is re-
ceiving more and more attention from both academic and
industrial community.

Performance of machine tool tends to deteriorate as the
manufacturing process proceeds. This deterioration may lead
to increased processing energy consumption [3–6] and poor
quality of manufactured workpiece. Note that defective work-
piece wastes energy significantly, especially if there are many
machining operations before scrapping. Maintenance actions
such as inspection, repair, or replacement are taken to restore
the performance of machine tool and improve the energy ef-
ficiency [4, 7]. However, frequent maintenance may increase
the downtime and decrease the productivity. Additionally,
there will be a large amount of energy consumption to restart
and maintain the machine tool in a ready position after each
maintenance [8, 9].

Taking into consideration productivity, product quality, and
energy consumption, this paper aims to propose an approach
to improve the energy efficiency of the production process
through scheduling the maintenance actions of the machine
tool. Herein, the deteriorating process of the machine tool is
modeled as a multi-state discrete-time Markov process, where
the state of the machine tool is not directly observable and
could be inferred from observations about processing energy
consumption and quality of manufactured workpiece. Hence,
this situation is partially observable. Generally, there are two
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sources resulting in the partial observability: (i) multiple
states may give the same observation and (ii) observations
are noisy: observing the same state can obtain different
observations [10]. In addition, there are four maintenance
actions available A = {a1, a2, a3, a4} during each horizon.
Action a1 is to do nothing, i.e., let the system continue
operating. Action a2 is to observe the manufactured work-
piece after manufacturing. Action a3 stops the machine
tool for inspection, and maintenance is performed if it
has failed. Action a4 is to perform maintenance directly
without inspecting the system first. At each horizon, the
decision-maker has to take an action selected from the
available actions and then receives a reward about energy
efficiency. To maximize the cumulative reward over a fi-
nite horizon, partially observable Markov decision process
(POMDP) framework is applied in this paper.

The remainder of this paper is organized as follows.
Related literature is reviewed in Section 3. Section 5 models
a deteriorating machine tool as a discrete-time, discrete-state
time-homogeneous Markov process. Section 6 investigates
the observations of the manufactured workpiece for the
Markov model. Section 7 develops a maintenance decision-
making model based on POMDP. Section 6 analyzes the ef-
fects of some parameters on the optimal policy. Section 7
concludes the paper by a brief summary.

2 Literature review

2.1 Approaches for energy efficient manufacturing

Many approaches for energy efficient manufacturing have
been proposed on different aspects. Some approaches try
to improve the energy efficiency of the machine tool on
the design level, such as kinetic energy recovery system
(KERS) [11], lightweight design [12]. These approaches
can help the machine manufacturers develop energy effi-
cient machine tools with advanced functions, but may be
impractical for the plant managers when using the existing
and relatively old machine tools. Focusing on the machin-
ing process, many research efforts have been made to-
wards the optimization of cutting conditions and process
parameters, such as Rajemi et al. [13], Mori et al. [14], Hu
et al. [15], and Oda et al. [3]. Whereas, machining pro-
cesses differ in a variety of ways due to the different ma-
chines, workpieces, and environments. Most of these
methods are proposed in given situations and may be not
suitable for others.

Apart from above two aspects, the approach about pro-
duction management has been regarded as one of the most
economical and efficient ways for energy efficient
manufacturing. Mouzon et al. [16] proposed an approach
to determine the optimal production sequence which

would minimize the total energy consumption while opti-
mizing total completion time. Shi et al. [17] developed a
decision-making model for energy saving by shutting
down the machine tool when it was idle between process-
ing steps. Shrouf et al. [18] minimized the energy con-
sumption of single machine through determining appropri-
ate launch time of job processing, idle time, and operating
time of the machine tool during a production shift. Chen et
al. [19] further investigated the energy efficient
manufacturing of a serial production line through schedul-
ing machine startup and shutdown. Cao et al. [20] devel-
oped an energy efficient scheduling model to optimize the
matching relationship between machine tools and produc-
tion tasks based on the fact that the energy consumptions
for processing the same workpiece in different machine
tools were usually different. Most of these studies focus
on optimizing the scheduling of machine startup and shut-
down, or the scheduling of matching relationship between
machine tools and production tasks. Meanwhile, the rela-
tionship between maintenance management and energy ef-
ficient manufacturing also receives some attention. Shao et
al. [4] pointed out that replacing a worn cutting tool could
decrease the processing energy consumption of the ma-
chine tool. Dietmair and Verl [7] stated that replacing old
components with energy efficient ones could be an effec-
tive way to improve the energy efficiency. Recently, Xu
and Cao [21] developed mathematical models to evaluate
the energy efficiency of the machine tool under periodic
maintenance. They stated that the energy efficiency of ma-
chine tool could be improved through the optimization of
maintenance scheduling. However, there is still lack of
studies for improving the energy efficiency of machine
tool through scheduling maintenance activities.

2.2 Maintenance control about POMDP

For a large range of system, the internal state is partially
observable and the related decision-making problem is for-
mulated as a POMDP. POMDP has been widely used in
many areas, such as machine maintenance and replace-
ment, human learning and instruction, medical diagnosis
and decision-making, and infrastructure management [22,
23]. Anily and Grosfeld-Nir [24] designed a production
and inspection policy for a lot-sizing problem to guarantee
a zero defective delivery with minimum total expected
cost. Papakonstantinou and Shinozuka [23] used the
POMDP framework to find the optimal inspection and
maintenance policy for corroding reinforced concrete
structure.

For the application of POMDP in machine maintenance,
Ivy and Pollock [25] studied a maintenance control problem
with imperfect monitoring, silent failures and state-dependent
repairs to minimize total expected cost. Meola [26] proposed a
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method to investigate a maintenance decision-making prob-
lem considering the production cost about product quality,
system failure cost, and maintenance cost. The former two
papers treat cost as the decision objective. Integrating avail-
ability, process rate, and quality rate together, AlDurgam and
Duffuaa [27] developed a maintenance control model for a
three-state POMDP system to maximize overall system effec-
tiveness (OSE). Therein, the process rate and quality rate are
assumed to be fixed in each state. Then AlDurgam and
Duffuaa [28] extended that model by assuming variable qual-
ity rate, and adding speed control actions along with mainte-
nance actions. A distinguishing factor of this paper is that we
intend to find the optimal maintenance policy for energy effi-
cient manufacturing.

3 Markov model of the deteriorating machine
tool

3.1 Modeling

Manufacturing system tends to wear, deteriorate, or break
as the production process proceeds. It is very common to
model the deteriorating system as a multi-state system and
each state represents a degradation level. To describe the
dynamic behavior of the deteriorating process, the concept
of “state transition” is introduced. Particularly, a state rep-
resents a condition of the system, and a state transition
represents a change of the system condition. However,
there is some uncertainty in the state transition. If in some
situations where each state transition depends only on the
current state and not on the historical states, this deterio-
rating process has the Markov property and the process is
termed as a Markov process. Markov process has been
widely used to model the deteriorating process of
manufacturing system in many studies, such as Ivy and
Pollock [25], Chiang and Yuan [29], Ben-Zvi and
Grosfeld-Nir [30], and Le and Tan [31]. This paper as-
sumes that the deteriorating process of machine tool can
be modeled by a discrete-time, discrete-state time-homo-
geneous Markov process.

As shown in Fig. 1, the Markov model incorporates n
states with progressively increasing levels of deterioration
and the transition probability between any two adjacent
states is p. Machine tool starts working in state 1 and even-
tually goes to state n. State 1 is the perfect state with the

best performance, while state n is the failure state with the
worst performance. This paper assumes that once reaching
state n, the machine tool continues operating until it is
stopped by some exogenous actions. Referring to Fig. 1,
the state transition process can be represented by a state
transition matrix P, given by Eq. (1)

P ¼

1−p p 0 ⋯ 0 0
0 1−p p ⋯ 0 0
0 0 1−p ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1−p p
0 0 0 ⋯ 0 1

2
6666664

3
7777775

ð1Þ

These states 1, 2,…, n do not necessarily correspond to
explicit physical events occurring in the machine tool, and
they may represent the deteriorating process of machine tool
at a high level of abstraction. For example, the state of a
machine tool describes the integrated condition of various
unobservable components. Thus, the state of the machine tool
is assumed to be partially observable.

3.2 Estimating the parameters

If the machine tool works in any state, it manufactures a
workpiece per time step. During any step, a state transition
occurs. Even though the state does not change, it is usually
viewed as a special state transition. If the system is cur-
rently in state i, i = 1, 2, …, n − 1, the result of a transition
is that the system either remains in state i with probability
1 − p or moves to the next state j, j = 2, 3, …, n, with
probability p. Thus, a state transition can be treated as a
Bernoulli trial. Referring to probability theory, a series of
state transitions form a Bernoulli process and the amount
of time that the machine tool spends in state i until moving
to state j is a geometric random variable with memoryless
property [32]. Furthermore, we assume that the time that
the machine tool spends in state n also obeys a geometric
distribution with parameter p. Then, the total working time
of the machine tool, T, is a random variable given by the
sum of n geometric distributions with the common param-
eter p. Thus, the variable T obeys a Pascal distribution, and
the probability mass function is given by

Pr T ¼ tð Þ ¼ t−1
n−1

� �
pn 1−pð Þt−n; t≥n ð2Þ

For a given machine tool, the values of n and p can be
estimated using this method: (i) build up the empirical distri-
bution of the system working time using experimental data,
and (ii) fit this empirical distribution with Pascal distribution
and select the most appropriate values of n and p.

p p
···

1-p 1-p1-p

p p
n-1 n21

Fig. 1 Markov model of the deteriorating machine tool
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4 Observations for the partially observable
Markov process

4.1 Observations of manufactured workpiece

As explained already, the state of the machine tool is not
directly observable and should be inferred from observations.
Since there is a close relationship between machine tool’s
status and the observation of processing energy consumption
and quality of manufactured workpiece, this paper uses this
observation to infer the system state.

Processing energy consumption for the same workpiece
increases as the machine tool deteriorates [3–6]. In order to
use the POMDP framework to deal with the maintenance
control of machine tools, it is reasonable to use a finite set of
discretized energy states to describe the variation of the pro-
cessing energy consumption for manufacturing workpiece.
Note that the size of observation space and the computational
burden increase severely as the number of energy states in-
creases in the POMDP. For simplicity, two states separated by
an energy threshold are used in this paper. If the processing
energy consumption for a workpiece is more than the given
energy threshold, the energy observation is recorded as H;
otherwise, it is recorded as L. Considering the uncertainties
in the dynamics of deteriorating process and in the obser-
vation process, this paper assumes that the probability of
observing an H increases as the machine tool deteriorates.
In terms of quality performance, the observed quality of
any workpiece may be good or defective, and the proba-
bility of observing a defective workpiece increases as the
machine tool deteriorates [30, 33].

Let x denote the observation of manufactured workpiece
taking into account both processing energy consumption and
quality. Specifically, x takes values in the set O = {1, 2, 3, 4},
where x = 1 indicates the observed quality is good and the
energy observation is L, x = 2 indicates the observed quality
is good and the energy observation is H, x = 3 indicates the
observed quality is defective and the energy observation is L,
and x = 4 indicates the observed quality is defective and the
energy observation is H.

4.2 Relationship between observations and system
states

Observations are probabilistically related to system states
and the relationship can be represented by a state-
observation matrix Q, whose element qkx denotes the con-
ditional probability that the observation is x given that the
system is currently in state k. The value of qkx can be
estimated using this method: (i) Repeat the deteriorating
process of machine tool for m times and in each process
the total working time is t1, t2,…, th,…, tm. This means in
any process h, th observations are gathered and they are

recorded orderly as x(1), x(2),…, x(th). (ii) Divide the ob-
servations x(1), x(2),…, x(th) in order into n sub-groups
containing an equal number of observations, i.e., n sub-
groups of th/n. Herein, n is the number of system states.
(iii) Collect the observations of sub-groups k of all the m
processes as a new group k, and qkx is calculated by

qkx ¼
number of observation x in group k

total number of observations in group k
ð3Þ

5 Decision-making based on POMDP

In this POMDP, the process is discretized by the time points at
which workpieces are finished. The POMDP is such a pro-
cess: At the start of any horizon, the system is in state i, the
decision-maker takes an action a and gets a reward ra i, while
the system changes to state j. Then, a workpiece is processed
and an observation x is received. At last, the information about
system state is updated and the next horizon starts. Herein, a,
without an index, denotes an arbitrary action in set A = {a1, a2,
a3, a4}, and ra I is the expected immediate reward for state i if
the action a is taken. In terms of the four actions explained in
Section 1, observing a workpiece consumes a fixed observa-
tion time tO, inspecting the system consumes a fixed inspec-
tion time tI, and performing maintenance consumes a fixed
maintenance time tM. We further assume that only the failure
state n could be identified through inspection, and the system
will return to state 1 after maintenance.

5.1 State transition and observation

During each horizon, system state transition occurs twice. The
first transition occurs immediately after taking action a and the
state transition matrix is denoted asMa. Its element ma ij is the
conditional probability that the system will move to state j after
taking action a if it is currently in state i. Corresponding to the
four actions, the transition matrixes are expressed as

Ma1 ¼
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

2
664

3
775 Ma2 ¼

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮
0 0 ⋯ 1

2
664

3
775

Ma3 ¼

1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 0
1 0 ⋯ 0 0

2
66664

3
77775 Ma4 ¼

1 0 ⋯ 0
1 0 ⋯ 0
⋮ ⋮ ⋮
1 0 ⋯ 0

2
664

3
775

ð4Þ

The second transition occurs during the manufacturing
process, which reflects the deteriorating process of the sys-
tem and is represented by a transition matrix P. Its element
pjk is the probability that the machine tool will move from
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state j to k. Assuming Ma and P are independent of each
other, it can be considered the state changes according to
the transition matrix Pa = Ma × P with element pa ik
representing the probability that the system moves from
state i to k during a horizon.

In action setA = {a1, a2, a3, a4}, only action a2 is to observe
the manufactured workpiece and the observation could be
used to update the information of system state. But there is
no observation after using the actions a1, a3, and a4. Thus, the
three actions cannot provide any useful information about
system state. Referring to Smallwood and Sondik [22] and
Papakonstantinou and Shinozuka [34], the observation ma-
trixes are given by

Qa2 ¼ Q; Qa1 ¼ Qa3 ¼ Qa4 ¼
1 0 0 0
1 0 0 0
⋮ ⋮ ⋮ ⋮
1 0 0 0

2
664

3
775 ð5Þ

5.2 Belief vector

Since the state of machine tool is partially observable, at each
time, the decision-maker only obtain a belief vector π = [π1,
π2,…, πn] about the system state, where πi represents the
probability that the system is currently in state i. Let S be a
set of all possible system states {1, 2,…, n}. Belief π is a
probability distribution over S and is a sufficient statistic of
the history of actions and observations. This means knowing
π, but not the full history, could obtain the same amount of
information [23]. For π1 + π2+ ··· + πn = 1, all vectors are
contained in an n − 1 dimensional simplex.

The belief vector π should be updated once receiving the
observation x. Let π′ denote the updated belief vector given
that the prior belief vector is π, the selected action is a, and the
observation is x. Its element πk′ is calculated by

π
0
k ¼

∑
n

i¼1
πipaikq

a
kx

β xjπ; að Þ ð6Þ

where β(x|π, a) is the conditional probability of observing x
given belief π and action a, which is expressed as

β xjπ; að Þ ¼ ∑
n

i¼1
∑
n

k¼1
πipaikq

a
kx ð7Þ

5.3 Reward

The energy efficiency during any horizon is defined as the
ratio of productivity to the energy consumption [35].
Define the time of manufacturing a workpiece as a unit
time. The processing time for each workpiece is equal.
Since only one workpiece is processed in each horizon,
the productivity equals the reciprocal of time length of
the horizon. The time length depends on the performed
action, which may consist of a unit time for manufacturing,
and possible observation time tO, or possible inspection
time tI, or possible maintenance time tM. On the other hand,
energy consumption of a horizon includes the processing
energy consumption, energy loss for defective quality, and
possible energy consumption for maintenance. Let EL and
EH represent respectively the average processing energy
consumption for energy observations L and H. Let ED de-
note the average extra energy loss for a defective work-
piece. Let EM denote the average maintenance energy con-
sumption, which may include the energy required to restart
the machine tool and perform other maintenance opera-
tions. Let EEa

x denote the immediate energy efficiency of
any horizon given the action a and observation x. The
expressions of EEa

x with various combinations of a and x
are given in Table 1. Note that 1/EL is the maximum im-
mediate energy efficiency.

Let λax denote the immediate reward during a horizon if
action a is taken and the observation is x. For 1/EL is the
maximum of EEax in Table 1, we use 1/EL as a benchmark
and define λax as the ratio of EEa

x to 1/EL. Thus, λa x is
expressed as

λa
x ¼ EL⋅EEa

x ð8Þ

Table 1 Expressions of EEa x with various combinations of a and x

Action Observation x

a 1 2 3 4

a1 1
EL

1
EH

1
ELþED

1
EHþED

a2 1
1þtOð ÞEL

1
1þtOð ÞEH

1
1þtOð Þ ELþEDð Þ

1
1þtOð Þ EHþEDð Þ

a3 if not
failed

1
1þtIð ÞEL

1
1þtIð ÞEH

1
1þtIð Þ ELþEDð Þ

1
1þtIð Þ EHþEDð Þ

a3 if failed 1
1þtIþtMð Þ ELþEMð Þ

1
1þtIþtMð Þ EHþEMð Þ

1
1þtIþtMð Þ ELþEDþEMð Þ

1
1þtIþtMð Þ EHþEDþEMð Þ

a4 1
1þtMð Þ ELþEMð Þ

1
1þtMð Þ EHþEMð Þ

1
1þtMð Þ ELþEDþEMð Þ

1
1þtMð Þ EHþEDþEMð Þ
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Referring to Smallwood and Sondik [22], ra i, the expected
immediate reward for state i given the action a, is given by

rai ¼ ∑
n

k¼1
∑
4

x¼1
paikqkxλ

a
x ð9Þ

where qkx is the element of state-observation matrix Q not
matrix Qa. Actually, the observation result of processing
energy consumption and quality of manufactured work-
piece is always following the rule of matrix Q regardless
of the existence of observation operation in the action. And
the reward, under the given state i and action a, depends
only on the real outcome of processing energy consump-
tion and quality of manufactured workpiece. Observation
operation could receive the information of actual outcome
but cannot determine the outcome.

5.4 Maximizing expected reward

Let VN(π) be the maximum expected reward that the sys-
tem can accrue if there are N horizons remaining before the
process terminates and the current belief is π. VN(π) and
the optimal action corresponding to belief π can be obtain-
ed through computing

VN πð Þ ¼ max
a∈A

∑
n

i¼1
πirai þ ∑

4

x¼1
β xjπ; að ÞVN−1 U π; a; xð Þ½ �

� �
;N ≥1

ð10Þ
with the initial condition V0(π) = 0, where

U π; a; xð Þ ¼ π
0 ð11Þ

To solve Eq. (10), we begin at the end of the process, i.e.,
there are N = 0 horizons remaining to reach the end.
Approximate value iteration algorithm is an efficient kind of
method for solving POMDP. Herein, the grid-based approxi-
mation, a simple algorithm of approximate value iteration, is
suggested. Using this method, the value function over a con-
tinuous belief space can be approximated by a finite set of grid

Table 2 Parameter values for the example

Parameter n p EL EH ED EM tO tI tM

Value 3 0.02 1 1.5 3 8 0.3 2 5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

5 horizons remaining

 a
3  a

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

10 horizons remaining

 a
2

 a
1

 a
3

(a) Rule with 5 horizons remaining.          (b) Rule with 10 horizons remaining.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

20 horizons remaining

 a
2

 a
1

 a
2

 a
3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

50 horizons remaining

 a
1

 a
2

 a
2

 a
3

(c) Rule with 20 horizons remaining.        (d) Rule with 50 horizons remaining.

Fig. 2 Four decision rules with different horizons remaining
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points, and the value of an arbitrary belief point can be esti-
mated based on the values of grid points through an
interpolation-extrapolation rule. Other methods reviewed in
Papakonstantinou and Shinozuka [36], such as most likely
state (MLS) method and point-based value iteration, can also
be used to solve the problems with large state spaces.

5.5 Optimal maintenance policy

Through computing Eq. (10), we can obtain the optimal action
for any belief π if there are N horizons remaining. Let ΦN

denote the optimal decision rule with N horizons remaining
which specifies for each belief π the optimal action to take if
there are N horizons remaining. Consequently, the optimal
control policy over N horizons for the overall process is a
sequence of decision rules Φ = {Φ1, Φ2,…, ΦN}. Next, the
optimal policy is illustrated through a numerical example
about a three-state machine tool. Parameters are shown in
Table 2, and the state-observation matrix Q is assumed to be

Q ¼
0:855 0:095 0:045 0:005
0:45 0:45 0:05 0:05
0:085 0:765 0:015 0:135

2
4

3
5

As explained already, all beliefs are contained in an n − 1
dimensional simplex, for a three-state system, we can use the
points (π1, π2) in the two-dimensional simplex {0 ≤ π1 ≤ 1,
0 ≤ π2 ≤ 1, π1 + π2 ≤ 1} to represent the beliefs. The grid-
based approximations and bilinear interpolation rule are used
to solve Eq. (10) with π1 and π2 discretized on a grid with
increments of 0.01. Four decision rules with different horizons
remaining are portrayed by Fig. 2a–d. Firstly, it is apparent
each belief space is divided into a finite number of regions and
all the beliefs of each region corresponds to an action which is
the optimal action of the beliefs in this region. Herein, the
unsmooth nature of the boundaries of these regions is due to
the discretization of π1 and π2. These figures provide the
decision-maker with graphic decision rules showing the opti-
mal action for any belief if the number of remaining horizons
is given. For example, if there are five horizons remaining and
the decision-maker believes the system is in state 1 with prob-
ability 0.4 and in state 2 with probability 0.3, Fig. 2a shows the
optimal action is a1. Secondly, this optimal policy is visualized
by diagrams. Diagrams are convenient for problems contain-
ing only two or three states, but are impractical for those
systems with more than three states. This is the reason for
choosing a three-state system as an example. For systems with

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

10 horizons remaining

 a
1

 a
2

 a
3

 a
4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

10 horizons remaining

 a
2

 a
3

 a
1

 a
2

   (a) Optimal decision rule with p = 0.1.     (b) Optimal decision rule with EH = 1.8. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

10 horizons remaining

 a
2

 a
2

 a
3

 a
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π1

π
2

10 horizons remaining

 a
1

 a
2

 a
3

(c) Optimal decision rule with tO = 0.1.        (d) Optimal decision rule with tI = 4. 

Fig. 3 Optimal policies with varied parameters and eight horizons remaining
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more states, the belief space can also be divided into finite
numbers of regions and all the beliefs in each region have
the common optimal action. Thirdly, the rule with a given
number of remaining horizons does not change with the total
number of horizons of the overall process. As an application
of general POMDP, more common characteristics of the value
function VN(π), such as its convexity and piecewise linearity
can be seen in Papakonstantinou and Shinozuka [23].

6 Sensitivity analysis

This section shows the effects of some parameters on the
optimal control policy of above example. Figure 3a–d portrays
the optimal decision rules corresponding to the changes of
parameters in Table 2, when there are 10 horizons remaining.

Parameter p is an indicator of system deteriorating rate.
Figure 3a shows the optimal decision rule with p = 0.1. It
can be noticed that action a4 plays an important role in this
rule and the region for a3 decreases sharply compared with it
in Fig. 2b. This is because the machine tool deteriorates more
quickly as p increases and frequent maintenance is necessary,
and it may be better to execute maintenance directly than to
inspect the system first.

Difference between EH and EL also affects the result of
decision rule. Intuitively, if the ratio of EH to EL is large, the
decision-maker will increase the frequency of performing a2,
a3 or a4. Figure 3b shows the decision rule withEL = 1 and EH/
EL = 1.8, where the region for action a2 or a3 is larger than it in
Fig. 2b. This is reasonable because more energy is consumed
for manufacturing as the increase of EH/EL, and the decision-
maker would rather take other actions frequently than do noth-
ing in order to maintain the system in an energy efficient state.

Figure 3c shows the optimal decision rule with tO = 0.1.
Intuitively, the decision-maker would tend to observe the
workpiece more frequently and know more information about
system state due to the decreased observation time. This intu-
ition is proved in Fig. 3c where the region for action a2 is
increased compared with it in Fig. 2b.

Figure 3d shows the optimal decision rule with tI = 4. The
outline of these regions in Fig. 3d is similar to those in Fig. 2b,
but the region for action a3 is decreased. This is because the
decision-maker would decrease the frequency of performing
a3 as the inspection time increases so as to keep a high pro-
duction efficiency.

7 Conclusions

This paper proposes an approach to improve the energy effi-
ciency of the production process through scheduling the main-
tenance actions of the machine tool, taking into account pro-
ductivity, product quality, and energy consumption. POMDP

framework is applied to develop the maintenance decision-
making model, and the decision is made based on the obser-
vation information about processing energy consumption and
quality of manufactured workpiece. Using this approach, the
optimal maintenance policy maximizing the total expected re-
ward about energy efficiency over a finite horizon is obtained,
which is a sequence of decision rules corresponding to optimal
actions. This approach, which does not need to redesign the
machine tool or optimize the process, provides a cost-efficient
way for energy efficient manufacturing.

In this study, two energy states separated by an energy
threshold are used to represent the processing energy con-
sumption of manufactured workpiece. In order to provide
more precise information about system state for the deci-
sion-making, future works will try to use the more accurate
number of energy states to describe the characteristics of pro-
cessing energy consumption.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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