
ORIGINAL ARTICLE

Fast registration of 3D point clouds with offset surfaces in precision
grinding of free-form surfaces

Shanyong Chen1,2
& Chuanchao Wu1,2

& Shuai Xue1,2
& Zhengjian Li1,2

Received: 2 January 2018 /Accepted: 14 May 2018 /Published online: 28 May 2018
# Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Because of its high sensitivity to misalignment, precision grinding of free-form surfaces with micron accuracy requires accurate
registration of the surface measurement point cloud. Registration of point clouds obtained with a coordinate measuring machine
(CMM) is generally an iterative process of finding optimal coordinate transformation between the CMM frame and the model
frame of the workpiece by minimizing the point-to-surface distances with probe radius compensation. For free-form surfaces,
frequent calculation of point-to-surface distances consumes very much time, and a trade-off has to be made between the
efficiency and the accuracy. This paper presents a method for fast registration of free-form surface point clouds based on the
point-to-triangle distance which involves only Delaunay triangulation of a two-dimensional dataset, and the surface normal is
quickly calculated from cross product. Probe radius compensation is realized by registering the probe center points with the offset
surface.We prove that it is equivalent to registering the probe contact points with the nominal surface through theoretical analysis.
The registration problem is then formulated as sequential linear least-square problems with properly defined ball constraints. To
validate the method, numerical simulations are presented to show the accuracy of the point-to-triangle distance. The registration
algorithm also shows excellent robustness against misalignment of tens of millimeters/degrees. Finally measurement, registra-
tion, and grinding of a free-form optical surface are experimentally demonstrated. The surface error obtained after registration is
used for compensatory grinding which reduces it to micron level.
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1 Introduction

Free-form surfaces find more and more applications in preci-
sion and even ultra-precision systems. A remarkable change
for optical free-form surfaces is the transition from illumina-
tion systems to high-performance imaging systems working in
infrared, visible, or even ultraviolet spectrum [1, 2]. As a re-
sult, tolerance on the surface error gets much tighter. It typi-
cally requires compensatory grinding of the surface with mi-
cron accuracy before entering the lapping and polishing stage,
based on measurement of the profile or surface error [3–5]. To

get the surface error, the surface is sampled with a coordinate
measuring machine (CMM) which gives a three-dimensional
(3D) point cloud representing the real surface. And then, the
point cloud is registered and compared with the nominal sur-
face. The normal deviations ofmeasurement points are used to
assess the surface error.

Because of its high sensitivity to misalignment, registration
of free-form surface point clouds is indispensable for error
assessment and corrective machining. It is generally an itera-
tive process of finding optimal coordinate transformation be-
tween the CMM frame and the model frame of the workpiece
by minimizing the point-to-surface distances. This follows the
well-established iterative closest point (ICP) algorithm [6].
However, special care must be taken to two major problems
in terms of high accuracy and efficiency. One is calculation of
the point-to-surface distance in the surface normal direction. It
is equivalent to finding the closest point on the surface. The
other problem is the probe radius compensation. The CMM
readout is basically 3D coordinates of the probe center when
touching the test surface. Physically, the trajectory of the
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probe center lies on the offset surface generated by offsetting
the nominal surface in normal directions with an amount of
probe radius. Therefore, the probe contact points need to be
determined before calculating their deviations from the nom-
inal surface. Obviously, surface normal calculation is the com-
mon basis of the above two problems. In reverse engineering
practice, nominal description of the test surface is unavailable,
and the surface normal is usually estimated through linear
[7–9] or quadratic [10] approximation using some local
points, or through spline fitting [11] to the measurement pro-
file. It demands sufficiently dense sampling to suppress the
bias of normal vector estimation. When there is the prior
knowledge of the nominal surface description, the surface
normal is also well-defined. However, for free-form surfaces,
there is no closed-form solution, and numerical algorithms are
usually adopted to solve a system of nonlinear equations. It
consumes very much time, and a trade-off has to be made
between the efficiency and the accuracy. Usually, similar ap-
proximations as in reverse engineering are preferred to reduce
the computation time but with reduced accuracy at the same
time. In strongly curved surface measurement, the residual
error of approximation may introduce considerable change
of normal vectors and significant error of point-to-surface
distance.

Probe radius compensation strongly relies on the surface
normal. A recent review of probe radius compensation
methods is presented by Kawalec and Magdziak [12]. To
avoid use of incorrect surface normal, the probe center points
instead of the contact points were also proposed to be regis-
tered with the offset surface. The offset surface is obtained by
converting the nominal bi-cubic Bezier surface into bi-cubic
Coons surface [13]. Ainsworth et al. [14] obtained the offset
surface by non-uniform rational B-spline (NURBS) fitting to
the point clouds generated from the nominal surface with nor-
mal offset of probe radius. This indirect way of radius com-
pensation does not need to calculate the probe contact points
but still consumes too much time for surface fitting. To further
improve the efficiency, Xiong and Li [15] proposed to simply
subtract the probe radius when calculating the point-to-surface
distance in surface registration or workpiece localization. The
probe center points are still registered with the nominal sur-
face instead of the offset one, but the contribution of probe
radius is subtracted from the normal deviations. Since the
probe center points are ideally deviated from the nominal sur-
face by an amount of probe radius (a couple of millimeters),
there is a risk of finding incorrect closest points especially
when the surface is strongly curved with significant variation
of curvatures. To deal with the problem of incorrect surface
normal, a stylus tip envelop method was proposed for radius
compensation at surface discontinuities or small local features
[16, 17]. However, it demands high-density sampling points
to ensure that the successive probe tips overlap partially with
each other.

The objective of this study is to develop a new mathemat-
ical model for registration of free-form surface point clouds
with high efficiency and high accuracy. The nominal surface is
defined by high-density point cloud which makes the simple
point-to-triangle distance sufficiently accurate. In addition, the
probe center point cloud is registered with the offset surface
point cloud to avoid use of potentially incorrect closest points.
Note the point-to-point distance is not preferred for registra-
tion of two sets of discrete points despite the availability of
numerous algorithms based on data structure and computa-
tional geometry, e.g., the k-D tree reducing the computational
complexity to O(NplogNx) where Np and Nx are the point
number of two sets [18]. Because the sampling grid of one
set probably “slides” away from that of the other set, incorrect
correspondence of the closest point can induce considerable
error compared with the point-to-surface distance.

This paper is organized as follows. In the next section, the
mathematical model is built for calculating the point-to-
triangle distance approximating the real point-to-surface dis-
tance. The registration problem with offset surface is then
formulated following the ICP algorithm with additional ball
constraints imposed on the sequential linear least-squares
problems (LSPs). Theoretical analysis is presented to show
the equivalence to registering probe contact points with the
nominal surface. Section 3 gives simulation results validating
the accuracy of point-to-triangle distances and also robustness
of the registration algorithm against misalignment. In Section
4, we experimentally demonstrate the use of the proposed
method for compensatory grinding of a free-form optical sur-
face. The surface error is finally reduced to micron level. We
then reach a conclusion in Section 5.

2 Registration model for 3D point clouds
with offset surfaces

The nominal surface represented by either analytical equation
or discrete data cloud is described in the model frame {M}
while the measurement point cloud is described in the CMM
frame {W}. The two coordinate frames are generally not co-
incident and, therefore, have to be aligned before we can as-
sess the surface error. Registration is the process of finding
optimal coordinate transformation between the CMM frame
and the model frame by minimizing the point-to-surface dis-
tances usually in the LS sense. The distances are calculated for
measurement points transformed into the model frame by the
optimal coordinate transformation.

2.1 Point-to-triangle distance

When the nominal surface is described by high-density point
cloud {Si|i = 1,2,…,N}, it is sufficiently accurate to approxi-
mate it by Delaunay triangulation. Then, the nearest triangle is
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found, and the point-to-surface distance is well-approximated
by the point-to-triangle distance. However, triangulation of a
high-density 3D data cloud consumes still too much time and
memory. Our solution is to project the measurement points
{Pj|j = 1,2,…,n} as well as the nominal surface points onto a
certain plane, e.g., the XOY plane. The projections {Ti} of
{Si} are two-dimensional (2D) data set and quickly triangu-
lated in the XOY plane. It is also fast to search for the
enclosing Delaunay triangles for projections {Qj} of {Pj}.
The vertices of enclosing triangle are then back-projected onto
the nominal surface as illustrated in Fig. 1(a).

It is easy to calculate the normal distance of the measure-
ment point Pj to the plane determined by the triangleΔS1S2S3.
As shown in Fig. 1(b), the unit normal vector nj of the plane is
given by the cross product of two edge vectors of the triangle:

n j ¼ S2S1
��!� S2S3

��!
S2S1
��!� S2S3

��!��� ��� ð1Þ

The point-to-triangle distance dj is then obtained from the
inner product of the unit normal vector and the vector deter-
mined by the measurement point and one of the vertices, e.g.,
S2:

d j ¼ S2Pj
��!

; n j

D E
ð2Þ

The closest point on the nominal surface is hence approx-
imated by the pedal point Cj on the triangle plane.

The above process involves only Delaunay triangulation of
a 2D dataset, and the surface normal is quickly calculated
from cross product. It is far more efficient than the conven-
tional algorithm which requires tessellation of 3D dataset and
searching for the nearest triangle in 3D space.

2.2 Probe radius compensation using offset surfaces

The CMM basically records the 3D coordinates of the probe
center or probe location Pl instead of the probe contact point
Pc. The trajectory of the probe center lies in theory on the
offset surface, and the offset distance is right at the probe
radius which is typically a couple of millimeters. Surface error
is evaluated by normal deviations of the real surface from the
nominal one. That naturally requires to find the probe contact
points which are also the closest points on the real surface
corresponding to the probe center points. As suggested by
Xiong and Li [15], we can simply subtract the probe radius
from the calculated point-to-surface distance when registering
the probe center points with the nominal surface. But there is a
risk of finding incorrect closest points because the probe cen-
ter points are ideally deviated by the probe radius. This prob-
lem gets much more serious when we use the point-to-triangle
distance by projecting all points onto a coordinate plane. The

millimeter-scale offset of the probe center is big enough to
change the enclosing triangle, which then results in consider-
able error of normal distance. As shown in Fig. 2, the projec-
tions of probe center Pl and probe contact Pc lie in different
triangles. This difference exists even for an ideal surface with-
out any surface error. That means the subsequent iterations of
surface registration will probably fail to find the right coordi-
nate transformation between the CMM frame and the model
frame.

However, the above problem can be avoided by registering
the probe center points with the offset surface. It allows that
initial deviation exists between the two coordinate frames
which may also result in wrong triangle correspondence.
Owing to the convergence of the algorithm, the registration
process can still find the optimal transformation which leads to
all-zero point-to-surface distances for an ideal surface.

When measuring a surface represented by a high-density
point cloud {Si = (xi, yi, zi)}, the offset surface can also be
represented by points {Sei = (xei, yei, zei)} normally deviated
from the nominal surface. Such a point cloud of offset surface
is generated offline and keeps the sampling density. The sur-
face normals are hence estimated by fitting the nominal point
cloud to high-order surfaces, e.g., bi-cubic fit to ensure high
accuracy. The offset point cloud is then obtained by normally
shifting the nominal points with an amount of probe radius r:

Sei ¼ Si þ r⋅ni ð3Þ

After generation of the offset point cloud, the measurement
points, i.e., the probe center points, are then registered with the
offset surface. To show that such an indirect registration is
equivalent to registration with the nominal surface, we con-
sider the 2D case as illustrated in Fig. 3. The measurement
point is Pl lying on the offset surface of the real surface with
machining error. When registering with the nominal surface,
the contact point Pc is found. And the point-to-surface dis-
tance is calculated as below:

dc ¼ CPc
��!

; nc
D E

ð4Þ

where nc is the unit normal vector at the closest point C on the
nominal surface. While registering with the offset surface, the
point-to-surface distance is calculated as below:

dl ¼ HePl
��!

; nh
D E

ð5Þ

where nh is the unit normal vector at the closest point He on
the offset surface. The difference of the two kinds of distances
is given by the following equation when the surface error is
small enough:

dl−dc≈r cosθ−1ð Þ≈−r θ
2

2
ð6Þ
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The approximation is valid as the small surface error
indicates infinitesimal angle θ between the nominal sur-
face normal and the real surface normal. This angle is
approximated by the surface height change (micron level)
divided by the lateral spacing (millimeter scale). Figure 3
is an exaggerated schematic diagram clearly showing the
geometrical variation induced by the real surface height.
The lateral shift of the closest point from C to H on the
nominal surface is first order infinitesimal o(θ) while the
vertical change is second order infinitesimal o(θ2). And
the variation of normals at these two points is also
second-order infinitesimal. Therefore, the difference de-
scribed in Eq. (6) is second-order infinitesimal and can
be neglected. That is to say, registering the probe center
points with the offset surface will potentially introduce
only second-order error.

2.3 Registration algorithm with ball constraints

Suppose the measurement points, i.e., the probe centers are
denoted by {Yj = (xj, yj, zj,1)| j = 1,2,…,n} in homogeneous
coordinates in the CMM frame {W}. Now, we have also gen-
erated the offset surface points denoted by {Xei = (xei, yei,
zei,1)| i = 1,2,…,N} in the model frame {M}. Registration
problem is then formulated as the nonlinear LSP.

min f g;X eð Þ ¼ ∑
n

j¼1
d2j ¼ ∑

n

j¼1
g−1Y j−X ej; nj
� �2 ð7Þ

where g is the coordinate transformation between the model
frame {M} and the CMM frame {W}, dj is the point-to-
triangle distance defined in Eq. (2), Xej and nj are the closest
point on and unit normal vector of the triangle plane corre-
sponding to the measurement point, respectively.

The coordinate transformation g transforms coordinates in
the model frame to those in the CMM frame. It can be repre-
sented by an element of the special Euclidean group SE(3),
which has the following canonical representation using the
exponential map [19]:

SE 3ð Þ ¼ exp ∑
6

k¼1
mkξ

_

k

� �� 	
ð8Þ

where

ξ
_ ¼ ω

_
v

0 0


 �
ð9Þ

is referred to as a twist and ξ = [v,ω]T as the twist coordinate.
ξk∈R6 is a unit vector whose kth element is 1 and otherwise 0

Fig. 1 Schematic diagram of
point-to-triangle calculation. (a)
Finding the triangle. (b)
Calculating the point-to-triangle
distance

Fig. 2 The probe center offset results in wrong triangle correspondence

3598 Int J Adv Manuf Technol (2018) 97:3595–3606



[20, 21]. The optimization variables mk represent the six de-
grees of freedom of a rigid body in 3D space.

The objective function f(g) is a nonlinear function of trans-
formation parameters mk. The nonlinear LSP described in Eq.
(7) is essentially an optimization problem involving two (sets
of) variables: transformation parameters mk and closest points
Xe or normal vectors n. Algorithms for this kind of problem
are usually classified as simultaneous optimization (SO, e.g.,
Newton-type algorithms) and alternating optimization (AO,
also called alternating variable method). The basic idea of
AO is optimizing the individual (set of) variable(s) separately,
with the other (set of) variable(s) fixed. Repeat the individual
optimization alternatingly, and the iterations will finally con-
verge to a solution of the LSP. Rigorous proof of the conver-
gence of AO-type algorithms is difficult. Therefore, to solve
the registration problem, two subproblems are solved
alternatingly and iteratively. The first one is calculating the
point-to-triangle distance with given coordinate transforma-
tion. The other one is optimizing the coordinate transforma-
tion with determined closest points and surface normals. The
advantage of this AO-type algorithm is that the subproblems
can be easily solved. As we mentioned in Section 2.1, the
point-to-triangle distance can be calculated very fast based
on 2D computational geometry. For the optimization of coor-
dinate transformation, the following linearization of exponen-
tial function is used:

glþ1 ¼ glexp ∑
6

k¼1
mkξ

_

k

� �
≈gl I þ ∑

6

k¼1
mkξ

_

k


 �
ð10Þ

where l is the sequence number of iteration, and I is the iden-
tity matrix. Then, the optimization is rewritten as a linearized
LSP in the lth iteration which can be solved with well-
established algorithms such as singular-value decomposition
(SVD):

min f g;X eð Þ≈ ∑
n

j¼1
I− ∑

6

k¼1
mkξ

_

k

� �
gl
� 
−1

Y j−X l
ej; n

l
j

� �2

ð11Þ

It is equivalent to finding the LS solution to the linear
equationAm = b, where the matrixA and vector b are defined
below:

A ¼ aj;k
� 
 ¼ nlj

� �T
ξ
_

kX
l
ej

� �
¼ nlj

� �T
ξ
_

k gl
� 
−1

Y j

� �
ð12Þ

b ¼ bj
� 
 ¼ nlj

� �T
gl
� 
−1

Y j−X l
ej

� �� �
ð13Þ

Therefore, the iterations comprise a series of point-to-
triangle distance calculation problems and sequential linear
LSPs. The program starts with an initial guess of coordinate
transformation g0, calculates the point-to-triangle distance,
and then finds and updates the coordinate transformation g1

by minimizing the objective function. The two subproblems
are iteratively solved in such an alternating way until the pro-
gram converges to an acceptable tolerance. Readers are re-
ferred to ref. [20] for a proof of the local convergence. An
important observation is that it is helpful to yield a sequence
of {gl, Xe

l}, which guarantees the monotone decreasing prop-
erty of the objective function, i.e.,

f gl;X l−1
e

� 

≤ f gl;X l

e

� 

≤ f glþ1;X l

e

� 
 ð14Þ

However, care must be taken when solving the sequential
linear LSPs since they are only valid in a very small local
region due to the linearization. In other words, solutions to
the linear LSP are not always minima of the original transfor-
mation optimization subproblem. It may result in an increas-
ing objective, which leads to incorrect convergence or diver-
gence. Therefore, we propose to impose a ball constraint on
the vector m of transformation parameters, and this yields a
ball-constrained linear LSP [21, 22]:

Am ¼ b
s:t: mk k≤α ð15Þ

where the positive scalar α is a ball constraint ensuring the
local validity of linearization. And “s.t.” stands for “subject
to.” Ball-constrained LSP is typical by constraining the opti-
mization variables in a ball of certain radius, i.e., the norm of

Fig. 3 Second-order error
induced by registering the probe
center with the offset surface
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the vector m is equal to or less than the magnitude of the ball
radius α.

Algorithms for the ball-constrained LSP are referred to ref.
[23]. SVD is still applicable but with additional computation
to solve a non-linear equation. The ball constraint can be de-
termined from prior knowledge or changes adaptively with the
converging performance. Generally, it starts with quite a big
value and then decreases as the iteration number increases, in
view of the fact that AO-type algorithms converge very fast in
the first few iterations but then quickly slow down. In practice,
when detecting an increasing objective function value, the
algorithm should back off to the last iteration, and the ball
constraint is reduced by a half or even by an order.

The whole algorithm is summarized as below.

Input: measurement points (probe centers) {Yj = (xj, yj,
zj,1)| j = 1,2,…,n} in homogeneous coordinates; nominal
surface points {Xi = (xi, yi, zi,1)| i = 1,2,…,N} in homo-
geneous coordinates; initial values of the ball constraintα
and coordinate transformation g0; terminating condition
ε.
Preliminary: generate the offset surface points {Xei = (xei,
yei, zei,1)| i = 1,2,…,N} keeping high density according to
Eq. (3).
Output: surface error described with point-to-triangle dis-
tances {dj} defined in Eqs. (2) and (7); optimal coordinate
transformation g*.

Step 0: (a) Set l = 0, compute the point-to-triangle
distance {dj

0} with an initial transformation g0 and yields
the closest points {Xej

0};

(b) Compute the objective function f 0 defined in Eq. (7).

Step 1: (a) Solve the ball-constrained linear LSP defined
in Eq. (15) and yields the new transformation parameters
ml + 1;

(b) Update the transformation gl + 1 with parameters ml + 1;
(c) Compute the distance {dj

l + 1} with transformation gl + 1

and updates the closest points {Xej
l + 1};

(d) Compute the objective function f l + 1 defined in Eq. (7);
(e) If (1 − f l + 1/f l) > ε, then set l = l + 1 and return to step

1(a); otherwise, exit and report the results.
Be careful that the approximation at the right side of Eq.

(10) should not be used for updating the transformation gl + 1

from gl. The left side should be used instead.

3 Numerical simulations

A free-form surface defined by a high-density point cloud is
used for simulation and experimental verifications. The nom-
inal surface point cloud is shown in Fig. 4 along with the offset

surface point cloud generated from Eq. (3) with the surface
normals estimated by bi-cubic fit to ensure high accuracy. The
offset distance is the probe radius r = 1.5 mm. The number of
points is N = 451,401.

Figure 5a, b shows the surface slope in degree and the
Gaussian curvature of the surface, respectively. It can be seen
that the surface shape changes with remarkable variation of
slope and curvature. The slope s is defined as the root of sum
square of partial derivatives in X and Y directions:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂z
∂x

� �2

þ ∂z
∂y

� �2
s

ð16Þ

3.1 Validity of point-to-triangle distances

The point-to-triangle distance is an approximation of the
point-to-surface distance on condition that the surface is rep-
resented by a high-density point cloud. It is not intuitional to
determine how dense the point cloud should be. But we can
check it in a straightforward way.

The surface point cloud is first resampled on a grid of
1021 × 1241 points with spacing of 0.1 and 0.05 mm in X
and Y directions, respectively. The test surface is then gener-
ated with some random error added in the surface normal
direction. The surface error as the nominal point-to-surface
distance has a Gaussian height distribution function and
Gaussian autocovariance functions in both X and Y directions.
The correlation length is 30 mm, and the peak-to-valley (PV)
surface error is 6.657 μm, as shown in Fig. 6a. It simulates the
real surface with machining error.

The point-to-triangle distance is then calculated and com-
pared with the simulated surface error. The residual error in-
dicates that the difference between the point-to-triangle dis-
tance and the nominal point-to-surface distance is sufficiently
small, as shown in Fig. 6b. The PV difference is 5 nm, which
is smaller than 1/1000 surface error.

The surface curvature plays a very important role in such a
projection-based algorithm. However, its influence is mainly
focused on calculation of the point-to-triangle distance since
we still follow the ICP algorithm. Inherently, it relates the
calculated distance to the sampling density of the surface since
the point-to-triangle distance is linear approximation of the
real point-to-surface distance. More sampling points are re-
quired at the local area of smaller radius of curvature for a
given tolerance, which is general and similar to the well-
known adaptive sampling strategy for free-form surface based
on the curvature change. It is currently difficult for us to give a
rigorous analysis on the influence. But we recommend esti-
mating the accuracy of distance calculation in advance since
we have been given the nominal surface point cloud and the
sampling density.
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The location of surface in relation to the plane of projection
also has influence on the distance calculation. A trivial case is
the hyper hemisphere which is a surface portion on a sphere
with a solid angle exceeding 2π. Projections on the equator
plane of both points on the southern hemisphere and on the
northern one coincide with each other. Hence, the projection-
based calculation of distance fails but we can use the latitude
and longitude coordinates instead [24]. For general free-form
surfaces, we can also choose an appropriate projection plane,
e.g., the curvilinear coordinate plane of parameters (u, v) for
tensor product surfaces. It indicates that for an extremely com-
plex surface, we may need to divide it into several patches
which are then measured and registered in different
orientations.

3.2 Robustness of registration against misalignment

Readers may worry about the potential wrong triangle corre-
spondence shown in Fig. 2 when the measurement point is
deviated from the offset surface by a rigid body transforma-
tion. Usually, the CMM measurement frame is deviated from
the model frame, and the transformation or misalignment is to
be recognized by registration. The following simulations
show that the registration algorithm can tolerate considerably
large amount of misalignment.

To simulate the deviated measurement points, the nominal
surface point cloud is undersampled (16× spacing) and then
applied with different misalignment. These deviated points are
registered with the nominal surface to check whether we can
obtain zero surface error. The initial coordinate transformation
g0 is the identity matrix I since we have no prior knowledge of
the real misalignment. Figure 7 shows the initial measurement
points deviated from the nominal surface by shifting inX, Y, and
Z with 20, 10, and 20 mm, respectively, and rotating around X,
Y, and Zwith 20°, 10°, and 20°, respectively. The measurement
points are significantly deviated but the registration algorithm
succeeds to bring them best matching the nominal surface.

Figure 8 is a semilog plot showing the iteration sequence of
registration with different misalignment. All final objective
values are confirmed to be very close to zero (mm2), though
different number of iterations is required with different choice
of the ball constraint. The PV values of surface error obtained
with the optimal coordinate transformation are all smaller than
10−6 nm, which is definitely negligible. It shows that the reg-
istration algorithm has excellent robustness against misalign-
ment of tens of millimeters/degrees, which is an important
advance compared with the ± 1 mm and ± 1° tolerance of
the method proposed by Ainsworth et al. [14]. The robustness
can be ascribed to the performance of AO-type algorithms and
ball constraints imposed to ensure the convergence. Although
the free-form surface is generally very sensitive to

Fig. 4 Nominal surface (bottom
level) and offset surface point
cloud (top level)
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Fig. 5 Basic differential geometry of the surface. a Surface slope. b Gaussian curvature
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misalignment, the registration algorithm facilitates the align-
ment of the workpiece on CMM to a great extent.

4 Experimental verifications

Submicron accuracy is required for optical free-form surfaces
applied in short-wave imaging systems. It is typically
achieved by finishing processes such as lapping and polishing.
However, the surface has to be shaped to micron accuracy

during the grinding process, which is very important to accel-
erate the subsequent finishing process [25]. To realize high
precision grinding, the surface after grinding is measured
and registered to obtain the surface error without the influence
of coordinate frame misalignment. The surface error is then
used as a feedback for corrective grinding based on error com-
pensation of the geometric error and wear of the wheel [26].
The iterative machining process includes repeated grinding,
measurement, and registration, as shown in Fig. 9. Note again
the measurement points are actually probe centers and should

Fig. 9 Corrective machining with
repeated grinding, measurement,
and registration
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Fig. 8 Iteration sequence of registration with different misalignment



be registered with the offset surface. The cubic fit of surface
normal is utilized to generate the offset surface points as
shown in Fig. 4.

The optical surface was ground with the Opto Tech
MCG 250 and then measured with the Zeiss Accura
CMM. Because the workpiece model frame is well-
established on the CMM with the help of datum, a good
guess of initial transformation is available. Figure 10
shows the measurement points applied with the initial
guess of coordinate transformation which brings them
close to the nominal surface point cloud.

The surface error after the first run of machining is
shown in Fig. 11a. After compensatory grinding, the sur-
face error was significantly reduced from PV 27.3 to
6.9 μm. And the root-mean-square (RMS) error is
1.0 μm as shown in Fig. 11b. The surface error reduction
indirectly validates the registration algorithm. Two itera-
tions are enough for the registration to reduce the objec-
tive function value from 3.2383 to 0.0566. The optimal
coordinate transformation is obtained as below:

g* ¼
0:99999935 0:00016112 0:00112800 −0:06885510
−0:00017015 0:99996794 0:00800538 0:06576194
−0:00112668 −0:00800557 0:99996732 0:19546377

0 0 0 1

2
664

3
775

ð17Þ
where the upper left 3 × 3 block is the rotation matrix, and
the upper right 3 × 1 vector is the translation.

To further check the equivalence of registration with
offset surfaces to that with nominal surface experimental-
ly, the measurement points after registration are used to
generate the estimated probe contact points by adding the
probe radius in the minus normal direction. The surface
normal vectors are also given by the registration algorithm
as defined in Eq. (1), corresponding to the point-to-
triangle distance with optimal coordinate transformation
applied. The estimated probe contact points are then reg-
istered with the nominal surface. As expected, they are

already best aligned with the nominal surface, and the
optimal transformation is very close to identity matrix:

g ¼
1 −0:00000023 0:00000007 0:00003690

0:00000023 1 0:00000234 0:00000294
−0:00000007 −0:00000234 1 0:00003522

0 0 0 1

2
664

3
775
ð18Þ

It shows that registration of probe center points with the
offset surface is equivalent to registration of probe contact
points with the nominal surface. Because we do not know
exactly the surface normal at the measurement point especial-
ly in the case of misalignment, we prefer to register the probe
centers with the offset surface which can be exactly generated
in advance. Figure 12a shows the result of registration of
probe contact points with the nominal surface. It is almost
identical with Fig. 10(b).

Finally, as another comparison, we also try the registration
with probe radius compensation suggested by Xiong and Li
[15]. The measurement points are registered with the nominal
surface but the probe radius is subtracted when calculating the
point-to-surface distance. As we pointed out in Section 2.2,
there is a risk of finding incorrect closest points. Hence, the
surface error obtained is incorrect as shown in Fig. 12b.

5 Conclusion

The point-to-triangle distance is proposed to approximate the
point-to-surface distance when the nominal surface is defined
by a high-density point cloud. It involves tessellation and
searching for the nearest triangle in 2D space instead of 3D
space, which reduces the computation time and memory sig-
nificantly. To avoid finding incorrect correspondence of the
closest point, measurement points are registered with the off-
set surface instead of the nominal surface. Equivalence to
registration of probe contact points with the nominal surface
is then proved through both theoretical analysis and

Fig. 10 Measurement points (top
level with asterisk marks) applied
with initial guess of coordinate
transformation

3604 Int J Adv Manuf Technol (2018) 97:3595–3606



experimental verification. Simulations are also presented to
show that the point-to-triangle distance can achieve nanometer

accuracy for micron surface error. And the proposed registra-
tion algorithm possesses the advantage of excellent robustness
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Fig. 12 Surface error comparison. aRegistration of estimated probe contact points with the nominal surface gives identical result. bRegistration of probe
center points with the nominal surface by subtracting probe radius gives incorrect result

Fig. 11 Surface error reduction. a Before corrective machining. b After corrective machining



against misalignment of tens of millimeters/degrees, which is
an important advance compared with current algorithms. It
was successfully applied to grinding practice, providing an
accurate surface error feedback to corrective machining which
reduces the surface error to micron level.

Acknowledgements This project is supported by Science Challenge
Program of China (TZ2018006) and Hunan Provincial Natural Science
Foundation of China (2016JJ1003).

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

1. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013)
Manufacturing and measurement of freeform optics. Ann CIRP 62:
823–846

2. Yang T, Jin GF, Zhu J (2017) Automated design of freeform imag-
ing systems. Light: Sci Appl 6:1–10

3. Peng Y, Dai Y, Song C, Shi F (2016) Tool deflection model and
profile error control in helix path contour grinding. Int J Mach Tools
Manuf 111:1–8

4. Dai Y, Chen S, Kang N, Li S (2010) Error calculation for corrective
machining with allowance requirements. Int J Adv Manuf Technol
49:635–641

5. Wang X, Xian J, Yang Y, Zhang Y, Fu X, Kang M (2017) Use of
coordinate measuring machine to measure circular aperture com-
plex optical surface. Measurement 100:1–6

6. Besl PJ, McKay HD (1992) A method for registration of 3-D
shapes. IEEE T Pattern Anal 14:239–256

7. Suh SH, Lee SK, Lee JJ (1996) Compensating probe radius in free
surfacemodelingwith CMM: simulation and experiment. Int J Prod
Res 34:507–523

8. Lin YC, Sun WI (2003) Probe radius compensated by the multi-
cross product method in freeform surface measurement with touch
trigger probe CMM. Int J Adv Manuf Technol 21:902–909

9. Ravishankar S, Dutt HNV, Gurumoorthy B (2010) Automated in-
spection of aircraft parts using a modified ICP algorithm. Int J Adv
Manuf Technol 46:227–236

10. Song CK, Kim SW (1997) Reverse engineering: autonomous dig-
itization of free-formed surfaces on a CNC coordinate measuring
machine. Int J Mach Tools Manuf 37:1041–1051

11. Chiang YM, Chen FL (1999) Sculptured surface reconstruction
from CMM measurement data by a software iterative approach.
Int J Prod Res 37:1679–1695

12. Kawalec A, Magdziak M (2017) The selection of radius correction
method in the case of coordinate measurements applicable for tur-
bine blades. Precis Eng 49:243–252

13. Kim KI, Kim K (1996) A new measuring strategy for sculptured
surfaces using offset surfaces. ASME J Manuf Sci Eng 118:646–
651

14. Ainsworth I, Ristic M, Brujic D (2000) CAD-based measurement
path planning for free-form shapes using contact probes. Int J Adv
Manuf Technol 16:23–31

15. Xiong Z, Li Z (2003) Probe radius compensation of workpiece
localization. ASME J Manuf Sci Eng 125:100–104

16. Woźniak A, Mayer JRR, Bałaziński M (2009) Stylus tip envelop
method: corrected measured point determination in high definition
coordinate metrology. Int J Adv Manuf Technol 42:505–514

17. Wozniak A, Mayer JRR (2012) A robust method for probe tip
radius correction in coordinate metrology. Meas Sci Technol 23:
1–8

18. Bentley JL (1975) Multidimensional binary search trees used for
associative searching. Commun ACM 18:509–517

19. Murray R, Li ZX, and Sastry SS (1994) A mathematical introduc-
tion to robotic manipulation. CRC Press, New York

20. Li ZX, Gou JB, ChuYX (1998) Geometric algorithm for workpiece
localization. IEEE Trans Rob Autom 14:864–878

21. Chen S, Li S, Dai Y (2005) Iterative algorithm for subaperture
stitching interferometry for general surfaces. J Opt Soc Am A 22:
1929–1936

22. Chen S, Xue S, Dai Y, Li S (2015) Subaperture stitching test of
large steep convex spheres. Opt Express 23:29047–29058

23. Gloub GH, Van Loan CF (1996)Matrix computations, 3rd. Edition.
The Johns Hopkins University, London

24. Chen S, Liao W, Dai Y, Li S (2012) Self-calibrated subaperture
stitching test of hyper-hemispheres using latitude and longitude
coordinates. Appl Opt 51(17):3817–3825

25. Li S, Dai Y (2017) Large and middle-scale aperture aspheric sur-
faces: lapping, polishing and measurement. John Wiley & Sons,
Inc., Beijing

26. Peng Y, Dai Y, Song C, Chen S (2015) Error analysis and compen-
sation of line contact spherical grinding with cup-shaped wheel. Int
J Adv Manuf Technol 83:293–299

3606 Int J Adv Manuf Technol (2018) 97:3595–3606


	Fast registration of 3D point clouds with offset surfaces in precision grinding of free-form surfaces
	Abstract
	Introduction
	Registration model for 3D point clouds with offset surfaces
	Point-to-triangle distance
	Probe radius compensation using offset surfaces
	Registration algorithm with ball constraints

	Numerical simulations
	Validity of point-to-triangle distances
	Robustness of registration against misalignment

	Experimental verifications
	Conclusion
	References


