
ORIGINAL ARTICLE

Multiple-order permutation flow shop scheduling
under process interruptions

Humyun Fuad Rahman1
& Ruhul Sarker2 & Daryl Essam2

Received: 26 December 2016 /Accepted: 7 May 2018 /Published online: 21 May 2018
Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
The permutation flow shop problem is a complex combinatorial optimization problem. Over the last few decades, a good number
of algorithms have been proposed to solve static permutation flow shop problems. However, in practice, permutation flow shop
problems are not static but rather are dynamic because the orders (where each order contains multiple jobs) arrive randomly for
processing and the operation of any job may be interrupted due to resource problems. For any interruption, it is necessary to
reschedule the existing jobs that are under process at different stages in the production system and also any orders that were
previously accepted that are waiting for processing. In this paper, a memetic algorithm-based rescheduling approach has been
proposed to deal with both single and multiple orders while considering random interruptions of resources. The experimental
results have shown that the performance of the proposed approach is superior to traditional reactive approaches.

Keywords Manufacturing . Disruptions . Order acceptance and scheduling . Permutation flow shop scheduling . Genetic
algorithm .Memetic algorithm

1 Introduction

The permutation flow shop scheduling problem (PFSP) is
common in many manufacturing industries, such as steel
and iron production, pharmaceutical, food processing and au-
tomobile industries. In a conventional PFSP, n jobs are proc-
essed on m machines, where each job has to follow the same
processing order in all machines. In solving PFSPs, minimi-
zation of makespan is a popular objective. Makespan is the
time difference between the start of the first operation in the
first machine and the completion of the last operation in the
last machine.

Over the past few decades, in most papers about PFSPs, it
is commonly assumed that (i) a PFSP is static with a goal of
scheduling a single order (with a set of jobs) once, on a set of
machines, and (ii) the production environment is an ideal one

with no interruption of product or process. However, in a real-
world make-to-order production system, the shop floor deals
with multiple orders, where the arrival pattern of orders is
usually random, and the processing of jobs within these orders
may be interrupted due to machine breakdown, machine
maintenance and shortage of process-related resources. The
multiple orders case, under ideal conditions, involves two de-
cision problems that must be solved sequentially. Firstly, it
must be decided if an arriving order should be accepted, while
considering the available shop capacity and the specified due
date, and then it is necessary to schedule the newly accepted
orders with the existing orders scheduled previously (that are
currently either under process or waiting in queue for process-
ing). Note that to accommodate a newly accepted order effec-
tively, some or all of the existing orders waiting in the queue
may be rescheduled. In addition to the above two decisions, in
order to minimize the effect of any interruption, it is necessary
to revise the schedule [1]. Here, a real-time rescheduling ap-
proach is necessary to quickly recover from any interruption.

The static scheduling problems have limited practical ap-
plications because new orders arrive at random time intervals
[2] and the possible interruptions in the production system [3].
In some systems, production capacity and resource availabil-
ity may vary with time [4]. The static PFSPs disregard these
variations. Although there are a few studies available for static

* Humyun Fuad Rahman
rahman@m-tech.aau.dk

1 Department of Mechanical and Manufacturing Engineering, Aalborg
University, Aalborg, Denmark

2 School of Engineering and Information Technology, UNSW,
Canberra, Australia

The International Journal of Advanced Manufacturing Technology (2018) 97:2781–2808
https://doi.org/10.1007/s00170-018-2146-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-018-2146-z&domain=pdf
mailto:rahman@m-tech.aau.dk

single-order PFSPs under disruption, studies with different
disruption scenarios are absent from the literature. Besides,
no attempt has been made to investigate multiple-order
PFSPs under disruption. So a systematic approach is required
to study different process interruptions in multiple-order
PFSPs.

In this research, we have considered multiple-order PFSPs,
where a production process may be interrupted at any time due
to different disruption events. The disruption information is
not known a priori. Inmultiple-order PFSPs, each order can be
assumed to be a single-order PFSP, but there is no prior infor-
mation about its arrival time, due dates and order composition.
This problem involves three different decision strategies: (i)
should we accept a new order? (ii) how can an accepted order
be scheduled? and (iii) if there is a process interruption, how
can the orders (under process and accepted) be rescheduled?
To deal with the above research questions, we first developed
a memetic algorithm (MA) that can determine the makespan
of each order. This basically schedules the jobs of a single-
order static PFSP. This depends on maximizing profit (or
revenue or machine utilization) while not exceeding the
existing resource capacity and also delivering the order
according to a customer defined due date. We propose a
simple heuristic to make this decision. To make the second
decision, we have applied our proposed MA to schedule
multiple orders (of new orders with all other orders waiting
for processing) and their jobs. The objective in this prob-
lem is to minimize the completion time of all orders ac-
cepted for processing. The third decision is to reschedule
the affected orders if the production system is disrupted. If
an order under process is disrupted, some or all jobs of
those orders and the accepted orders waiting in the queue
are affected. These affected orders may be delayed in pro-
cessing, and that may lead to exceeding the due date
(tardiness) for all or a sub-set of those orders. In repairing
the disrupted schedule, we reschedule the affected jobs and
orders in order to maximize total profit while satisfying the
current capacity and due date constraints.

As the above decisions can be taken on a real-time basis,
we refer to these combined approaches as real-time (RT) strat-
egies in this paper.

There is no standard benchmark available for multiple-
order PFSPs with process interruptions. For experimental
study with the proposed approach, eight 10-machine PFSP
instances from the Taillard’s benchmark [5] have been chosen,
and then arrival times, due dates and disruption information
were randomly generated for them.

This paper is organized as follows. Section 2 provides the
background study of the research topics related to this re-
search. In the next section, PFSPs with process interruptions
are formulated. Section 4 describes the MA. In Section 5, an
experimental study and the effectiveness of the proposed al-
gorithm are presented. Section 6 presents conclusions.

2 Related work

This section provides an overview of PFSPs, with a special
emphasis on order acceptance decisions and production dis-
ruptions. First, we present a brief review on static single- and
multiple-order problems. Next, a literature on dynamic
multiple-order problems in single- and multiple-machine en-
vironments has been discussed. Finally, an overview on stud-
ies relating to single-order problems with disruption is
presented.

2.1 Static single- and multiple-order problems

The static single-order PFSPs have been widely studied in the
literature. In 1954, Johnson proposed an algorithm for opti-
mally solving two machines, as well as some special three-
machine problems. That has been recognized as the most in-
fluential research in machine scheduling today [6]. It is well
known that in general, more than two machine static PFSPs is
NP hard (non-deterministic polynomial-time hard) [7]. The
traditional optimization approaches, like branch and bound
algorithm [8] and integer programming approach [9], can only
solve small-sized PFSPs effectively. To solve bigger prob-
lems, researchers have focused on heuristics [10] and meta-
heuristics [11–19]. In the literature, few studies consider mul-
tiple orders in both single- and multiple-machine production
environments. Most of these studies focus on static multiple-
order problems, where at the beginning of production, a pro-
duction floor receives a pool of orders from which a certain
number of orders are accepted, based on available capacity
and due dates [20–24].

2.2 Dynamic multiple-order problems

The next level of complexity is dynamic order arrival in both
single- and multi-machine environments. Only a few existing
research works have dealt with dynamic multiple-order prob-
lems. In a single-machine environment, Wester et al. [25] in-
vestigated the relationship between three different order selec-
tion approaches: order selection based on information of the
current production schedule with reschedule if needed, order
selection based on estimation of workload and order selection
based on the effect of the tardiness of previously accepted
orders. Duenyas and Hopp [26] extended the problem to job
shop (multi-machine) environments and presented an optimal
control limit model to maximize expected profit with cus-
tomers quoted due dates. Duenyas [27] extended that research
for multiple customer classes. Nandi and Rogers [28] pro-
posed to accept or reject an arriving order based on its poten-
tial profit. Later, they proposed another approach based on the
total resources required by the order and its load on the busiest
machine [29]. Moreira and Alves [30] developed an approach
based on workload, total acceptance and due dates settings.

2782 Int J Adv Manuf Technol (2018) 97:2781–2808

From these studies, it can be seen that no studies consider
production disruptions.

2.3 Single-order problems with disruptions

Recently, a few studies considered disruptions in single-order
production environments. Such interruptions can be classified
into two categories [31–35]: (i) resource related: machine
breakdowns, preventive maintenance, operator sickness, ma-
chine tool failure, raw material shortage, delay in material
arrival and defective rawmaterial and (ii) job related: job rush,
change in due dates, early or late arrival of jobs, rework, scrap,
change in job’s priority or specifications and change in pro-
cessing times. Although an interruption event can be predic-
tive (or known in advance), such as machine preventive main-
tenance, most of them are stochastic in nature and are not
known until they take place [36].

As regards to disruptions, all existing research has been
carried out on either single- [37–43] or multiple-machine en-
vironments [43–58]. In single-machine scheduling, Adiri et al.
[37] studied a single breakdown case with an objective of
minimizing the number of tardy jobs, Liao and Chen [38]
investigated a sequence-dependent set-up case with machine
breakdowns and Hall and Potts [39] studied the new job ar-
rival case, which scheduled them with the existing jobs and
dealt with any disruption that happened. Yang [40] studied the
similar rescheduling problem of new job arrival with compres-
sion time and used a cost function to minimize the effect of
disruption. Wu et al. [41] studied the problem of rescheduling
bi-criterion problems (minimize makespan and system im-
pact) in single-machine environments when a system is sud-
denly interrupted with either a machine breakdown, a change
in processing times of a job or an order rush (here each order
contains a single job). To solve this, they proposed three bi-
criterion heuristics. Unal et al. [42] extended Wu et al.’s [41]
problem to consider sequence dependent setup. For sudden
arrival of orders (each order contains a job), they proposed a
polynomial time algorithm with makespan minimization as its
objective. They also proposed two heuristics for minimizing
total weighted completion time, which is strongly NP hard. Qi
et al. [43] proposed a rescheduling approach for single and
parallel two-machine environments that were subjected to ran-
dom processing time variations and machine breakdowns. A
few attempts have been made to solve scheduling problems
with process interruptions such as new job arrival, machine
unavailability and breakdowns, in single-order flow shop en-
vironments with makespan minimization as the objective.
Allahverdi [44] studied static two-machine flow shops with
sudden machine breakdowns. Rahman et al. [45] studied
single-order PFSPs with machine unavailability and break-
downs with makespan minimization as the objective.
Katragjini et al. [46] extended this study to study single-
order PFSPs with three disruption events: machine

breakdowns, new job arrival and job ready time variations.
Ruiz et al. [47] proposed three preventive maintenance poli-
cies that were based on establishing reliability for static
PFSPs. Perez-Gonzalez and Framinan [48] and Perez-
Gonzalez et al. [49] studied process interruption that was cre-
ated by the arrival of new jobs during production. Perez-
Gonzalez and Framinan [48] studied the problem while as-
suming that the initial schedule of previous jobs was main-
tained when scheduling new jobs. Perez-Gonzalez et al. [49]
studied a similar problem that allowed changes in the schedule
of jobs already in the system when rescheduling with new
jobs. They proposed a refreshing variable neighbourhood al-
gorithm which outperformed other techniques. For static job
shop environments, Fahmy et al. [50] proposed a reactive
scheduling approach where the affected tasks were first re-
placed by dummy tasks, which were then rescheduled. But
this approach is computationally expensive [51]. Hasan et al.
[51] and Sarker et al. [52, 53] proposed a hybrid GA to solve
static job shop scheduling problems under machine break-
down and preventive maintenance. Al-Hinai and
ElMekkawy [54] proposed a two-stage hybrid GA for solving
flexible job shop problems subject to machine breakdowns.
Therefore, for both single- and multiple-machine scheduling
problems with process interruptions, most of these studies
considered makespan minimization as the objective and did
not consider due dates for order acceptance decisions and
profit maximization.

2.4 Summary

In summary, from the related works on order acceptance and
process interruptions, it can be seen that the above-mentioned
studies have restrictive assumptions. These assumptions are as
follows: (1) the order acceptance/rejection decisions and the
scheduling decisions were made separately and sequentially,
(2) an uninterrupted production system was assumed and (3)
production disruption is only limited to single-order produc-
tion environments. These assumptions isolate the studies on
make-to-order production systems from real-life manufactur-
ing environments, and therefore, the present study aims at
minimizing this gap.

3 Problem description and mathematical
model

In this section, the multiple-order PFSPs are described and
necessary assumptions are discussed.

3.1 Problem description

As discussed earlier, in multiple-order PFSPs with interrup-
tions, schedulers have to deal with three important issues: (1)

Int J Adv Manuf Technol (2018) 97:2781–2808 2783

which orders should be accepted or rejected, (2) how to sched-
ule those orders and (3) whenever an interruption happens,
how the accepted orders are rescheduled.

In case of disruption, an order is defined as an affected
order, if one or more jobs of that accepted order is delayed
after a disruption. The jobs of an affected order can also be
classified as affected and unaffected.

Affected jobs (A): When a resource-related disruption
starts, any job or job set of an affected order (which has al-
ready started processing by the machines), which is waiting
for processing in the first machine, is considered as affected
job. It is important to point out that even if the disruption starts
in any other machine (except the first machine), the list of
affected jobs of an affected order contains the jobs which have
not started processing in the first machine. The reason for this
is that at the beginning of every disruption, these jobs are the
only part of an affected order that can be rescheduled. Besides,
in multiple-order PFSPs, orders are interrelated. So any order,
which is accepted and waiting in the queue, may also be af-
fected. In that case, all jobs of that order are delayed and
affected. For example, in Fig. 1, we consider a three-
machine flow shop with two orders. Each order consists of
five jobs. The job sequence for the 1st order is 4-2-1-5-3. Now
assume that machine-3 breaks down when the first job (job-4)
is processed by machine-3 (last machine). Meanwhile, jobs 1-
5-3 are still waiting for machine-1. So jobs 1-5-3 are the af-
fected jobs from the 1st order (identified with black rectan-
gles). Also, assume that a 2nd order has arrived, been accepted
and is waiting in the queue before the interruption starts. The
sequence of that order is 5-2-4-1-3 (ash rectangles). Hence,
that order is affected, as are all its jobs.

Unaffected jobs (U): A job that has already been processed
by the first machine, before the disruption starts, is known as
an unaffected job. Also, when the production interrupts, any
job, which is involved with the disruption, is also included in
the unaffected job list. As those jobs are already being proc-
essed by the system, they cannot be rescheduled or revised. So
we call the jobs which are not affected jobs, the unaffected
jobs. From the above example, the first two jobs (job 4–2)

from the 1st order (identified by white rectangles) are
unaffected.

For job-related disruptions, the concept of affected-
unaffected jobs is similar to resource-related disruptions. The
only difference is that in this case, the job that is resumed by
the disruptions (such as in Fig. 1, job-4 from the 1st order) is
also included in the affected job set. Since after a disruption
event, this job can be revised or rescheduled. The detailed
classifications of affected orders are described in the next sec-
tion [31–34].

Each disruption event is caused by different reasons. Based
on an examination of those events, different rescheduling ac-
tions can be taken, which are summarized in Table 1. With the
right shifting strategy, after an interruption occurs and affected
jobs have been delayed, the initial schedule is repaired, by
pushing those jobs towards the right of the schedule.
However, in real-time strategies, after every disruption,
rescheduling approaches are used to improve the schedule.
A job processing flow diagram for multiple-order PFSPs can
be found in Appendix 1.

3.2 Assumptions

The assumptions made for multiple-order PFSPs are as
follows: The processing time of each job on each machine
is known; no pre-emption is allowed, i.e. a process once
started cannot be stopped until it is finished; each machine
can handle only one job at a time; the processing order of
the operations of each job is predefined; work-in-process
inventory, finished goods inventory; inter-machine trans-
portation and set-up costs are negligible; each machine
operates at its full efficiency; each order consists of multi-
ple jobs; the arrival pattern of orders is stochastic; the cus-
tomer sets the due date of each order; the scheduler has the
right to accept or reject any new order; an accepted order
cannot be rejected later (even if the order is tardy due to
process interruptions); and there is financial benefit for
early completion and delivery. However, a penalty or dis-
count is also imposed for tardiness.

2

1

3

4 2 1 5 3 5 2 4 1 3

Processing timeStart Time

(Disruption)

AU

M
a
ch

in
e

Fig. 1 Illustration of affected and
unaffected jobs

2784 Int J Adv Manuf Technol (2018) 97:2781–2808

3.3 Mathematical model

Table 2 presents the notations that are used in the development
of the mathematical model and the proposed algorithm.

To propose a methodology for the above three research
questions, we first need to generate schedules for static PFSPs.

3.3.1 Mathematical model of static PFSPs

Finding the Cmax(π*) of a static PFSP is a preliminary step in
developing methodologies for the three issues indicated in
Section 3.1 (second paragraph). The major considerations of
static PFSPs are (1) the capacity of each machine, (2) starting
and finishing time of each operation in each machine, (3)
technological constraints, (4) flow of operations, (5) pre-
emption and (6) work-in-process inventory. Based on these
considerations, Wagner [56] introduced an integer program-
ming model for the static PFSP. In the next level, this model
has been extended for developing the model of multiple-order
PFSPs with interruptions.

In a PFSP, a set of n jobs must be processed in a set of m
machines with the same order of processing. Then, the com-

petition time of the last job n on the last machine m (i.e.
makespan or maximum completion time) can be represented
as

Makespan;Cmax πð Þ ¼ C m; nð Þ ð1Þ

In this case, the objective is to identify a permutation se-
quence, π* so that

Cmax π*� �
≤Cmax πð Þ;∀π∈Π ð2Þ

3.3.2 Mathematical model of multiple-order PFSPs
with interruptions

In the following section is a description of all costs, the objec-
tive functions and the constraints of multiple-order PFSPs. In
this regard, all decision variables are first derived.

Decision variables:

AZik
l ¼ 1; if the ith job of the lth order is scheduled in the k th position of the sequence

0; otherwise

�

for i; k ¼ 1; 2; 3;…; n; l ¼ 1; 2; 3;…; Lð Þ
ð3Þ

AXkj
l= idle time of the jth machine before the start of the job

of the lth order in the kth position in the sequence

for k ¼ 1; 2; 3;…; n; j ¼ 1; 2; 3; :…;m; l ¼ 1; 2; 3;…; Lð Þ ð4Þ

AYkj
l= waiting time for a job in between two machines, i.e.

idle time of a job in the kth position in the sequence, after
finishing processing on the jth machine while waiting for the
(j + 1)th machine to become free.

for k ¼ 1; 2; 3;…; n; j ¼ 1; 2; 3; :…;m; l ¼ 1; 2; 3;…; Lð Þ ð5Þ

Table 1 The details of interruption events and solution approaches

Interruption events Causes Right shifting strategy Real-time strategy

Machine breakdowns
[31–39, 43–45,
52–55]

Broken machine, operator illness,
tool failure, raw material
shortage

Right shift the affected jobs of an order and
also the inter-related orders

Reschedule the affected jobs

Preventive
maintenance
[31–34, 45, 47, 55]

Overhaul machines Consider as “dummy job” and right Shift
the affected jobs of the order

Reschedule the affected jobs of the order,
with respect to the unavailability
constraints

Rework [31–34] Scrap, impure raw materials Start processing the scraped job of an order
in the first machine as early as possible

Reschedule the affected jobs of that order

Change in processing
times [31–34, 43]

Change in quality/specifications Start processing the scraped job of an order
in the first machine as early as possible

Reschedule the affected jobs of that order

Order cancellations
[31–34]

Cancel the orders by customer Process all other orders with the original
schedule

Reschedule all the orders waiting to be
processed in the first machine

Change in due dates
[31–34, 46]

Due date changed by the customers Process all other orders with the original
schedule

Reschedule all the orders waiting to be
processed in the first machine

Int J Adv Manuf Technol (2018) 97:2781–2808 2785

The relationship between the processing times of the ith
job, scheduled on the kth position on the jth machine, is
expressed by Eqs. (6) and (7)

pi kþ1ð Þ; j ¼ ∑n
i¼0AZi;kþ1

lpij ð6Þ

pi kð Þ; jþ1 ¼ ∑n
i¼0AZ

l
i;kpijþ1 ð7Þ

Bylij ¼ 1; if the ith job of the lth order is processed in jth machine
0; otherwise

�

for i ¼ 1; 2; 3;…; n; j ¼ 1; 2; 3; :…;m; l ¼ 1; 2; 3;…; Lð Þ
ð8Þ

Bziqj¼1l
1; if job i proceeds immediately after job q of the lth accepted order is processed in the 1st machine
0; otherwise

�

for i ¼ 1; 2; 3;…; n; j ¼ 1; 2; 3; :…;m; l ¼ 1; 2; 3;…; Lð Þ
ð9Þ

The makespan of the lth order is the maximum completion
time of the nth job (last job in the sequence) of the lth order in
the mth machine

Cl
max ¼ Cl m; nð Þ ð10Þ

The completion time of the lth order can be expressed as

Cl
com ¼ Sl j¼1 þ Cl

max ð11Þ

Objective function:
The total profit in one production shift (which is our objec-

tive) can be expressed as

Maximize;P ¼ ∑L
l¼1P

l ð12Þ

where the profit or loss of an order l can be calculated as
follows:

Pl ¼ Spl þ El � Ce
l–Tl � Ct

l–Opl; l

¼ 1; 2; 3;………; L ð13Þ

Constraints A summary of all constraints is as follows:
Equation (14) ensures that each job follows the same order

of machines (this constraint holds the characteristics of a
PFSP)

∑m
j¼1y

l
ij ¼ m ð14Þ

Equation (15) ensures that each job is assigned to only one
position in the sequence

∑n
i¼1AZik

l ¼ 1 for i ¼ 1; 2; 3;…; n; l ¼ 1; 2; 3;…; Lð Þ ð15Þ

Equation (16) ensures that each position of a sequence is
occupied by only one job

∑n
k¼1AZik

l for k ¼ 1; 2; 3;…; n; l ¼ 1; 2; 3;…; Lð Þ ð16Þ

Equation (17) ensures that once a job starts to process in the
first machine, it cannot be rescheduled

If Bziq j¼1
l ¼ 1;Bzqi j¼1

l ¼ 0 or Bziq j¼1
l ¼ 0;Bzqi j¼1

l ¼ 1
for i ¼ 1; 2; 3;…; n; q ¼ 1; 2; 3;…; n; l ¼ 1; 2; 3;…; Lð Þ

ð17Þ

Equation (18) ensures that the first job of the first accepted
order begins at 0

Sl j¼1;i¼1 ¼ 0 ð18Þ

Equation (19) ensures that in this case, the earliness of an
order is

El ¼ dl–Cl
com;; l ¼ 1; 2; 3;………; L ð19Þ

Equation (20) ensures that the tardiness of an order is

Tl¼l
com–dl; l ¼ 1; 2; 3;………; L

dl > 0
ð20Þ

Equation (21) ensures that a negative value of tardiness
equals to the earliness of an order

El ¼ −Tl ð21Þ

Equation (22) ensures that an order is accepted if it is com-
pleted within its due date

2786 Int J Adv Manuf Technol (2018) 97:2781–2808

Tl ≤0; l ¼ 1; 2; 3::……; ð22Þ

Equation (23) ensures that the lth accepted order is com-
pleted at the same time or before the (l + 1)th accepted order

Cl
com≤Clþ1

com; l ¼ 1; 2; 3;…………; L ð23Þ

3.4 Upper and lower bound calculations

To ensure validity and to measure the quality of the solutions
generated by the proposed approach, it has been compared
with upper and lower bounds. In this section, these upper
and lower bounds are derived. Assume that an order l arrives
at time Atl and that it has been accepted by the flow shop. So
the machines will be inactive for the (Atl − Ccom

l − 1) time
period, as that is the time between the completion of job order
(l− 1) and the arrival time of order l, when (Atl − Ccom

l− 1) >
0. The positive time difference, DTl, can be expressed as
follows:

DTl ¼ Atl−Ccoml−1; if Atl−Ccoml−1� �
> 0

0 otherwise
;∀l≥2

�
ð24Þ

Suppose that Cmax
l is the makespan of the static PFSP for

order l and the number of jobs in the order is nl. If l is an
affected order for any reason, some or all jobs of the order
may be delayed, in which case, the completion time may
change to Cmax

d. Where

Cmaxd ¼ Cmaxl þ BDil; if resouce related
CmaxJR else if job related

�
;Cmax

d≠Cmax
l

ð25Þ
Cmax

l ¼ Cmax
d;

Only if the disruption occurs within that order tfl≥ td > tsh
� � ð26Þ

That means the disruption starts on the ith machine at
time td, which is between the start time of the first job of
order l on that machine (tsl) and the finishing time of the
last job on the same machine (tfl). BD

il is the duration of
the disruption if the disruption relates to the machines. If
the disruption relates to jobs, then the completion
time, Cmax

JR, is expressed as

CmaxJR ¼ Cl m; nl
� � ð27Þ

Only for; tslα ¼ Cl m; nlβ
� � ð28Þ

Expression (27) represents that the first job from an affect-
ed job set (number of jobs in the affected job set is nl − nlβ)
starts at time, tslα, when the last job β from the unaffected job
set (number of unaffected jobs is nlβ) from order l is completed
on the last machine.

3.4.1 Upper and lower bounds

The upper bound (UB) is defined as the worst-case scenario to
complete all accepted orders in a given working shift. To

Table 2 Notations

Notation Meaning

m Number of machines on the shop floor

l Index of orders

L Number of orders that arrive for one production shift

H A set of accepted orders (H∈L)
n (l) The set of jobs of the lth order

i Index of a job

j Index of a machine

pi,j The processing time of each job i (i∈n) on eachmachine j (j∈m)
(i, j,k,l) The ith job of the lth order is in the kth position in the sequence,

and it has been processed on the jth machine

π Permutation sequence of n jobs, π = (π1,π2, …, πn)

π* Best permutation schedule found by the algorithm

Π Set of all feasible job sequences

pc Crossover rate

pm Mutation rate

C(i,j) The completion time of job i on machine j is C(i,j)

Cmax Makespan of a static PFSP

Tl Tardiness of order l

El Earliness of order l

Slj Starting time of the first job of order l on machine j

Cl
max The makespan of order l under static conditions

Cl
com The completion time of order l

Cl(i,j) The completion time of job i of order l on machine j

dl Due date of order l (also known as the delivery time)

Pl Profit from the lth order

P Total profit

Spl Revenue from the lth order

Opl The opportunity loss cost of the lth order

Ct
l The tardiness costs per unit time for the lth order

Ce
l The earliness bonus per unit time for the lth order

BKS Best known solution

BS The solution generated by the solving technique

IR Number of independent runs for each instance

c Current clock time

Slj Start time of the jth job of the lth order

Np Total number of potential orders

tl Is the current time of the clock time when the first job of the lth
order starts processing in the first machine

Int J Adv Manuf Technol (2018) 97:2781–2808 2787

calculate it, if the total number of accepted orders is L, then the
UB for H accepted orders (H ϵ L) can be expressed as

UB ¼ ∑H
l¼1Cmax

l þ ∑l
l¼2DT

l ð29Þ

Suppose that Pth1 is the total processing time required for
order l on machine-1. If (Atl− Ptl− 1) < 0 and (Ptl− 1 < Ctl − 1)
machine-1 starts to process order h as soon as it completes

order l− 1. In this case, after finishing order l− 1, order l starts
processing, and that will require Cmax

l units of time to com-
plete all the processes. Also suppose that just after completing
order l− 1 on machine-1, order l arrives in the shop. If we
ignore the effect from disruptions, then this is the best-case
scenario for processing all the acceptedH orders. Suppose that
the time for completing order l on machine-1 is CJtl1. The
reduction in processing time (RPl) can be expressed as

RPl ¼ Cmax
l−Ptl1; if Atl−Ptl−1

� �
< 0;Ptl−1 < Ctl−1 and Atl ¼ CJtl1

0 Otherwise
;∀l≥2

�
ð30Þ

and processing all H accepted orders can be expressed as

LB ¼ ∑H
L¼1Cmax

l−∑H
l¼2RP

l−1
1 þ ∑H

l¼2DT
l ð31Þ

So lower bound (LB) represents the best-case scenario of
completing all H accepted orders.

4 Solution approach

In this section, the solution approach is presented. The de-
tailed framework of the proposed approach is presented in
Fig. 2. Following this figure, we first discuss the approach
for order acceptance and rejection. Secondly, we describe
the algorithm design that will be used both for generating an

Fig. 2 Flowchart describing the proposed framework. a Right shifting strategy. b Real-time strategy

2788 Int J Adv Manuf Technol (2018) 97:2781–2808

Order E (static single order

PFSPs)

21 3

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

6

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e

21 3

3
6

Order F (static single

order PFSPs)

Order G (static single

order PFSPs)

21 3

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

6

4
2

1
5

3
4

2
1

5
3

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

6
7

2
1

0
8

21 3

4
2

1
5

3
4

2
1

5
3

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

6
9

2
6

4

Order E under a disruption (Right

Shifting)

21 3

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

8
3

1 3

4
2

1
5
3

2

4
2

1
5
3

4
2

1
5

3

P
ro

ce
ss

in
g
 t

im
e

9
4

3
8

6
6

Right Shifting the multiple orders

after a disruption

Worst case scenario without a disruption Right Shifting the multiple orders

Machine

Machine

Machine

MachineMachine
Machine

Fig. 3 Right shifting (RS) strategy with disruption

Int J Adv Manuf Technol (2018) 97:2781–2808 2789

initial schedule and for also rescheduling in the second and
third decision problems. Our proposed algorithm is a genetic
algorithm (GA)-based memetic algorithm (MA). Later, we

discuss how this algorithm has been implemented to study
both single- and multiple-order PFSPs with process
disruptions.

2 3

4
2

1
5
3

5
2

4
1

3
4

2
1

3
5

P
ro

ce
ss

in
g
 t

im
e

9
2

3
6

6
4

Order E (static single order

PFSPs)

21 3

4
2

1
5

3

P
ro

ce
ss

in
g
 t

im
e

3
6

4
2

1
5

3

P
ro

ce
ss

in
g
 t

im
e

3
6

Order F (static single order

PFSPs)

Order G (static single order

PFSPs)

4
2

1
5

3

P
ro

ce
ss

in
g

 t
im

e
3

6

21 3
4

2
1

5
3

4
2

1
5

3
4

2
1

5
3

P
ro

ce
ss

in
g

 t
im

e
3

6
7

2
1

0
8

Worst case scenario without a disruption Real Time the multiple orders

Order E under a disruption

(after disruptions)

21 3

4
2

1
5

3

P
ro

ce
ss

in
g
 t

im
e

3
8

3

Real Time the multiple orders

(Rescheduled)

4
1

2
3

5
2

3
5

4
1

31 2

3
5

1
4

2

P
ro

ce
ss

in
g
 t

im
e

3
6

9
2

6
4

4
1

2
3

5
2

3
5

4
1

3
5

1
4

2

P
ro

ce
ss

in
g

 t
im

e

1 2 3

9
2

3
6

6
4

Real Time the multiple orders

(after disruption and apply

heuristics)

Machine
Machine

Machine

Fig. 4 Real-time (RT) strategy with disruption

2790 Int J Adv Manuf Technol (2018) 97:2781–2808

4.1 Order acceptance/rejection

Whenever an order arrives to the production floor, it is impor-
tant to make an order acceptance/rejection decision. This de-
cision depends on the order arrival and start time, available
production capacity, due date, completion time and the prof-
itability of each order. An order should be accepted if it can be
completed within the customer specified due date while gen-
erating a reasonable profit. If an order is rejected, an opportu-
nity loss cost may be considered, which relates to loss of the
company’s goodwill. In the acceptance/rejection decision of
multiple-order PSFP, we calculate the profit or loss for a cer-
tain length of time.

The heuristic for the order acceptance/rejection decision is
described as follows. Note that the completion time is calcu-
lated using the scheduling algorithm presented in the next
section.

1. The production shift starts and the first order arrives.
2. Set order number, l = 1
3. Repeat until (l = L)

A. Evaluate Cl
com of an order l.

B. If (Cl
com ≤ dl),Accept the order and put it in the accepted

order list.
C. Else Reject it.
D. Set, l = l + 1.

[End of step 2 loop]
[End of algorithm]

4.2 Proposed memetic algorithm

MAs are global meta-heuristic search algorithms that are
based on Darwin’s principle of natural evolution and

Dawkin’s notion of a meme that is individual learning [57].
MAs can be considered as the integration of a population
based search algorithm (like GAs), with a constructive local
search algorithm. Even though, GA is a widely accepted glob-
al search technique for solving complex combinatorial opti-
mization problems. Usually, a GA integrated with a local
search algorithm, or a GA-based MA, performs better than
just the GA itself. MAs have a successful history for solving
complex combinatorial optimization problems [58–61]. For
this reason, a GA-based MA has been considered as the prime
method for solving PFSPs in this research. GA starts with an
initial population, which consists of a set of initial solutions.
The population is then improved, iteratively, through alter-
ation, while usually using three reproduction operators,
known as selection, crossover and mutation. The process con-
tinues until some stopping criteria are met. Each solution is
represented by a chromosome. The chromosome, search op-
erators and parameters used for the GA to solve different
PFSPs are described below.

4.2.1 Initial population and solution representation

In GA, chromosomes are usually represented by binary, inte-
ger or real numbers. For solving PFSPs, an integer represen-
tation of the job sequence is widely accepted. Traditionally,
GA starts with a random initial population. However, for solv-
ing PFSPs, random initialization is not helpful as the solution
becomes trapped very quickly in local optima. We have pro-
posed using a mixed (both random and non-random) initiali-
zation. The first individual of the initial population is generat-
ed by the Nawaz, Enscore and Ham (NEH) algorithm [10].
Then, some individuals are generated from original modifica-
tion of that individual, by randomly swapping two jobs from
the NEH-based sequence. Next, a certain percentage of the
initial population is generated by Johnson’s algorithm. In that

Table 3 Comparisons between
the algorithms (for single-order
PFSPs)

Problem Problem
instances

NEH HGA_RMA PSOVNS NEGAVNS GA MA MAAdaptive

20 × 5 Ta001–010 3.26 0.04 0.03 0.0 0.35 0.0 0.0

20 × 10 Ta011–020 4.6 0.02 0.02 0.01 1.14 0.01 0.01

20 × 20 Ta021–030 3.73 0.05 0.05 0.02 0.83 0.02 0.02

50 × 5 Ta031–040 0.73 0.0 0.0 0.0 0.17 0.01 0.01

50 × 10 Ta041–050 5.07 0.72 0.57 0.82 1.78 0.54 0.52

50 × 20 Ta051–060 6.66 0.99 1.36 1.08 3.2 0.77 0.74

100 × 5 Ta061–070 0.53 0.01 0.0 0.0 0.07 0.0 0.0

100 × 10 Ta071–080 2.21 0.16 0.18 0.14 0.97 0.15 0.14

100 × 20 Ta081–090 5.34 1.30 1.45 1.40 2.71 1.35 1.29

200 × 10 Ta091–100 1.26 0.14 0.18 0.16 0.65 0.2 0.16

200 × 20 Ta101–110 4.41 1.26 1.35 1.25 2.18 1.28 1.24

500 × 20 Ta111–120 2.07 0.69 – 0.71 1.51 0.75 0.72

Average 3.332 0.448 0.472 0.466 1.29 0.423 0.404

Int J Adv Manuf Technol (2018) 97:2781–2808 2791

Ta
bl
e
4

S
ce
na
ri
o
I

O
rd
er

nu
m
be
r

Si
ng
le
-o
rd
er

m
ak
es
pa
n

(s
ta
tic
)

A
rr
iv
al

tim
e

D
ue

da
te
,

d l

R
ig
ht

sh
if
tin

g
R
ea
lt
im

e
(e
ar
lin

es
s
bo
nu
s
pe
r
un
it
tim

e
pe
r
or
de
r)

R
ea
lt
im

e
(l
on
ge
st
du
e
da
te
)

C
om

pl
et
io
n

tim
e,

C
l co

m
(R
S)

Ta
rd
in
es
s,

T l
=
C
l co

m

(R
S)

−
d l

Pr
of
it

($
)

St
at
us

C
om

pl
et
io
n

tim
e,
C
l co

m

(R
T)

Ta
rd
in
es
s,

T l
=
C
l co

m
(R
T)

−
d l

Pr
of
it

($
)

S
ta
tu
s
C
om

pl
et
io
n

tim
e,
C
l co

m

(R
T)

Ta
rd
in
es
s,

T l
=
C
l co

m
(R
T)

−
d l

P
ro
fi
t

($
)

S
ta
tu
s

1
15
82

0
45
36

15
82

−
29
54

89
00
.8

A
15
82

−
29
54

89
00
.8

A
15
82

−
29
54

89
00
.8

A

2
15
82

50
59
83

29
61

−
30
22

71
32
.2

A
28
06

−
31
77

73
02
.7

A
28
06

−
31
77

73
02
.7

A

3
15
82

59
72
02

41
98

−
30
04

78
96

A
39
98

−
32
04

82
96

A
41
98

−
30
04

78
96

A

4
15
82

76
80
07

53
77

−
26
30

83
79

A
52
18

−
27
89

86
49
.3

A
53
77

−
26
30

83
79

A

5
15
82

10
1

70
13

65
55

−
45
8

25
28
.8

A
63
96

−
61
7

27
83
.2

A
65
55

−
45
8

25
28
.8

A

1
(b
re
ak
-

do
w
n)

28
51

0
45
36

28
51

−
16
85

57
90
.2

A
28
37

−
16
99

67
67
.3

A
28
37

−
16
99

67
67
.3

A

2
15
82

50
59
83

41
81

−
18
02

53
52

A
76
56

16
73

19
67
.7

A
76
56

16
73

19
67
.7

A

3
15
82

59
72
02

54
70

−
17
32

62
18
.3

A
64
78

−
72
4

33
36

A
53
00

−
19
02

56
92

A

4
15
82

76
80
07

66
48

−
13
59

49
5.
2
A

40
73

−
39
34

10
,5
96

A
40
73

−
39
34

10
,5
96

A

5
15
82

10
1

70
13

78
26

81
3

−
31
6

A
53
00

−
17
13

45
36
.8

A
64
78

−
53
5

26
52

A

6
15
82

40
4

73
53

90
04

16
51

−
11
0

R
87
16

13
63

−
31
6

R
87
46

13
93

−
31
6

R

7
15
82

10
62

67
52

90
04

22
52

−
18
5

R
87
16

19
64

−
11
0

R
87
46

19
94

−
11
0

R

8
15
82

24
09

84
98

90
04

50
6

78
96
.6

R
87
16

21
8

−
18
5

R
87
46

24
8

−
18
5

R

9
15
82

53
66

12
,7
72

90
04

−
37
68

18
09
.4

A
87
16

−
40
56

83
86
.2

A
87
46

−
40
26

83
35
.2

A

10
15
82

53
84

10
,5
58

10
,1
82

−
37
6

57
90
.2

A
98
94

−
66
4

22
12
.6

A
99
24

−
63
4

21
70
.6

A

To
ta
lp

ro
fi
t(
$)

32
,7
40
.9

37
,1
91
.6

37
,5
69
.8

2792 Int J Adv Manuf Technol (2018) 97:2781–2808

case, more than two machine PFSPs are divided into multiple
two machine PFSPs and these problems are optimally solved
by Johnson’s algorithm. The remaining individuals are gener-
ated randomly.

4.2.2 Selection and population enhancement

In this research, we have applied the tournament selection
method [62] to select parents for the purpose of crossover.
The parents are directly replaced by their offspring. In a tightly
constrained combinatorial optimization problem, many dupli-
cate individuals are usually produced through the evaluation
process and these solutions can converge to local optima. To
avoid this, in each and every generation, duplicated individ-
uals are replaced by random solutions. It has been observed
that different sequences (permutations) may have the same
fitness value [17]. So to identify duplicate individuals, we
compare the sequence of jobs. Also, if the iteration process
becomes stuck with the same fitness value for some genera-
tions, a restart scheme [14, 17, 18] is applied. In this case, if
the fitness value does not improve for a certain number of
generations, all individuals are divided into three segments,
good 5%, middle 85% and bad 10%. The individuals from the
middle segment are replaced by new individuals through shift
mutation [14, 17, 63] of the top segment, where a random job
from the job sequence is directly inserted into a random posi-
tion in the job sequence. Each job between these two points is
then moved to its next position. We also use an elitism strat-
egy; hence, the best sequence from each generation is saved
and is directly transferred to its next generation.

4.2.3 Crossover and mutation

In the algorithm, we have used similar job order crossover
(SJOX) [17] and shift mutation [14, 17, 63] as the repro-
duction operators, as they produced more promising candi-
date solutions to most of their counter parts in our prelim-
inary experimentation. In SJOX, from both parents, each
position from the job sequence is examined individually.
If both parents have common jobs in the same position, then
those jobs are directly copied to both offspring. Then, each
offspring inserts all jobs from one of the parents up to a
random crossover point. That is to say, parent 1 inserts jobs
directly to offspring 1 and parent 2 inserts jobs directly to
offspring 2. Lastly, the missing jobs of each offspring are
directly inserted from the other parent in the same relative
job order of that parent. For example, parent 1 inserts the
missing jobs to offspring 2 and parent 2 inserts the missing
jobs to offspring 1.

4.2.4 Local search

To improve the performance of the algorithm, we have incor-
porated a local search method within the GA. In this algo-
rithm, three local search techniques have been applied. They
are insertion neighbourhood, gap filling and a job shifting
process. A selected individual initially goes through the inser-
tion neighbourhood process and then undergoes the gap filling
process and finally the job shifting method. The details of the
gap filling and the job shifting processes can be found in [18].
However, in brief, their steps are as follows:

Table 5 Same job order arrival,
machine breakdowns PS (jobs) UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS RT

20 1.566 2.0452 0.7964 0.5010 64 67 66,847 72,654

50 0.371 0.4073 0.2410 0.2182 75 78 87,456 93,541

100 0.165 0.1866 0.1788 0.1725 65 67 74,565 76,514

200 0.114 0.1150 0.0638 0.0626 73 76 75,191 78,901

PS problem size

Table 6 Mixed order, same order
size, machine breakdowns PS (jobs) UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS

20 0.145 0.185 0.0543 0.0382 17 18 87,401 87,656

50 0.070 0.077 0.0435 0.0445 10 13 65,114 66,789

100 0.020 0.021 0.0074 0.0063 9 11 45,657 46,415

200 0.027 0.031 0.0050 0.0061 14 14 74,103 75,541

PS problem size

Int J Adv Manuf Technol (2018) 97:2781–2808 2793

& Insertion neighbourhood search: Every job combination
has (n − 1)2 neighbours. In this process, a job j is extracted
from its current position k in the job sequence and is then
inserted in another position p (p ≠ k). Hence, each job is
moved from its current position in the job sequence and is
inserted into all possible pairs of positions. If a new job
sequence is better than the current best sequence, it then
replaces the current best sequence. This process continues
until all the neighbours have been evaluated. Insertion
neighbourhood has shown good performance in solving
PFSPs [13, 17, 64].

& Gap filling: In solving PFSPs, no inter-job gaps are per-
mitted when scheduling the jobs in the first machine.
However, because of the precedence constraints, there
may be some inter-job gaps left on all of the other ma-
chines. The makespan can hence be minimized by reduc-
ing those gaps. In this technique, the total processing time
of all jobs in the sequence is calculated and the jobs with
the smallest total processing times are inserted in those
gaps. If the makespan or completion time improves with
such movement, then the new sequence is accepted. Or
else, the job with the second best least total processing
time is inserted. A maximum of three trials have been
allowed for each gap. Note that if one of the adjacent jobs
has one of the least total processing times, then we have
inserted the job with the next best least total processing
time in the schedule.

& Job shifting: If the jobs have (i) shorter processing time at
the upper left-hand side (first or first couple of machines)
of the sequence and (ii) longer processing time at the low-
er right-hand side (last or last couple of machines) of the
job sequence, the quality of the sequence (makespan or
completion time) can be improved by moving the jobs
from the right-hand side to the left-hand side in the se-
quence (starting these jobs as early as possible). The pro-
cess is as follows: compute the ratio of processing times
(processing time in the last machine divided by the pro-
cessing time in the first machine) for each job in the se-
quence. Next, if one of the three last jobs has one of the
three largest ratios (limited up to three ratios), those jobs
are then positioned as early as possible in the sequence.

4.2.5 An adaptive scheme

In this section, we describe the proposed adaptive method
used in the MA. In GA, population diversity can be main-
tained by both by selection process and the genetic operators
[65]. In MA, we control diversity by the second method.

Preliminary experiments show that in tightly constrained
combinatorial optimization problems like PFSPs, a higher
crossover rate intensifies the solutions, as more individuals
exchange information with each other, and so create many

duplicated individuals. This essentially converge the solutions
to local optima. On the other hand, too much diversification
reduces the convergence rate. To ensure good balance be-
tween intensification and diversification, we developed an
adaptive crossover rate, pc, and mutation rate, pm, for MA,
and the modified algorithm is known as adaptive MA
(MAAdaptive). In our adaptive strategy, we set the crossover
rate low at the start of algorithm, but with the progress of the
algorithm, the crossover rate increases.

We adaptively calculate the crossover rate as

pc ¼ Max
�
∂cmin;cminþ ∂cmax−∂cminð Þ � Gen=Max Genð Þ ð32Þ

where ∂cmin is the lowest limit of crossover rate, ∂cmax is the
highest limit of the crossover rate, Gen is the number of gen-
eration and Max_Gen is the maximum number of generation.

For the mutation rate, we set the mutation rate high at the
start of algorithm, and with the progress of the algorithm, the
crossover rate decreases.

The mutation rate is calculated as

pm ¼ Max ∂mmin;mmax− ∂mmax−∂mminð Þ � Gen=Max Genð Þð Þ
ð33Þ

where ∂mmax is the highest limit of the mutation rate, and
∂mmin is the lowest value of the mutation rate.

4.3 Proposed approach

Once a new order arrives in the flow shop, it may not be
possible to immediately process the order due to machine
unavailability. However, if the first machine is available
when a new order arrives, the order can start processing
without interrupting other orders being processed on other
machines. Alternatively, if a new order arrives when the
first machine is busy, the order has to wait in a queue for
processing. Changes in production capacity that are due to
disruption may also have some effects on the accepted or-
ders in process and the orders waiting in the queue.
Rescheduling the accepted orders can diminish these ef-
fects. In this research, we propose two new strategies to
schedule or reschedule, namely the right shifting (RS) strat-
egy and the real-time (RT) strategy. The RS strategy is a
traditional approach where some or all jobs of each order
are shifted to the right if the consecutive machine or ma-
chines are not available to start processing the jobs imme-
diately. On the other hand, for the RT strategy, jobs of each
order are re-optimized, based on the availability of ma-
chine/machines. As there is no state of the art algorithm
with known benchmarks, for validation, we have compared
RT with RS, upper bound and lower bound solutions.

2794 Int J Adv Manuf Technol (2018) 97:2781–2808

4.3.1 RS strategy

In RS, each order is considered as one static PFSP, and the
initial schedule of the jobs within each order was generated
using our proposed algorithm. In the RS strategy, the first
machine starts processing the first job of an accepted order if
this machine is free, and otherwise, the job waits. After pro-
cessing on anymachine, one ormultiple jobs may need to wait
until a required machine is free. That means, some jobs must
be shifted to the right due to waiting for machines. In this case,
we do not change the sequence of jobs within an order. Here,
the completion time of an order is usually greater than its static
PFSP makespan. Similarly, after any disruption, the affected
jobs of the affected orders can be shifted to the right. We call
this strategy as the right shifting (RS) strategy [51, 53].

In the RS strategy, some or all of the jobs of an order which
are affected/delayed and the jobs of all the interrelated orders
are shifted to the right of the schedule.

Figure 3 shows an example of RS for multiple-order PFSP
in Gantt chart form. It is a five-machine and three orders (say
orders E, F andG) flow shop instance. Each order (contains of
five jobs) has different arrival times and due dates (delivery
times). In the figure, the static single-order E is represented by
the Gantt chart in the top left hand corner. The job sequence of
this order is 4-2-1-5-3, and the completion time (single-order
makespan) is 36. The customer-specified due date for order E
is 45. Assume that the inter-arrival time between order E and
order F is two units and that order F has a due date of 70. The
single-order makespan for order F is 36, and the job sequence
for order F is also 4-2-1-5-3. Order F cannot start to process
immediately in machine-1 as it is still processing the jobs of
order E. In the worst-case scenario, order F starts to process
immediately once order E has completed processing. In this
case, the completion time for order F is 72 (= 36 + 36).
However, if order F can be initiated immediately when
machine-1 (1st machine) is free after processing order E, this
completion time can be reduced. But after processing in ma-
chine-1, the first few jobs of order F complete processing on
machine-1, and machine-2 is engaged in processing order E.
To generate a feasible schedule, jobs from order F must be
right shifted in machine-2. This simple shifting approach is
known as the right shifting (RS) strategy. With the RS strat-
egy, the completion time for order F is 64 (in Fig. 4 the
Gantt chart in the middle right corner). Let, after 4 units
of time from the arrival and starting of order E, for order

G to arrive in the system with a due date of 100. In the worst
case, order G has completion time 108 (=36 + 36 + 36)
which exceeds its due date (delivery time). However, by
applying the RS strategy, the completion time is reduced
to 92. As the given due date is 100, order G can now be
accepted.

Assume also that after 5 units of time from the start of order
E (when the first job of order E is in process in machine-2) that
the processing time of the third job (job-1) in the sequence is
changed (disruption). So order E is a work-in-process affected
order (WIPA). In Fig. 3, the Gantt chart in the lower left hand
corner represents order E after disruption. After disruption, the
changed completion time for order E is 38. In this case, the
processing times of consecutive orders overlap (order F over-
laps with order E and order G overlaps with order F). So after
that disruption, the completion time for the other orders may
be changed. The new completion time for order F is 66 and for
order G is 94 (Gantt chart in bottom right corner). Basically,
the RS strategy is a tighter upper bound than the worst-case
scenario.

The algorithm for RS strategy with interruptions The algo-
rithm for the right shifting (RS) strategy with process interrup-
tions is described below.

L is the total number of orders placed by the customers in
a single production shift. c is the current clock time, dl the
due date, sales revenue is Spl and the opportunity loss cost
is Opn of the lth order. Also, the start time of the jth job of
the lth order is Slj, Tl is the tardiness cost per order and tl is
the current time of the clock time when the first job of the
lth order starts processing in the first machine. The algo-
rithm must calculate the start time tl of the nth order, its
completion time Cl

com, makespan Cl
max, its tardiness, Tn,

profit Pn and total profit, P.
When the initial order arrives in the system, the algorithm

starts.
[Start of algorithm]
1. Set order number, l = 1, clock time t1 = 0, and start time

Sl1 = 0
2. Repeat until l = L (until the production shift ends)

a. update the clock, tl = c, and Sl1 = c
b. Use MA to generate a single order schedule, makespan,

Cl
max for the lth order.

c. With respect to makespan, Cl
max:

Table 7 Mixed order, different
order sizes, machine breakdowns Problem Instances UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS RT

1 0.292 0.144 0.0285 0.023 19 21 189,474 190,471

2 0.335 0.335 0.0071 0.006 25 25 188,743 190,119

Int J Adv Manuf Technol (2018) 97:2781–2808 2795

I. Calculate completion time, Cl
com = Sl1 +Clmax

II. Calculate tardiness, Tl and earliness, El

III. If Tl ≤ 0, Accept the order
IV. Else, Reject the order
V. Calculate the profit/loss of the lth order, Pl = Sp

l + El ×
Ce

l − Tl ×Ct
l −Op

l (using Eq. (13)

d. After any process interruptions at time, td

i. Identify the affected and unaffected jobs of the affected
orders currently under process (WIPA)

ii. Right shift the affected jobs of that order and calculate the
new completion time, Cl

com

iii. Identify the potential orders waiting in the queue.
iv. Right shift all the jobs of these orders and calculate the

completion time, Cl
com of these orders

v. Set l = l + 1

[End of step 2 loop]
3. Calculate and save the total profit, P, using Eq. (12).
[End of algorithm]

4.3.2 RT strategy

In the real-time strategy, we revise the schedule (i.e. resched-
ule) as soon as one of the following events happens (to simu-
late real-time action): (1) arrival of a new order, (2) re-ordering
the accepted orders, (3) the system is interrupted and (4) mul-
tiple orders are under disruption. The strategy with respect to
these events is described below.

Arrival of a new order: Once an order arrives in the shop, a
hypothetical schedule of that order, considering the constraints
for production (available system capacity at that point in time
and the orders currently under process), is made. On the basis
of that schedule, an acceptance/rejection decision must be
made on the grounds of the local view of whether or not the
jobs of an order can be completed on time within the due date
(and hence is profitable). Examples of this local decision are
given below.

We have provided a simple example with Gantt charts to
demonstrate the overall acceptance/rejection process. Here,
we have considered a three machine flow shop with three
orders (say orders E, F and G) where each order contains five
jobs. These orders have different arrival and delivery times. In
Fig. 4, the Gantt chart in the top left-hand corner represents the
schedule of a static single-order E that can be generated using
our algorithm. In order E, the sequence of jobs is 4-2-1-5-3
with a makespan of 36; we also assume that the due date is
specified as 45 time units. So order E can be accepted and the
process can be started on machine-1 immediately (at time t =
0), assuming that the machine is free. Suppose, at t = 2, order
F arrives with a due date of 70. The sequence of jobs for this
order is also 4-2-1-5-3 with a makespan of 36. Order F cannot

be processed immediately on machine-1 as order E is still in
process. In the worst-case scenario, order F can start process-
ing, after order E has finished processing all its jobs. In which
case, order F will be completed at t = 72 (=36 + 36). This is
basically the maximum time required for completing these
two orders (which can be interpreted as an upper bound;
shown in the middle-left figure). However, the completion
time of order F may be reduced if it can start processing as
soon as machine-1 completes the processing of order E. When
the first job of order F completes processing on machine-1,
machine-2 is still engaged in processing order E. So order F
must wait until machine-2 is free from order E and so on. In
this process, we keep the same sequence of jobs for order F as
was generated for it as a static PFSP. However, the completion
time of order F can be further reduced, if it is rescheduled with
the machine availability time windows with respect to order E.
The new job sequence for order F can then be 2-3-5-4-1, and
that gives a completion time of 64 (see middle-right figure).
Since the completion time of order F (which is 64) is lower
than its due date (which is 70), the order can be accepted.
Finally, order G arrives at t = 4 with a due date of 100.
Similar to order F, after rescheduling order G, the completion
time of order G is obtained as 92. So order G should be ac-
cepted. In this paper, this process is referred to as real-time
(RT) strategy. Note that, as of the middle-left figure, the worst-
case completion time for order G is 108 (= 36 + 36 + 36).

Re-ordering the accepted orders: In the previous sub-sec-
tion, we have considered an example with three orders (E, F
and G) and made their acceptance/rejection decisions, in se-
quence of their arrivals, based on the local feasibility view.
That means, after the arrival of G, we assumed that all orders
up to F have been scheduled and we are examining the feasi-
bility of accepting G. This feasibility does not mean that all
orders (including G) are scheduled in the best possible way.
For example, in the acceptance/rejection decision, we placed
order G after order F. However, the performance may be im-
proved by placing order G before order F. As the makespan,
arrival time, start time and due date vary from order to order,
an improved solution may be generated by rescheduling all
the accepted orders together, instead of joining the new order
at the bottom of the list of accepted orders. We now consider
all the accepted orders waiting in the queue as potential orders.
By rearranging the potential orders, the productivity of the
system may be improved. This process will work even better
where there is a defined benefit for early completion and/or
penalty of late completion. To rearrange the potential orders,
we have proposed a re-ordering heuristic.

System interruption: If a production system is disrupted,
some or all jobs of the order (or orders) under process may
be affected and delayed. These orders are WIPA. If the flow
shop is fairly busy, any disruption can affect not only the
WIPA but also other orders waiting in the queue, by delaying
their completion times. In this case, it is necessary to

2796 Int J Adv Manuf Technol (2018) 97:2781–2808

reschedule all orders under process and also re-sequence all
orders waiting in the queue while considering the disruption
recovery time window. In this case, after a disruption, the
orders waiting in the queue can be considered as potential
orders

For rescheduling the potential orders, we have proposed
the following heuristics.

In Fig. 4, the Gantt chart in the lower left-hand corner
shows order E, after disruption, with a revised schedule.
Assume that at t = 3, when machine-1 was processing job-
1, job-2 (3rd job of order E) was disrupted (processing time
of that job had suddenly been changed). At the beginning of
the production period, the processing times for job-1 were 5
(in machine-1), 8 (in machine-2) and 6 (in machine-3) re-
spectively. But at t = 3, those time periods were changed to
2 (in machine-1), 5 (in machine-2) and 8 (in machine-3).
Now, with the right shifting approach, the revised comple-
tion time for order E becomes 38. According to our defini-
tion here, the first job in the sequence (which is job number
4) is unaffected and the rest of the jobs (jobs 2-1-5-3) are
affected. However, by rescheduling only the affected jobs,
it is possible to reduce the completion time to 36 with a new
job sequence of 4-5-1-2-3.

Multiple orders under disruption In the multiple orders case,
the disruption with order E may change the completion time
for other orders. Orders F and G are the potential orders, as
they arrived, and were accepted and scheduled before the start
of the disruption. As discussed in the previous section, these
potential orders may be reordered and the jobs within each
order can be rescheduled, based on the system capacity with
respect to the time window. By rescheduling the jobs for or-
ders F and G (with order sequence E-F-G), the new comple-
tion times for orders F and G are 64 and 92 respectively
(bottom-middle figure). After reordering the potential orders,
which is E-G-F, the revised completion times for ordersG and
F are 64 and 92 respectively (bottom-right figure).

Heuristic for re-ordering the potential orders L is the total
number of orders andNp is the total number of potential orders
(Np€L) at any time t (either for multiple-order arrival or after a
disruption) and Pt is the total profits earned from these poten-
tial orders with the current ordering sequence. Pt can be cal-
culated as follows:

pt ¼ ∑NP

l¼1P
l ð34Þ

The potential orders are sorted in ascending order of earli-
ness benefit per unit time per order. Besides the cost criteria,
these orders are also sorted according to their due dates, which
can be considered as an alternative approach. That is, orders
are sorted from the latest to the earliest due dates.

[Start of algorithm]

1. Set order number, l = 1.
2. Repeat until (l =Np)

a. Calculate the profit/loss of the lth order, Pl, using Eq.
(13).

b. l = l + 1

[End of step 2 loop]
3. Calculate the total profit, Pt from all the potential orders

with the current ordering sequence, using Eq. (32).
4. With respect to the decision criteria (earliness profit per

order/longest due date), sort all potential orders.
5. Set order number, l = 1.
6. Reschedule all the orders in the current positions.

a. Repeat until (l >Np)
b. Schedule/reschedule the lth order in the current position

by MA.
c. Calculate the profit of the lth order, Pl, using Eq. (13).
d. l = l + 1

[End of step 6 loop]
7. Calculate the total profit for all potential orders, Pn (for

the new ordering sequence) using Eq. (32).
8. If (Pt < Pn), accept the new ordering sequence and

save Pn.
9. Else, maintain the initial sequence of potential orders and

save Pt.
[End of algorithm]

Algorithm for multiple orders with process interruption In
this section, the real-time (RT) strategy for multiple-order
PFSPs under process interruptions is presented. Assume that
c is the current clock time and td is the start time of a disrup-
tion. The RT algorithm must calculate the completion time
(makespan) of the lth order Cl

com (Cl
max) and its tardiness, Tl

or earliness El. It must also calculate the current clock time, tl,
when the first job of the lth order will start to be processed in
the first machine and the profit/loss Pl earned from that order.
Finally, the algorithm needs to determine the total profit/loss,
P, earned from a production shift.

At the beginning of the production shift, suppose the 1st
order arrives and the algorithm starts.

[Start of algorithm]

1. Set order number, l = 1, clock time t1 = 0, and start time
Sl1 = 0

Repeat until l =N (until the production shift ends)

Int J Adv Manuf Technol (2018) 97:2781–2808 2797

a) Update the clock, tl = c, and Sl1 = c
b) Considering all machine availability constraints and the

previous assigned schedules, use MA to generate a sched-
ule (makespan, Clmax) for the lth order.

c) With respect to makespan, Clmax:

i. Calculate completion time, Clcom = Sl1+ Clmax
ii. Calculate tardiness, Tl and earliness, El

iii. If Tn ≤ 0, Accept the order
iv. Else Reject the order
v. Calculate the profit/loss of the lth order, Pl, using Eq. (13).

d. If the accepted order is waiting in the queue (potential
order for multiple order)

& Set Np to be the number of accepted orders waiting in the
queue

& If Np>1, apply the re-ordering heuristics. Then, set Np = 0

[End step 2.d loop]
e. After any process interruptions at time, td

I. Identify the affected and unaffected jobs of an affected
order currently under process

II. Reschedule these affected jobs that are under process by
the MA and calculate the profit, Pl for the revised order

III. If the accepted order is waiting in the queue (potential
orders for after a disruption)

IV. At time td, count the number of potential orders.

& Set Np to be the number of accepted orders waiting in the
queue

& Np =Np + 1 (count any other potential order)

[End step 2.e.iv loop]
v. IfNp > 1, apply the re-ordering heuristic. Then, setNp = 0
f. Set l = l + 1
[End of step 2 loop]
3. Calculate and save the total profit, P, using Eq. (12).
[End of algorithm]

5 Experimental results and analysis

In this section, we present the experimental results for
multiple-order PFSPs under different disruptions and analyse
the performance of the proposed approach. All algorithms
have been coded using C++ and were run on a Personal
Computer with a 2.80-GHz Core i7 CPU, 4 GB RAM and
Windows 7.

In our earlier work [18], we proposed a MA to solve static
single-order PFSPs. The algorithm was tested against
Taillard’s Benchmark [5], and it was compared against other

competitive algorithms proposed for solving single-order
PFSPs. The NEH algorithm [10] is a simple and effective con-
structive heuristic for solving single-order PFSPs. HGA_RMA
[17] and NEGAVNS [14] are two powerful GAs for static single-
order PFSPs. PSOVNS is a particle swarm optimization approach
for the same problem. NEGAVNS is a hybrid GA for solving
PFSPs. Table 3 shows the average percentage of deviations
(APD) (Eq. 33) of each of these algorithms.

The average percentage of deviation is given by

APD ¼ ∑R
i¼1

BS−BKS
BKS

� 100

� �
=IR ð35Þ

Table 3 presents the comparative results for solving single-
order PFSPs obtained by MA, adaptive MA (MAAdaptive) and
the state of the art algorithms mentioned above. The results
tabulated in the table show the APD between the algorithms
and the best known makespan. The first column shows the
size of the problem (number of jobs × number of machines).
The problem instances are shown in the next column, al-
though all consist of a set of 10 different problem instances
set. The final five columns show the average APD (average of
10 independent runs) for each competitive algorithm (note that
only a single run of NEH [10] is listed because it is a deter-
ministic algorithm). As shown in Table 3, in most problems,
our algorithm outperforms over the other algorithms and also
that MA improves the overall average (as reported in the bot-
tom row) of APD from the known best makespan. The point
of performing this computational study is that the job schedule
generated by MA helps to reduce the completion time (or
makespan) of an order. For this reason, the production system
may require less time to produce an order. This increases the
opportunity to accept more orders in real-time multiple-order
PFSPs. So our proposed MA has been extended to solve prac-
tical real-time multiple-order PFSPs.

Based on our earlier study [18], the MA parameters have
been selected as follows. The population size is set to 100. In
the initial population, one individual is generated using the
NEH (Nawaz, Enscore and Ham) algorithm [10], 40% of in-
dividuals are produced from the modified NEH algorithm,
10% from the modified Johnson algorithm [6] and the remain-
ing individuals are generated randomly. The tournament pool
size is set to 5. The probability of crossover is 90%, and the
probability of mutation is 60%. With respect to traditional
GAs, the crossover rate and mutation rate are high, but in
tightly constrained combinatorial problems, these rates help
to maintain population diversity [55, 66]. A restart mechanism
has been used, if the best fitness does not change in 10 suc-
cessive generations. The local search techniques are applied to
30 individuals in every generation. The algorithm terminates
after 150 generations. The algorithm has been independently
run 10 times and the results have been analysed. The

2798 Int J Adv Manuf Technol (2018) 97:2781–2808

computational times of the proposed algorithms have been
presented in Appendix 2.

For MAAdaptive, the lowest value of crossover probability is
set to ∂cmin = 60% and the highest value of crossover rate is
set to ∂cmax = 90%. For mutation, the lowest value is set to
∂mmin = 5% and the highest value is set to ∂mmax = 50%. The
values of other parameters are the same as the MA’s
parameters.

The problem under study considers two dynamic issues in
PFSPs: (i) multiple orders arrive on a continuous timeline and
(ii) unknown process disruption. In the literature, there are no
benchmark problems on multiple-order PFSPs under disrup-
tions that can be used to test the performance of the proposed
algorithms. For this purpose, test problems were generated
randomly in the following manner: a set of jobs was selected
with processing times to form an order, and an arrival time and
a due date of each order was generated. For this purpose, we
selected a group of eight static problem instances (Ta011,
Ta012, Ta041, Ta042, Ta071, Ta072, Ta091, and Ta092) from
Taillard’s Benchmark [5]. These instances are 10-machine
problems, which are a representative number of many practi-
cal flow shops. In this research, the arrival times were gener-
ated by a Poisson distribution and the due date of each order
was generated following exponential distributions, as sug-
gested in [51, 53]. We have compared the solutions with the
right shifting method, as well as with the upper bound (UB)
and lower bound (LB) solutions derived in this paper. Here,
we assume that if there is no order to process, then the pro-
duction shop may be left idle. In reordering (/re-sequencing) a
set of orders, our objective is to maximize the profit obtained
from the orders. To find the overall profit, all revenue and
cost figures were generated randomly using a uniform dis-
tribution where the sales revenue was within the range of
(1000, 4000), the tardiness cost and earliness benefit per
order was within (1, 10) and the opportunity lost cost was
within (100, 600). All these cost/revenue units are in $ (dol-
lar). For simplicity, we have considered that the tardiness
cost was the same as the earliness benefit per order. Sample
revenue and cost figures are provided in Table 10 (in
Appendix 3).

To test the performance of the proposed approach, three
different production scenarios, based on the eight test prob-
lems discussed earlier, have been considered as follows:

& Scenario 1: the orders are the same in their characteristics,
for example, dealing with any one type of problem.

& Scenario 2: different orders, but every order has the same
fixed number of jobs.

& Scenario 3: different orders with any number of jobs.

To demonstrate the performance of the proposed algorithm,
we have experimented with 10 orders in a production shift for
scenario 1, and 25 orders for scenarios 2 and 3.

Table 4 presents a sample comparison between the RS and
RTstrategies for scenario 1, where each order contains 20 jobs
that must be processed on 10 machines (problem instance
Ta011). The first column represents the order number. The
second column represents the single-order makespan or com-
pletion time (static) for each order. Note that after the machine
breakdown, the affected jobs are right shifted and the single-
order makespan for the 1st order was changed to 2851. The
following two columns show randomly generated arrival
times and due dates for the orders. The completion time is
the time to complete each order with the current production
capacity. The tardiness shows each order’s earliness or tardi-
ness. If the tardiness value for an order is negative (or positive
earliness value), the order is accepted as it can be completed
before the due date. In addition, a zero value of tardiness (or
earliness) means the order can be finished and delivered on its
due date (just in time).

However, a positive value of tardiness (negative value of
earliness) means a delay in completing an order and so the
order is rejected. The profit or loss gained from each order is
also shown, where a positive value means profit and a nega-
tive value means loss. In the status column, ‘A’means accept-
ed and ‘R’means rejected. If the tardiness value for an order is
negative, the order is accepted, and a positive value of tardi-
ness means a delay in completing a job. For the convenience
of readers, all of the related cost figures used for the current
scenario is provided in Table 9 (in Appendix 3). Table 4 shows
another scenario, in it processing starts immediately after the
arrival of the 1st order as the flow shop is idle. For the 1st
order, the completion time is equal to the makespan of the
static PFSP version of this problem instance for both the RS
and RT strategies. The following order arrives when the 1st
order is still in process on machine-1. The total time to com-
plete all jobs from the 1st order on machine-1 is 1081 and the
2nd order arrives at time = 50. So there is overlap between
these two orders. So the first job of the 2nd order starts to
process onmachine-1 at t = 1081. If the 2nd order is scheduled
with the RS strategy, it completes at time = 2961, which takes
2806 time units with the RT strategy. The 3rd, 4th and 5th
orders arrive at a time when the 1st order is still in process
on machine-1. So these three orders must also wait until
machine-1 is free for them. Considering the available system
capacity, the acceptance/rejection decision, using both the RS
and RTstrategies, suggests to accept these orders (3rd, 4th and
5th). As just explained, the first five rows in Table 4 present
the expected completion times and the profit/loss of five or-
ders with no interruption. Now suppose that machine-1 breaks
at t = 127 while processing the 1st order and the expected
duration of disruption is 1252 time units (Table 4).

Meanwhile, four other accepted orders (2nd to 5th) are
waiting in the queue. According to our definition, the 1st order
is now aWIPA order and the remaining four orders are poten-
tial orders. For ease of explanation, we copy the content of all

Int J Adv Manuf Technol (2018) 97:2781–2808 2799

cells of the first four columns from rows 1–5 to rows 6–10.
After the machine breakdown, according to the RS strategy,
some of the jobs of the 1st order, and all of the other waiting
orders, must be shifted to the right of the schedule. If no other
interruption takes place, the total profit for these five orders is
$17,539 (sum of the profits from rows 6–10). However, with
the RT strategy, the affected jobs from the 1st order must be
rescheduled while considering the changed system capacity
and the required due dates. The re-ordering of the potential
orders will be allowed if it improves the performance of the
system and if that occurs, the jobs of these orders will also
then be rescheduled. In the re-ordering process, we consider
two rules: (i) earliness bonus per unit time per order and (ii)
longest due date. Based on the first rule, the suggested se-
quence of potential orders is 4-5-3-2 (reflected in the comple-
tion time column), which provides a total profit of $27,203.8.
Note that the total profit is higher than the same of the initial
sequence of orders (as shown in the first five rows). On the
other hand, based on the second rule, the sequence of waiting
orders is 4-3-5-2 with a profit of $27,675.

With both the RS and RTstrategies, the 6th to 8th orders are
rejected as they are not feasible to schedule, and so the oppor-
tunity loss costs have been deducted from the objective value.
Finally, with the currently available capacity, the 9th and 10th
orders are feasible to accept with both strategies. From the
table, it is clear that for this production shift the total profit
earned by RS is $32,740.9 (sum of profit/loss from all orders
shown in rows 6–15). In contrast, the total profit by RT with
rule-1 is $37,191.6 and with rule-2 is $37,569.8. This means
that the RT strategy is superior to the RS strategy.

Table 5 shows a summary of the comparisons between the
RS and RT (with rule-2) strategies under different machine
breakdown scenarios, where the same types of orders random-
ly arrive at a shop. For each problem size, under the same type
of disruption (here machine breakdown), we have considered
two problem instances. Preliminary experiments show that RT
based on rule-2 is better than RT based on rule-1. So the
results of RT based on rule-2 have been compared with the
RS approach. The table starts with a column that represents
the number of jobs in each order. The following columns,
headed with UD, presents the percentage deviations from the
worst-case profits (i.e. UB) for RS and RT. The deviation from
the LB is shown in the next two columns. The profit values are
expected to be between UB and LB, and a larger deviation
from UB and a small deviation from LB usually provide con-
fidence that reasonable solutions have been obtained. Note
that UB and LB are calculated based on accepted orders per
production shift. If the number of accepted orders for RS and
RT are different, the corresponding UB and LB will also be
different. In all cases, RT outperforms the RS strategy. The
next two columns show the number of accepted orders by the
RS or RT strategies. Based on one random machine break-
down in every 10 orders, RT produces compact schedules that

allow it to accept either equal or more orders than the RS
strategy. RS usually takes longer to complete the orders under
a disruption situation and that reduces the possibility of
accepting more orders than the RT strategy. The final column
represents the total profit earned from the production shifts; it
clearly shows that RT provides higher profit than RS under
machine breakdown scenarios.

Tables 6 and 7 present the simulation results for the RS and
RT strategies for scenarios 2 and 3 respectively. The represen-
tations of these tables are the same as Table 5 that was de-
scribed above. For each problem size, Table 6 illustrates the
comparisons between RS and RTwith respect to single prob-
lem instances. On the other hand, Table 7 shows the simula-
tion results for two independent problem instances under the
same types of disruption (machine breakdown).

Both of these tables also demonstrate the superior perfor-
mance of RT over RS. The detailed results for each disruption
scenario are presented in Tables 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, and 24 (in Appendix 4).

6 Conclusion

In this paper, we have considered a practical PFSP with real-
time multiple-order acceptance, combined with a scheduling
problem, under different real-time process disruptions. In this
problem, multiple decision strategies need to be considered,
which involve, whether a new order is accepted or not, and if
accepted, how the jobs of that order are scheduled, and wheth-
er there is any advantage from rearranging the orders waiting
in the queue. Also, once the process is interrupted, what deci-
sion strategies should be taken to compensate for its effects?
In real-life situations in manufacturing environments, order
arrival and process interruptions are dynamic. So these deci-
sion strategies have to be taken on a real-time basis.

This research differs from other works, since the majority
of the research published to-date focuses on the static order
acceptance problem, and no work focuses on simultaneously
considering dynamic multiple-order acceptance and process
interruptions. The key advantage of the present work over
existing studies include the following: higher financial return,
better production capacity utilization, higher customer satis-
faction and an effective approach that is suitable for practical
decision making in a real-time manner. To solve this problem,
we have proposed an integrated approach that includes two
heuristics and a memetic algorithm. To evaluate the perfor-
mance of the proposed approach, we have generated a set of
benchmark instances. Numerical experiments on these in-
stances demonstrate that the proposed real-time approach en-
hances the performance of flow shop businesses by maximiz-
ing the overall profit gain from production and improves the
satisfaction level of customers, as compared to the traditional
right shifting technique.

2800 Int J Adv Manuf Technol (2018) 97:2781–2808

The research carried out in this paper opens up the oppor-
tunities to do interesting research in future on several prob-
lems of interest. First, this study mainly considers that one
machine is assigned at each production stage and so consid-
ering multiple machines at each stage (i.e. hybrid permutation
flow shop) can be considered in the future. This research also
considers negligible set-up times for each job, which can be
extended to study sequence dependent setup times. Secondly,
research may be carried out on how to extend this method of
solving real-time scheduling problems to solve other shop
floor environments. Third, the proposed algorithms can be
extended to study integrated decision making processes with
out-sourcing or capacity expansion decisions. Fourth, besides

considering in-house production floor scheduling decisions,
the proposed decision process can be linked with supply
chains, where order acceptance and production scheduling
decisions are integrated with supply chain decisions. Fifth,
the algorithms proposed can be revised to consider the concept
of flow shops with limited buffer or bottleneck conditions.
Finally, the proposed approach can be extended to study other
PFSPs variants, like flexible flow shop, limited buffer,
blocking or re-entrant flow shop scheduling problems. In the
future, we also intend to focus on such problems.

Acknowledgments This research is partially supported by ARC
DP170102416 awarded to R. Sarker and D. Essam.

Appendix 1
Job processing flow diagram
for multiple-order PFSP with process
interruptions

Figure 5 represents the production flow diagram for multiple-
order PFSPs with different process interruptions. The produc-
tion system first receives the orders from a customer.
Depending on the feasibility and profitability of manufactur-
ing that order, the management takes the decision to accept or
reject the new order. If that order is accepted, it is scheduled
with respect to the current orders in the system, available shop
capacity, production disruptions, and the due dates of all of the
accepted jobs waiting for processing. As a result, some of the
orders waiting in the queue may be rescheduled. If the

production capacity is available, an order may be processed
instantly after being accepted. Alternatively, the accepted or-
der waits in the queue. While the accepted orders are being
processed by the machines, known (in Fig. 1a) or unknown (in
Fig. 1b) disruptions may halt the production. This disturbance
may in turn delay the processing of one or more orders. To
compensate for the effect of this disturbance, the schedule of
affected orders needs to be revised. After the production, each
job order is delivered to its customer. Otherwise, if an order is
rejected, then it leaves the system.

Order Arrival
Scheduling for

processing

Decision for

Acceptance /

Rejection

Processing Customer

Unknown

Interruptions

Accept

Order Leaves

the System

Reject

Revise

the

Schedule

Unknown

Interruptions

(a)

Order Arrival
Scheduling for

processing

Decision for

Acceptance /

Rejection

Processing Customer

Known

Interruptions

Accept

Order Leaves

the System

Reject

(b)

Int J Adv Manuf Technol (2018) 97:2781–2808 2801

Appendix 2

The average computational time for the proposed MA is
shown in Appendix Table 8. A comparison of different tech-
niques, with respect to computational time, is rather difficult
as CPU time in computers is not the one and only indicator of
computational power (for example programming skills, lan-
guage used for coding, CPU architectures with dual core pro-
cessors) [14]. To make a fair comparison, we convert the CPU
time of our proposed algorithm using Eq. (36), as found in
[67]

Scaled CPU time sð Þ ¼ 2:8 GHz

Given CPU speed GHzð Þ
� given CPU time sð Þ ð36Þ

Recall that the proposed MA algorithm was coded in the
C++ language and was run with an Intel Core i7, 2.80 GHz
with 4 GB RAM. In this section, the computational time has
been scaled to a Pentium IV platform. The average running
time for two of the competitive algorithms has been reported
in Appendix Table 8 [14]; they both used a Pentium IV at
2.4 GHz. Ruiz et al. [17] did not report the average computa-
tional time for each problem instance [14].

Table 8 Time requirements by each algorithm

Problem Problem instance
group

Average computational time in Pentium IV platform (s)

PSOVNS NEGAVNS MA MAAdaptive

20 × 5 Ta001–010 15.7 2.2 2 2

20 × 10 Ta011–020 30.7 12.2 12 12

20 × 20 Ta021–030 80.8 29.2 30 30

50 × 5 Ta031–040 3.3 8.2 6 6

50 × 10 Ta041–050 93.1 32.3 40 40

50 × 20 Ta051–060 196.1 55.0 65 65

100 × 5 Ta061–070 61.4 30.8 40 40

100 × 10 Ta071–080 246.2 58.7 70 70

100 × 20 Ta081–090 362.6 122.7 142 142

200 × 10 Ta091–100 223.2 134.5 190 190

200 × 20 Ta101–110 511.8 271.7 380 380

500 × 20 Ta111–120 – 523.4 750 750

Table 9 All relevant costs and sales revenue

Order
no.

Sales
revenue
($)

Earliness
bonus per order
($)

Tardiness
cost per order
($)

Opportunity
loss cost
($)

1 3879 1.7 1.7 534

2 3808 1.1 1.1 542

3 1888 2.0 2.0 161

4 3908 1.7 1.7 370

5 1796 1.6 1.6 391

6 1016 1.4 1.4 316

7 3884 1.1 1.1 110

8 2270 1.8 1.8 185

9 1491 1.7 1.7 404

10 1283 1.4 1.4 548

Appendix 3

Appendix 4

2802 Int J Adv Manuf Technol (2018) 97:2781–2808

Table 10 Same order arrival, preventive maintenance

Problem size (jobs) UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 1.86875 2.21875 1.51375 1.4675 65 70 74,561 75,615

50 1.57 2.17 2.19375 1.78125 72 77 76,512 78,406

100 1.40375 1.49125 2.25875 1.90375 80 84 67,812 70,471

200 1.3075 1.6875 1.7825 2.01375 71 71 78,114 80,490

Table 11 Mixed order, same order size, preventive maintenance

Problem size (jobs) UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS RT

20 2.17125 1.7325 1.305833 0.850833 14 15 70,216 71,311

50 2.49375 1.47375 1.123333 0.9575 11 15 66,109 69,914

100 1.905 1.91875 1.349167 1.1225 14 12 74,242 78,843

200 1.3175 1.5475 1.594167 1.581667 11 14 77,020 83,069

Table 12 Mix order, different order sizes, preventive maintenance

Problem instances UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

1 0.23 0.14625 0.19625 0.2225 19 21 180,371 182,274

2 0.23 0.17 0.235 0.24625 19 19 185,140 186,783

Table 13 Same order arrival, rework

Problem size (jobs) UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS RT

20 1.7475 1.68375 2.4625 2.42625 60 70 69,184 73,521

50 1.79625 1.8125 1.28375 1.28125 74 77 78,360 83,354

100 1.41125 1.61 1.25375 2.34375 70 84 71,863 82,948

200 2.21125 1.7175 2.3425 2.21625 66 71 76,072 77,548

Int J Adv Manuf Technol (2018) 97:2781–2808 2803

Table 14 Mixed order, same order size, rework

Problem size (jobs) UD LD Accepted number of orders Total profits ($)

RS RT RS RT RS RT RS RT

20 2.03875 1.28625 0.934167 1.04 12 16 80,373 77,675

50 1.89375 1.3525 1.598333 1.471667 16 13 74,688 65,463

100 1.9525 1.69125 1.4025 1.03 11 12 78,587 65,894

200 1.65625 1.94875 0.984167 0.920833 15 11 72,271 77,744

Table 15 Mix order, different order sizes, rework

Problem instances UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

1 0.22625 0.245 0.1475 0.14 19 17 185,438 179,228

2 0.18375 0.205 0.15125 0.17375 17 18 181,131 181,356

Table 16 Same order arrival, job Cancellationsc

Problem size (jobs) UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 1.43125 1.8375 2.14875 2.495 69 70 70,784 80,136

50 2.205 1.73875 2.08375 1.945 62 77 67,235 82,451

100 2.25625 1.685 2.3525 1.84875 62 84 84,002 77,162

200 1.83875 1.9175 2.03125 2.26375 75 71 83,740 75,798

Table 17 Mixed order, same order size, job Cancellationsc

Problem size (jobs) UD LD Accepted
number of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 2.14375 1.96625 1.385833 1.4125 16 13 71,427 69,282

50 1.5225 1.9775 0.838333 1.131667 14 14 74,767 75,420

100 1.8825 1.54 1.299167 0.9025 12 12 66,671 68,989

200 2.00875 2.0975 1.085 1.545833 14 16 67,267 77,797

2804 Int J Adv Manuf Technol (2018) 97:2781–2808

Table 18 Mix order, different order sizes, job Cancellationsc

Problem instances UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

1 0.22625 0.245 0.1475 0.14 19 17 185,438 179,228

2 0.18375 0.205 0.15125 0.17375 17 18 181,131 182,356

Table 19 Same order arrival, change in processing times

Problem size (jobs) UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 2.05 1.73875 1.415 2.2425 61 70 71,175 65,062

50 2.29375 1.8925 1.72375 2.1825 68 77 69,979 65,778

100 1.275 1.55125 1.98875 2.14625 69 84 76,667 81,068

200 1.80375 2.045 1.33125 1.98625 63 71 69,880 78,243

Table 20 Mixed order, same order size, change in processing times

Problem size (jobs) UD LD Accepted
number of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 2.14375 1.96625 1.385833 1.4125 16 17 71,427 74,282

50 1.5225 1.9775 0.838333 1.131667 14 14 76,767 81,420

100 1.8825 1.54 1.299167 0.9025 15 16 66,671 68,989

200 2.00875 2.0975 1.085 1.545833 14 14 67,267 77,797

Table 21 Mix order, different order sizes, change in processing times

Problem instances UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

1 0.185 0.205 0.20375 0.18 18 15 174,329 175,310

2 0.18875 0.1825 0.22125 0.15 17 18 175,558 176,566

Int J Adv Manuf Technol (2018) 97:2781–2808 2805

Table 23 Mixed order, same order size, change in due dates

Problem size (jobs) UD LD Accepted
number of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 1.52125 1.57875 1.349167 1.526667 16 12 71,154 72,184

50 2.22125 1.99875 0.8425 1.315833 15 15 73,128 73,685

100 1.675 2.4775 1.665833 0.996667 16 11 68,614 80,841

200 2.015 1.42375 1.130833 0.959167 15 12 72,376 76,980

Table 24 Mix order, different order sizes, change in due dates

Problem instances UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

1 0.23125 0.24375 0.2325 0.13625 20 18 177,023 178,679

2 0.1375 0.19375 0.18875 0.17125 20 20 172,830 175,235

Table 22 Same order arrival, change in due dates

Problem size (jobs) UD LD Accepted number
of orders

Total profits ($)

RS RT RS RT RS RT RS RT

20 1.86125 2.1775 2.47375 2.49625 64 70 80,398 69,103

50 2.3125 2.405 1.89125 1.8 70 77 68,285 83,790

100 1.975 2.28875 2.325 1.855 70 84 66,140 75,795

200 1.40125 1.6575 2.31875 1.86625 62 71 77,637 82,419

2806 Int J Adv Manuf Technol (2018) 97:2781–2808

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

References

1. Abumaizar RJ, Svestka JA (1997) Rescheduling job shops under
random disruptions. Int J Prod Res 35:2065–2082

2. Pinedo M (2012) Scheduling: theory, algorithms, and systems, 4th
edn. Springer, New York

3. Aggoune R, Portmann M-C (2006) Flow shop scheduling problem
with limited machine availability: a heuristic approach. Int J Prod
Econ 99:4–15

4. Schmidt G (2000) Scheduling with limited machine availability.
Eur J Oper Res 121:1–15

5. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J
Oper Res 64:278–285

6. Johnson SM (1954) Optimal two- and three-stage production
schedules with setup times included. Nav Res Logist Q 1:61–68

7. Garey MR, Johnson DS, Sethi R (1976) The complexity of
flowshop and jobshop scheduling. Math Oper Res 1:117–129

8. Bansal S (1977) Minimizing the sum of completion times of n jobs
over m machines in a flowshop—a branch and bound approach.
AIIE T 9:306–311

9. Selen WJ, Hott DD (1986) A mixed-integer goal-programming
formulation of the standard flow-shop scheduling problem. J Oper
Res Soc 37:1121–1128

10. Nawaz M, Enscore EE, Ham I (1983) A heuristic algorithm for the
M-machine, N-job flowshop sequencing problem. OMEGA Int J
Manag Sci 11:91–95

11. Grabowski J, Wodecki M (2004) A very fast tabu search algorithm
for the permutation flow shop problem with makespan criterion.
Comput Oper Res 31:1891–1909

12. Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2007) A par-
ticle swarm optimization algorithm for makespan and total
flowtime minimization in the permutation flowshop sequencing
problem. Eur J Oper Res 177:1930–1947

13. Osman IH, Potts CN (1989) Simulated annealing for permutation
flowshop scheduling. OMEGA Int J Manag Sci 17:551–557

14. Zobolas GI, Tarantilis CD, Ioannou G (2009) Minimizing
makespan in permutation flow shop scheduling problems using a
hybrid metaheuristic algorithm. Comput Oper Res 36:1249–1267

15. Rajendran C, Ziegler H (2004) Ant-colony algorithms for permu-
tation flowshop scheduling to minimize makespan/total flowtime of
jobs. Eur J Oper Res 155:426–438

16. Ruiz R, Maroto C (2005) A comprehensive review and evaluation
of permutation flowshop heuristics. Eur J Oper Res 165:479–494

17. Ruiz R, Maroto C, Alcaraz J (2006) Two new robust genetic algo-
rithms for the flowshop scheduling problem. OMEGA Int J Manag
Sci 34:461–476

18. Rahman HF, Sarker RA, Essam DL (2013) A memetic algorithm
for permutation flow shop problems, in 2013 IEEE Congress on
Evolutionary Computation (CEC), pp. 1618–1625

19. Dasgupta P, Das S (2015) A discrete inter-species cuckoo search for
flowshop scheduling problems. Comput Oper Res 60:111–120

20. Slotnick SA (2011) Order acceptance and scheduling: a taxonomy
and review. Eur J Oper Res 212:1–11

21. Slotnick SA, Morton TE (1996) Selecting jobs for a heavily loaded
shop with lateness penalties. Comput Oper Res 23:131–140

22. Lewis HF, Slotnick SA (2002) Multi-period job selection: planning
work loads to maximize profit. Comput Oper Res 29:1081–1098

23. Slotnick SA, Morton TE (2007) Order acceptance with weighted
tardiness. Comput Oper Res 34:3029–3042

24. Rom WO, Slotnick SA (2009) Order acceptance using genetic al-
gorithms. Comput Oper Res 36:1758–1767

25. Wester F, Wijngaard J, ZIJM WRM (1992) Order acceptance strat-
egies in a production-to-order environment with setup times and
due-dates. Int J Prod Res 30:1313–1326

26. Duenyas I, Hopp WJ (1995) Quoting customer lead times. Manag
Sci 41:43–57

27. Duenyas I (1995) Single facility due date setting with multiple
customer classes. Manag Sci 41:608–619

28. Nandi A, Rogers P (2004) Using simulation to make order
acceptance/rejection decisions. SIMULATION 80:131–142

29. Rogers P, Nandi A (2007) Judicious order acceptance and order
release in make-to-order manufacturing systems. Prod Plan
Control 18:610–625

30. Moreira MRA, Alves RAFS (2009) A methodology for planning
and controlling workload in a job-shop: a four-way decision-mak-
ing problem. Int J Prod Res 47:2805–2821

31. Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling in
manufacturing systems. J Sched 12:417–431

32. Stoop PPM, Wiers VCS (1996) The complexity of scheduling in
practice. Int J Oper Prod Manag 16:37–53

33. Suresh V, Chaudhuri D (1993) Dynamic scheduling-a survey of
research. Int J Prod Econ 32:53–63

34. Vieira GE, Herrmann JW, Lin E (2003) Rescheduling manufactur-
ing systems: a framework of strategies, policies, and methods. J
Sched 6:39–62

35. Tang LX, Zhao Y, Liu JY (2014) An improved differential evolu-
tion algorithm for practical dynamic scheduling in steelmaking-
continuous casting production. IEEE Trans Evol Comput 18:209–
225

36. McKay KN, Buzacott JA, Safayeni FR (1989) The scheduler’s
knowledge of uncertainty: the missing link, Knowledge Based
Production Management Systems, pp. 171–189

37. Adiri I, Frostig E, Kan AHGR (1991) Scheduling on a single ma-
chine with a single breakdown to minimize stochastically the num-
ber of tardy jobs. Nav Res Logist 38:261–271

38. Liao CJ, ChenWJ (2004) Scheduling under machine breakdown in
a continuous process industry. Comput Oper Res 31:415–428

39. Hall NG, Potts CN (2004) Rescheduling for new orders. Oper Res
52:440–453

40. Yang B (2007) Single machine rescheduling with new jobs arrivals
and processing time compression. Int J Adv Manuf Technol 34:
378–384

41. Wu SD, Storer RH, Pei-Chann C (1993) One-machine rescheduling
heuristics with efficiency and stability as criteria. Comput Oper Res
20:1–14

42. Tamer Unal A, Uzsoy R, Kiran AS (1997) Rescheduling on a single
machine with part-type dependent setup times and deadlines. Ann
Oper Res 70:93–113

43. Qi X, Bard JF, Yu G (2006) Disruption management for machine
scheduling: the case of SPT schedules. Int J Prod Econ 103:166–
184

44. Allahverdi A (1996) Two-machine proportionate flowshop sched-
uling with breakdowns to minimize maximum lateness. Comput
Oper Res 23:909–916

45. Rahman HF, Sarker RA, Essam DL, Guijuan C (2014) A memetic
algorithm for solving permutation flow shop problems with known
and unknown machine breakdowns, in 2014 IEEE Congress on
Evolutionary Computation (CEC), pp. 42–49

46. Katragjini K, Vallada E, Ruiz R (2013) Flow shop rescheduling
under different types of disruption. Int J Prod Res 51:780–797

47. Ruiz R, Garcia-Diaz JC, Maroto C (2007) Considering scheduling
and preventive maintenance in the flowshop sequencing problem.
Comput Oper Res 34:3314–3330

Int J Adv Manuf Technol (2018) 97:2781–2808 2807

48. Perez-Gonzalez P, Framinan JM (2009) Scheduling permutation
flowshops with initial availability constraint: analysis of solutions
and constructive heuristics. Comput Oper Res 36:2866–2876

49. González PP, Torres JMF, Parente JMM, Pineda A (2009)
Comparison of heuristics for rescheduling in permutation
flowshops. In XIII Congreso de Ingeniería de Organización, pp.
1498–1506

50. Fahmy SA, Balakrishnan S, ElMekkawy TY (2009) A generic
deadlock-free reactive scheduling approach. Int J Prod Res 47:
5657–5676

51. Hasan SMK, Sarker R, Essam D (2011) Genetic algorithm for job-
shop scheduling with machine unavailability and breakdowns. Int J
Prod Res 49:4999–5015

52. Sarker R, Essam D, Hasan S, Karim A (2015) Managing risk in
production scheduling under uncertain disruption, Artificial
Intelligence Engineering Design, AnalysisManufacturing, pp. 1–11

53. Sarker R, Omar M, Hasan SMK, Essam D (2013) Hybrid evolu-
tionary algorithm for job scheduling under machine maintenance.
Appl Soft Comput 13:1440–1447

54. Al-Hinai N, ElMekkawy TY (2011) Robust and stable flexible job
shop scheduling with random machine breakdowns using a hybrid
genetic algorithm. Int J Prod Econ 132:279–291

55. Hasan SK (2009) Evolutionary algorithms for solving job-shop
scheduling problems in the presence of process interruptions,
University of New South Wales

56. Wagner HM (1959) An integer linear-programming model for ma-
chine scheduling. Nav Res Logist Q 6:131–140

57. Ong Y-S, Lim M-H, Neri F, Ishibuchi H (2009) Special issue on
emerging trends in soft computing: memetic algorithms. Soft

Comput—A Fusion Foundations, Methodologies Applications 13:
739–740

58. Akkan C (1997) Finite-capacity scheduling-based planning for
revenue-based capacity management. Eur J Oper Res 100:170–179

59. Burke EK, Smith A (1999) A memetic algorithm to schedule
planned maintenance for the national grid. Journal of
Experimental Algorithmics (JEA) 4:1–13

60. Merz P, Freisleben B (2001) Memetic algorithms for the traveling
salesman problem. Complex Syst 13:297–346

61. Tang J, Lim MH, Ong YS, Er MJ (2005) Solving large scale com-
binatorial optimization using PMA-SLS. In Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pp.
621–628

62. Goldberg DE, Holland JH (1988) Genetic algorithms and machine
learning. Mach Learn 3:95–99

63. Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for
flowshop scheduling problems. Comput Ind Eng 30:1061–1071

64. Taillard E (1990) Some efficient heuristic methods for the flow-
shop sequencing problem. Eur J Oper Res 47:65–74

65. Zhu KQ, Liu Z (2004) Empirical study of population diversity in
permutation-based genetic algorithm. In Genetic and Evolutionary
Computation–GECCO 2004, pp. 420–421

66. Hasan SK, Sarker R, Essam D, Cornforth D (2009) Memetic algo-
rithms for solving job-shop scheduling problems. Memet Comput
1:69–83

67. Yuan X, Wang L, Yuan Y, Zhang Y, Cao B, Yang B (2008) A
modified differential evolution approach for dynamic economic
dispatch with valve-point effects. Energy Convers Manag 49:
3447–3453

2808 Int J Adv Manuf Technol (2018) 97:2781–2808

	Multiple-order permutation flow shop scheduling �under process interruptions
	Abstract
	Introduction
	Related work
	Static single- and multiple-order problems
	Dynamic multiple-order problems
	Single-order problems with disruptions
	Summary

	Problem description and mathematical model
	Problem description
	Assumptions
	Mathematical model
	Mathematical model of static PFSPs
	Mathematical model of multiple-order PFSPs with interruptions

	Upper and lower bound calculations
	Upper and lower bounds

	Solution approach
	Order acceptance/rejection
	Proposed memetic algorithm
	Initial population and solution representation
	Selection and population enhancement
	Crossover and mutation
	Local search
	An adaptive scheme

	Proposed approach
	RS strategy
	RT strategy

	Experimental results and analysis
	Conclusion
	Appendix 1
	Job processing flow diagram for multiple-order PFSP with process interruptions
	Appendix 2
	References

