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Abstract
For the past recent years, Industry 4.0 (I40) also known as smart manufacturing, together with advanced manufacturing tech-
niques, has been introduced in the industrial manufacturing sector to improve and stabilize processes. Nevertheless, practical
applications of these advanced technologies are still in their early stages resulting in slow adoption of the I40 concepts, especially
for small- to medium-scale enterprises (SMEs). This paper proposes the design of an experimental method to integrate the
practical use of Industry 4.0 in a small bottling plant; especially by detecting early faults or threats in conveyor motors and
generating accordingly a predictive maintenance schedule. Using advanced programming functions of a Siemens S7-1200
programmable logic controller (PLC) controlling the bottling plant, vibration speed data is monitored through vibration sensors
mounted on the motor and an efficient predictive maintenance plan is generated. The running PLC communicates with a
supervisory control and data acquisition (SCADA) graphical user interface (GUI) which instantaneously displays maintenance
schedules and allows, whenever required, flexible configuration of new maintenance rules. This paper also proposes a
decentralized monitoring system from which vibration speed states can be monitored on a cloud-based report accessible via
the Internet; the decentralized monitoring system also sends instant email notifications to the intended supervisor for every
maintenance schedule generated. By its results, this research shows different possibilities of the practical use of Industry 4.0 basic
concepts to better manufacturing operations within SMEs and opens a path for more improvement in this sector.
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1 Introduction

In manufactories and plants, unplanned equipment failure
usually results in longer downtime and production loss.
The role of the engineering team in the plant is to prevent
such faults by detecting earlier any possible threats to the
system and take proper action before the situations become
chaotic; in other words, schedule maintenance of the af-
fected devices. Some of these threats are invisible to the
human eye and very difficult to detect without specialized

tools. The introduction of technology that allows the con-
dition or “health” of machinery to be checked with the mini-
mum of or no intrusion is one of the most cost-effective main-
tenance tools currently available [1]. The action of detect-
ing faults or threats in a device before they actually occur
and implementing repairs on it to reduce failure is called
“predictive maintenance.” Predictive maintenance is a set
of activities that detect changes in the physical condition of
equipment (signs of failure) in order to carry out the ap-
propriate maintenance work for maximizing the service life
of equipment without increasing the risk of failure [2]. To
be able to achieve predictive maintenance, intelligent de-
vices like sensors need to be embedded in different critical
machines of the plant to collect data that is analyzed and
interpreted. With the advent of the so-called Industry 4.0
(I40), more intelligence and value are being added to the
predictive maintenance of a system to make this task more
efficient. Below are some of the values which Industry 4.0
brings into the predictive maintenance concept:
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& Real-time condition monitoring: Industry 4.0 software can
help to create the information availability and processing
required. Machine and sensor data is recorded and
displayed in real time, providing the basis for real-time
condition monitoring. Data visualization is not restricted
to the control station. The same solution can be available
everywhere—from big screens to tablet computers and
smartphones, on premises, and in the cloud. And it can
be accessed by everyone—from those in charge of ma-
chine settings to a variety of experts [3]. In this paper,
real-time condition monitoring is performed by the pro-
grammable logic controller (PLC) and its supervisory con-
trol and data acquisition (SCADA).

& Flexible evaluation and analysis options: Industry 4.0 soft-
ware is designed in a flexible manner using highly cus-
tomized rules and analyses that allow production planners,
process experts, or even the maintenance technicians to
configure on their own without the need for complicated
IT know-how. The software adapts to the expert’s needs.
As such, Industry 4.0 is ushering in a paradigm shift. The
software is designed for human needs and not, as before,
programmed with just the machine in mind. This means
the maintenance technician can create rules such that de-
fined machine parameters trigger notice of upcoming
maintenance. And this maintenance is performed only
when it is actually needed. Conversely, of course, limit
values and rules can also be set such that unscheduled
machine stoppages are immediately displayed and notifi-
cations sent to the relevant people [3]. Technicians, pro-
ductions planners, and experts will sit together and decide
on different rules that will define the predictive mainte-
nance. This rule will be modeled in a computer language,
in our case in a PLC language, and loaded into the system.
This point is covered in Section 3.

& Targeted notification of experts: As soon as the soft-
ware has identified an upcoming maintenance task
based on the pre-set parameters, the information must
be forwarded quickly and specifically to the right team
member via a digital ticket. To give an example, this
means that an available worker with the right qualifi-
cations for maintaining the laser machine in hall 3
receives a ticket in their account and on their phone
telling them to carry out the maintenance [3]. It is one
thing to detect a threat in a system and it is another
one to take action against that threat. Once predictive
maintenance has been schedule for the system, it has
to be addressed to the intended person as soon as
possible for action to be taken before actual faults
occur. In this paper, we will also make use of this
aspect to send an email notification through the
Internet directly to the intended maintenance officer
from a python script virtually communicating with
the Siemens S7-200 PLC.

In a bottling plant, almost all machines are subject to vibra-
tions. For example, machine unbalance, misalignment, and
resonances can cause machines to vibrate above an acceptable
level. Vibration analysis is proven to be an important criterion
for fault diagnosis in manufacturing processes and mainte-
nance scheduling for various manufacturing equipment [4].
A rise in vibrations is detrimental to machine health. This
results in unexpected machine failure and reduced availability
[5]. The conveyor belt driving bottles into the bottling process,
through its motor, is one of the most important components of
the bottling plant. Our paper will focus in developing a pre-
dictive maintenance schedule for the motor. An intelligent
vibration sensor will be mounted into the motor to read vibra-
tion speeds and transmit them to the PLC, which is based on
the modeled maintenance rule loaded will notify directly the
maintenance expert via email, every time a maintenance
schedule is announced, all this done through the benefits car-
ried out by the current trend of automation, “the industry 4.0.”

This paper is divided into five main sections. Section 2
presents a brief review of predictive maintenance of
manufacturing process. The modeling of the predictive main-
tenance rule based on the motor vibration velocity is explained
in Section 3. Section 4 presents in detail the structure and con-
trol system design of our experimental predictive maintenance
schedule for the bottling plant; the programming functions used
in the Siemens S7-1200 PLC, as well as the configuration of
the python script system to notify the maintenance officer. And
this section also displays the results of the predictive mainte-
nance schedule. Finally, the conclusion is given in Section 5.

2 Literature review

2.1 Smart manufacturing

The industrial sector is currently going through its fourth rev-
olution; commonly known as Industry 4.0 (I40), smart or in-
telligent manufacturing. The first industrial revolution brought
the mechanization of production, the second industrial revo-
lution was about mass production, and the third industrial
revolution means the digitization (electronic component com-
puter and IT. I40 enables suppliers and manufacturers to le-
verage new technological concepts like cyber-physical sys-
tems (CPS), Internet of Things (IoT), and cloud computing
(CC). New or enhanced products and services can be created,
cost can be reduced, and productivity can be increased [6].
Tim Niesen et al. [7] mention that I40 is characterized by a
progressing integration of ICT into manufacturing systems.
Ref. [8] defines manufacturing as the process of transforming
(raw) materials and energy, by means of workers and machin-
ery, into products that address manufacturing requirements
from stakeholders. On the other hand, smart or intelligent
manufacturing refers to any manufacturing processes which
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involve a degree of computational intelligence. This can be
via the use of embedded sensors as in the case of IoT technol-
ogies [9], and cover the use of analytical techniques on histor-
ical process data to provide knowledge discovery and support
decision-making within manufacturing systems [10, 11] or,
ultimately, the development and implementation of full
cyber-physical-systems [12], a synthesis of physical and dig-
ital technologies across the entire manufacturing system; and
necessary associated technologies and frameworks [13]. [14]
further summarizes smart manufacturing as any manufactur-
ing system having one or a combination of the following char-
acteristics: (1) digitization of manufacturing enterprises, (2)
connected devices and distributed intelligence, (3) collabora-
tive supply chain, (4) integrated and optimal decision making,
and (5) sensors and big data analytics. While the industrial
automation sector currently offers this advanced manufactur-
ing scheme for improvement of industrial processes, many
small- to medium-scale enterprises (SMEs) are still under
the first, second, or third industrial revolution regarding this
new concept as reserved to big industrial players.

2.2 The use of industry 4.0 in SMEs

Various studies have shown that most SMEs have a common
perception that advanced automation techniques, specialized
software like ERP, is best suited for large-scale industries due
to high cost of ownership, complexity of implementation, and
subsequent maintenance cost commonly known as “Big
White Elephant” [15]. They therefore prefer holding on to
old and sometimes archaic production methods in their every-
day processes hoping to sustain production cost.

It was later proven that this lethargy in adopting current
trends of automation is one of the main reasons why most
SMEs are subject to low growth, high failure rates, and loss
of production in the long term. Ref. [16] says that while tech-
nology is essential for growth of a company, it does come at a
price, which is sometimes not affordable for an SME. While
many options become unattractive because of the heavy in-
vestments they need, thus preventing small start-ups from en-
tering, many start-ups find themselves lagging behind since
they cannot have access to cutting edge technology, leaving
them strategically exposed. The reality is that few companies
have the necessary systems and capital in place to make leaps
such as these in their operational processes and find them-
selves presented with substantial barriers with respect to ac-
cess. Due to the vast scope of the technologies and methodol-
ogies and substantial costs involved and lack of understanding
and competence with advanced manufacturing techniques at
the employee level [17]. As per ref. [18], limited capital avail-
ability and lack of expertise are the main factors affecting
modernization and expansion plans for an SME. Since the
initial years of business do not produce enough cash flows,
the available cash is used up in operating activities, and there

is shortage of funds for modernization and expansion. I40, the
current trend of automation, is facing the same lethargy within
SMEs. This is also caused by the lack of practical application
of the new concept still on its early stages [38]. To remain
competitive in a continuously growing market, the challenges
of any industrial enterprise is to enhance product quality, re-
duce cost, and improve on-time delivery. Advanced automa-
tion techniques, new strategies, and upgrade trend of automa-
tion are developed to help companies fight this challenge and
satisfy customers’ demand.

2.3 Predictive maintenance concept in manufacturing
processes

Over recent years, about 30% [19] of the industrial equipment
does not benefit from predictive maintenance techniques.
Instead, periodic maintenance is used in order to detect any
anomalies or malfunctions in the components of their systems.
Such maintenance is usually done visually and physically
placed on the machine. In order to clearly discern between a
periodical and predictive maintenance, it has been shown that
no problems were found in 70% [20] of the periodic revisions,
while the percentages have reached up to 90% [21] when using
predictive maintenance techniques. This suggests that the latter
method can increase the maintenance efficiency, and therefore,
it can reduce the amount of failures in industrial systems.

Although the maintenance based on periodic revisions is the
most extended and used method, these techniques are being
increasingly classified as constituting defective and unreliable
methods [21]. After conducting a study with identical systems
that were tested under identical conditions [19], it has been
shown that the time until a failure occurs in the system is very
different from one system to another. The maintenance that is
based upon periodic revisions is thus ineffective, because it is
very difficult to know when a component of an industrial pro-
cess is going to fail based on a fixed period of time. The evolu-
tion of technology has made predictive maintenance techniques
evolve too. The use of wireless sensors and the posterior use of
supervisory control and data acquisition (SCADA) systems
have provided companies with newways of collecting informa-
tion about the performances of their industrial machines.

Official figures from the late 1980s indicated that compa-
nies with an effective condition monitoring (CM) program
were saving 25% on maintenance spend [1]. Condition-
based maintenance techniques have been developed to allow
scheduling maintenance actions based onmachine’s condition
measured without the interruption of the normal machine op-
erations. In fact, condition monitoring is a decision-making
strategy that allows real-time diagnosis of occurring failures
and prognosis of future asset and machines/equipment health
by continuous observation of the system and its components’
condition [6]. It is strongly related to the concept of prognostic
and health monitoring (PHM) which has been initially
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introduced in the medical field for disease and epidemiology
prediction, but has been widely applied in manufacturing con-
text [22]. Most failures do not occur instantaneously, and usu-
ally, there are some kind of degradation process or symptoms
from normal states to failures. Therefore, the actual conditions
and their trends should be assessed and predicted during the
degradation process, and appropriate maintenance actions
should be taken before breakdown. This is the main target of
the predictive maintenance [23]. Predictive maintenance uti-
lizes actual operating condition of equipment, material, and
systems to optimize manufacturing operation. Standard pre-
dictive maintenance management program utilizes a combina-
tion of most cost-effective tools (e.g., vibration monitoring,
process parameter monitoring, thermography, tribology, visu-
al inspection) to obtain the actual operating conditions of crit-
ical plant systems. These actual manufacturing data are used
to schedule all maintenance activities on an as-needed basis.
Utilizing predictive maintenance in maintenance management
program improves the ability to optimize the availability of
process machinery and greatly reduces the cost of mainte-
nance and improves production quality [24].

Predictive maintenance can be disaggregated into two spe-
cific sub-categories [25]:

& Statistical-based predictive maintenance. The information
generated from all stoppages facilitates development of
statistical models for predicting failure and thus enables
the developing of a preventive maintenance policy.

& Condition-based predictive maintenance. Condition-
based monitoring is related to the examination of wear
processes in mechanical components. The wear process
is preceded by changes in the machine’s behavior al-
though this does not cause sudden mechanical failure.

One of the most cost-effective maintenance techniques is
condition-based maintenance. Condition-based maintenance
in a plant management program provides the ability to opti-
mize the availability of process machinery and greatly reduce
the cost of maintenance.Major improvements can be achieved
in: maintenance costs, unscheduled machine failures, repair
downtime, spare parts inventory, and both direct and in-
direct overtime premiums [26]. Condition-based maintenance
techniques provide an assessment of the system’s condition,
based on data collected from the system by continuous mon-
itoring. The goal is to determine the required maintenance
plan prior to any predicted failure. Therefore, the maintenance
strategies aim to minimize the cost by improvement of the
operational safety and reduce the severity and number of in-
service system failures. Accordingly to the ISO 13381-1:2004
standard, the activities start with monitoring, followed by di-
agnostic, prediction, and posterior actions [27].

As per [28], one of the biggest issues in obtaining
manufacturing data is the way of collecting and processing data

from the field level of hierarchical control. All these data serves
as a basis for predictive maintenance, failure analysis, or deci-
sion support at various hierarchical control levels. The field-
level data are usually aggregated into data more suitable for
particular decision support task. One of the main requirements
for effective realization of predictive maintenance is sufficient
amount of data from all parts of manufacturing process. It is
also the main drawbacks of predictive maintenance implemen-
tation in manufacturing. The more amounts of data ensures
higher accuracy of prediction for maintenance interval for ma-
chines, materials, tools, and products or any other significant
parts in the manufacturing process [29]. Thanks to the predic-
tive capabilities offered by the emerging smart data analytics,
data-driven approaches for condition monitoring are becoming
widely used for early detection of anomalies on production
machines [30]. It is also very important to note that predictive
maintenance does not rely only on industrial or average lifetime
statistics (i.e., mean time to failure (MTTF)) to schedule main-
tenance activities, but uses direct monitoring of the mechanical
condition, system efficiency, and other indicators to determine
the actual MTTF or loss of efficiency for each machine, mate-
rial, product, or system in the plant. Implementation of a com-
prehensive predictive maintenance management can provide
real data on the actual mechanical condition of each machine
and operating efficiency of each process. The data provides the
maintenance manager with actual data for scheduling mainte-
nance activities [24]. J. Zhou developed a system that uses
intelligent prediction andmonitoring system for equipment fail-
ure prediction to support equipment maintenance [31]. This
system used three platforms: embedded controller platform
connected to field devices to collect data, intelligent predictive
engine (IPE) that is the brain of operations and a remote plat-
form used for monitoring.

Jemielniak summarized the most commonly used sensors
and signal processing techniques in the tool CM. Many type
of sensors such as acoustic emission, vibration, and optical
sensors for measuring cutting forces components such as pow-
er, torque, displacement, and strain of tools were the most
commonly used instruments in tool CM system for their ver-
satile adjustment in both the existing and in new machines.
Integrity and stiffness remains unaffected with the use of these
sensors. Among many advanced signal analysis techniques,
the filtering (low-pass, high-pass, and band-pass), averaging
and RMS-based signal processing techniques were found to
be most effective. It was concluded that one sensor-one tool/
process approach was dominant in comparison to other com-
mercially available systems. It was recommended to use two
different sensors for one process in multiple detection capa-
bility system [32]. Yang et al. proposed and validated a new
wavelet-based adaptive filter for CM of wind turbines.
Conventionally, vibration measurement and lubrication oil
analysis were used as CM systems in wind turbines.
However, both these methods suffered from some drawbacks
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as the former method required high hardware costs and the
latter could not detect electrical abnormalities in the turbine
generator and electrical system. Power energy used by the
wind turbine was used as indicator of wind turbine condition
as wavelet-based adaptive filter extracts the power energy at
prescribed fault-related frequencies with both varying and
constant rotational speeds. Experimental validation of the pro-
posed technique was done on a wind turbine test rig by using
both synchronous and induction generators as exemplars [33].
T. Borgi proposed a method that provides insights on predic-
tive maintenance of industrial robots using data analysis of
robot’s power measurements [30]. They collected and ana-
lyzed few important data: robot electrical power, set of posi-
tion coordinates, etc., on robot operation and generated a cor-
relation between them. Another interesting strategy was pro-
posed by C. Gu [34] in which the product quality control is
integrated into predictive maintenance decision-making. First,
the key process variables that characterize equipment wear are
identified and integrated into the modeling of the equipment
failure rate. Second, quality deviation that characterizes prod-
uct quality level is defined based on co-effect between
manufacturing system component reliability and product
quality (i.e., Q-R chain). Third, the optimal maintenance strat-
egy is obtained by optimizing the quality cost, maintenance
cost, and interruption cost simultaneously.

This brief review on predictive maintenance in the
manufacturing shows how important and advantageous this
concept is in the industrial sector. A proper implementation
of predictive maintenance reduces machine failures and
downtime of the overall system. The design of predictive
maintenance strategies strongly depends on machine data that
needs to be, collected, analyzed, and interpreted. Based on the
application in question, various tools are being used for this
purpose, sometimes in combination with controllers to gener-
ate intelligent predictive maintenance methods. As mentioned
in ref. [3], the current trend of automation, Industry 4.0, intro-
duces the use of solutions that can provide optimum support
for predictive maintenance. These solutions focused on real-
time condition monitoring, flexible evaluation, and analysis
options as well as targeted notification of experts. Our paper
uses the three elements highlighted by the I40 in order to
develop a strategy for the predictive maintenance of a convey-
or motor in a small bottling plant.

3 Motor vibration velocity threshold limits
for predictive maintenance: theoretical
modeling

As per Colin Sanders [1], the simple form of vibration is a
single frequency system as shown in Fig. 1.

The velocity is the first derivative of displacement as a
function of time; it is the rate of change in displacement (the

speed of the vibration). Based on Fig. 1, the displacement is
equal to the amplitude of the vibration. The displacement or
amplitude of a vibration is measured in inches, mils, micro-
meters, or millimeters.

The velocity or speed of vibration will therefore be mea-
sured in inches/s or mm/s.

The acceleration is the second derivative of displacement;
it is the rate of change of velocity [35]. The relationship be-
tween sinusoidal velocity, displacement, and acceleration is
shown in Fig. 2.

In this paper, we will only focus at the vibration velocity of
the motor to determine predictive maintenance. As mentioned
in the previous section, according to ISO 10816, there is an
acceptable limit of vibration a motor should not exceed when
operating. Figure 3 below shows a trend of machine vibration
as per ISO 10816. When constantly exposed to undesired
vibration, the motor lifespan is reduced and the chance of
failures becomes high. One of the aims of our paper is to
detect in advance all possible impairment due to motor vibra-
tion and schedule proper maintenance before failures occur.
This is called predictive maintenance.

The size of the motor driving the conveyor will impact
alarm and warning limits to the system. We will refer to
Table 1 below to select our alarms and warning thresholds that
will be later on programmed in the PLC.

Table 1 shows different vibration severity levels as de-
scribed by ISO IS2372: good (displayed in green), satisfactory
(displayed in yellow), unsatisfactory (displayed in orange),
and unacceptable (displayed in red) The different classes on
the table are divided as follows:

Class I: small-sized machines (from 0 to 15 kW)
Class II: medium-sized machines (from 15 to 75 kW)
Class III: large-sized machines (powered > 75 kW)
mounted on “Rigid Support” structures and foundations
Class IV: large-sized machines (powered > 75 kW)
mounted on “Flexible Support” structures

There are many other classifications for vibration severity
criteria depending on applications and motors’ sizes. In ref.
[36], one of those criteria is used for vibration analyses.

To make operators’ life easier, calculations and conditions
to initiate the predictive maintenance of the conveyor motor is
done in the background (in the PLC program). The only action
that will be required from the operator is the selection on the
SCADA system of the motor size range that will map it to the
corresponding predictive maintenance rule.

Depending on one application to another, there are several
types of safety, health criteria, or classes that a system should
respect to function properly. Table 1 is an example of one of
them. The RMS vibration speed on Table 1 is read from a
vibration sensor that gets mounted on the motor fin. The other
side of the sensor is then connected to an intelligent controller
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(in our paper to a Siemens S7-1200 PLC) or any other device
that will convert the vibration speed into understandable digits
(Figs. 4 and 5):

Let us assume the vibration criteria of a systemwith , number
of classes, divided in b, ranges for health statuses of a system:

& b1–b2 = healthy status
& b2–b3 = satisfactory status
& b3–b4 = intermediate status_1
& b4–b5 = intermediate status_2

• bs–bm = unsatisfactory status

& bm–bn = unacceptable status

Looking at the b ranges above as well as those on Table 1, it
is very noticeable that the end of one range is the beginning of
another; in other words, two health ranges share a border. In
math, this will be explained as follows:
�
b1–b

2

�
∩

�
b2–b

3

� ¼ b2f g;
�
b2–b

3

�
∩

�
b3–b

4

� ¼ b3f g;…;

�
bs–b

m

�
∩

�
bm–b

n

� ¼ bmf g

For this paper, we use the vibration criteria on Table 1 to
program the predictive maintenance rule as follows:

The number of class is equal to 4 and the number of health
ranges is also equal to 4:

& Range X1–X2 ➔ Healthy status
& Range X3–X4 ➔ Satisfactory
& Range X5–X6 ➔ Unsatisfactory
& Range X7–X8 ➔ Unacceptable

The vibration velocity of the motor read from the vibration
sensor by the PLC at a time t is equal to V (t):

Case 1:

If V (t) = V (X7–X8)
➔Initiate reactive maintenance with immediate stop.

Case 2

If V (t) = V (X5–X6)
➔Initiate predictive maintenance on next machine stop.

Case 3:

If V (t) = V (X3–X4)
➔V (temp) = ∑

t∈N
V X 3−X 4½ � (t); with t time elapsed every

hour.
If V (temp) = {V(X5 – X6) U V(X7 – X8)}.
➔ Initiate predictive maintenance on next machine stop.
The three cases above can be explained as follows:

Case 1 is not considered as a preventive maintenance rule
because the range of velocity obtained is within the unac-
ceptable range and requires immediate attention for safety
of the whole system. It is therefore called reactive mainte-
nance. Case 1 is also considered as an alarm of first degree.
Case 2, if the motor vibration velocity obtained at a spe-
cific time falls within unsatisfactory range, the system will
call for a predictive maintenance at the next machine stop.
The motor is supposed to always run in a healthy state. As
soon as vibration starts to affect motor run, predictive
maintenance needs to be done to recover healthy state.

Fig. 1 Vibration as a sine wave—Colin Sanders, “A Guide to Vibration
Analysis and Associated Techniques in Condition Monitoring”, DAK
Consulting

Fig. 2 Relationships of sinusoidal velocity, acceleration and
displacement—Vibration Equations: American Environments
Company, Inc.

Fig. 3 Machine vibration trend according to ISO 10816—from process
monitoring to vibration analysis—www.ifm.com/gb/octavis
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Case 3, Prevention is always better than cure. When vi-
bration starts to affect the motor, though still in the satis-
factory range, it is more likely to be converted into an
unacceptable state later on. Case 3 detects velocity in
the satisfactory range and sum every hour its value until
equal to a velocity in the unsatisfactory and/or unaccept-
able range. In reality, the actual velocity vibration will not
be equal to a value in the unacceptable yet, but this oper-
ation is done to prevent any future failure and recover
healthy state.

Cases 2 and 3 are considered as warnings. They are not as
severe as Case 1 but came back a danger if not attended to as
soon as possible.

Using a vibration sensor that will be installed on the con-
veyor motor, we will collect directly vibration velocity data to
the S7-1200 Siemens PLC; vibration sensor being connected
as 4–20 mA analogue input.

4 Predictive maintenance solution design
for conveyor motor using industry 4.0
software approach

4.1 System architecture

The architecture of the overall system displayed on Fig. 25 is
done based on the three values I40 concepts emphasize on
predictive maintenance as explained in the introduction sec-
tion of this paper:

& Real-time condition monitoring: The Siemens S7-1200
PLC reads real-time data from the vibration sensor seating
on the conveyor motor connected as an analogue input.
This data is then processed in the PLC processor with the
programmed predictive maintenance rule to generate
proper actions. The PLC is also communicating real-
time with a SCADA system that displays on its GUI ac-
tions to be taken. The predictive maintenance rule is pro-
grammed in a flexible way, gathering for easy future
changes and editing of the system by technicians and
maintenance team without necessarily experts

Table 1 Vibration severity criteria based on ISO 2372

RMS Overall 

Velocity Level 

in 1000 Hz 

Bandwidth

Vibration Severity Criteria

mm/s In/s Class I Class II Class III Class IV

0.28 0.01

Good Good Good Good0.45 0.02

0.71 0.03

1.12 0.04 Satisfactory

1.8 0.07 Satisfactory

2.8 0.11 Unsatisfactory Satisfactory

4.5 0.18 Unsatisfactory Satisfactory

7.1 0.28 Unacceptable Unsatisfactory

11.2 0.44 Unacceptable Unsatisfactory

18 0.71 Unacceptable

28 1.10 Unacceptable

45 1.77

Fig. 4 IFM vibration sensors—from process monitoring to vibration
analysis—www.ifm.com/gb/octavis
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intervention. Figure 26, at the end of the paper, shows the
graphical representation of the flexible programming rule.

& Flexible evaluation and analysis options:

When the maintenance team or the technicians are ready to
configure a new rule for a specific motor, they only select the
right class range of motor size and enter it into the PLC proces-
sor via the SCADA interface. The program received the value
entered in the buffer, filter the entered data to make sure it falls
within the acceptable range of value to enter, match it using a
mapping table to the corresponding class of motor size and then
apply the rules to the PLC program.With this structure in place,
there is no need for an expert to develop again very complicated
programs when a new rule needs to be edited or configured.

& Targeted notification of experts:

As soon as a predictive maintenance rule has been generated,
the system directly contacts via SMTP email (Fig. 27), the expert
in charge of maintaining the motor without waiting for him to
rely on the central SCADA information. Traditional standards
only used central PLCs and SCADAs to convey any important
message: faults, alarms, and statuses to users or operators. In
other words, to be aware of system health statutes, one had to
be physically in front of the SCADA system or connected to the
PLC to monitor important information; this could result in un-
necessary delays and late reactions to important system errors.
Our paper is solving this issue by transmitting real-time the
predictive maintenance schedule once generated to the expert
in charge for him to take actions as soon as possible. As

displayed on the overall architecture on Fig. 25, this is done
through a python script that will be explained in the next section.

4.2 Predictive maintenance rules: process overview

The process overview of our predictive maintenance rule is
divided into three parts corresponding to the three cases of the

Fig. 5 Vibration sensor mounted
on motor—https://www.imi-
sensors.com/ContentImages/
downloads/IMI-App-Motors_
LowRes.pdf

Fig. 6 Predictive maintenance rule flow chart part 1

3258 Int J Adv Manuf Technol (2018) 97:3251–3271



motor vibration criteria analysis in Section 3. The PLC pro-
gram will be layout accordingly (Figs. 6, 7, 8):

4.3 Predictive maintenance rules programmed
in S7-1200 PLC software

As mentioned in Section 3, a vibration sensor is mounted to
the motor from which vibration needs to be monitored and the
other hand of the sensor is connected to a Siemens S7-1200
PLC which will convert vibration speed to understandable
values. In this paper, the vibration sensor is wired as a current
(4–20 mA) analogue input to the PLC; and later in the PLC
program, reading from the sensor get normalized and scaled
(Fig. 9).

Here are the important steps to go through in the PLC in
order to read from the vibration sensor:

& Hardware configuration of the PLC to attach the analogue
input card (Fig. 28) with the right current settings.
Figure 29 at the end of this paper shows the current range
configuration on the PLC programming software.

The current rating of the vibration sensor is an important
detail to be used in the PLC hardware configuration. This
information can be seen on the sensor’s datasheet.

& Conversion of the analogue input through normalization
and scaling:

To convert the read analogue input value into understand-
able vibration speed values, we use two Siemens blocks:
NORM_X and SCALE_X as displayed on Fig. 30(at the
end of this paper). These blocks are used to convert raw ana-
logue inputs from inputs addresses of format IWXXX to log-
ical values.

NORM_X block converts the Integer value of the analogue
input to a real value and feed it into the SCALE_X block.
SCALE_X converts the real value to a desired range of vibra-
tion speed for this application. As per Table 1 , our low limit
for the vibration speed in millimeter/second will be 0.28 and
higher limit will be 45. Putting these two values as parameter
of the SCALE_X block narrow the range of the output vibra-
tion speed that is the actual value we will be constantly
monitoring.

& Maintenance rule programmed based on process over-
view flow charts (Figs. 6, 7, and 8) and vibration se-
verity criteria class I on Table 1 .

Figure 30, displayed at the end of this paper, is a PLC code
written to monitor unacceptable vibration speed as per case 1
(Fig. 6).

The first block of Fig. 30 continuously monitors vibration
speeds to check if the unacceptable vibration speed range

Fig. 7 Predictive maintenance rule flow chart part 2

Fig. 8 Predictive maintenance rule flow chart part 3
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(above 7.1 mm/s in this example) is detected. The second
block of the rung in Fig. 30 is the action taken as soon as
the unacceptable range of speed is detected. As previously
mentioned, this should result in an immediate stop for reactive
maintenance and a maintenance expert should be alerted ac-
cordingly. The S_MOV block writes the string “stop” to a
variable that will be recorded in a CSV file and later on read
by a python script to send an email notification to the expert.
After a delay of 30 s, the variable gets reset to avoid the script
sending continuous emails until a new condition will be de-
tected. Figure 31, at the end of this paper, shows how this
variable is reset.

The same programming logic will apply for cases 2 and
3 of this study. For the S7-1200 Siemens PLC to write on a
CSV file, activate the Web server option on the PLC hard-
ware configuration, and use the data logging create and
write from the extended instructions blocks. More informa-
tion on this procedure is given under S7-1200 PLC data
logging on ref. [37].

4.4 Python script configuration for SMTP email
transfer to expert

As mentioned in the previous section, the PLC generates a
CSV file which contains notifications of predictive main-
tenance schedule for the conveyor motor. One of our pa-
per’s aims was to move away from a centralized system
where any important information is only accessible via the
central PLC or SCADA and directly notify maintenance
experts in charge real time, anytime, when a schedule is

generated without them having to physical move to the
plant. This is achieved by combining a running python
script continuously reading the notification in the PLC
CSV file and conveying through the internet the corre-
sponding message (email) to the expert. Below is an ex-
ample of the PLC CSV file format:

The most important parameter in this file is the fourth col-
umn (maintenance status). It contains information that the
PLC writes based on Fig. 10 logic when a certain condition
is met. The python script uses this parameter to trigger the
sending of emails.

Here is the skeleton of the python algorithm used to send
notifications to experts:

Fig. 10 PLC CSV file template

Fig. 9 Vibration sensor mounted
on motor and connected to
PLC—https://www.imi-
sensors.com/ContentImages/
downloads/IMI-App-Motors_
LowRes.pdf
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Code 1: import python libraries.

Code 2: open CSV file.

Code 3: send email to maintenance expert.

4.5 Decentralized cloud-based dashboard monitoring
tool

Another advantage of Industry 4.0 used in this paper is the
creation of a decentralized monitoring dashboard system.
The PLC constantly monitoring motor vibration speed from
the vibration sensor saves it in a CSV file as described by
[37].

The saved CSV file is loaded in a local MySQL database
through an application programming interface (API) (pro-
gramming scripts); the MySQL database is then loaded via
another API and through the Internet to a cloud-based
reporting called ClicData. In the reporting tool, the desired
graphical dashboard is designed and linked to the MySQL
database for automatic update based on vibration speed
changes. The reporting tool also generates a protected internet
link that supervisors can use on their desktops, laptops, tablets,
or smart phones with Internet access tomonitor the dashboard.
Figure 11 is a very good representation of all components
involved for the creation of a decentralized cloud-based mon-
itoring tool.

The dashboard is accessible through an internet browser
link:

https://theraintel.clicdata.com/v/YgPGRCamDflO

4.6 Experimental results and analysis

Three main platforms are used for the analysis and results of
the predictive maintenance strategy:

– The first platform is WinCC SCADA GUI software that
instantaneously displays on a human machine interface
(HMI), within the plant, a notification of predictive and
reactive maintenance. The SCADA communicates with
the PLC (via Ethernet protocol) fromwhich it reads motor
vibration speed states as programmed based on cases 1–3
of the previous section and alerts operators accordingly.

Import all necessaries libraries and modules

While (1) // Continuous script run 
Delay (20 seconds) // Small processing time to synchronize with PLC

Open CSV file // this file has the same name and location as saved on the PLC
If fourth row = ‘stop’  

Reactive maintenance – Immediate stop

Send specific message for reactive maintenance to supervisor // Email address          and settings to be 
inserted 

Elif (second if) fourth row = ‘start’

Predictive maintenance – On next machine stop

Send specific message for predictive maintenance to supervisor // Email address          and settings to be 
inserted 

Else: print on compiler “normal operation”

Close CSV file
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The SCADA system is also programmed as a flexible
configuration interface for new predictive maintenance
rules.

– The second platform used in the analysis is the email
notification system from the bottling plant to the supervi-
sor in charge of motor’s maintenance. Two main emails
are used: the sender that is the bottling plant email address
and the recipient and the maintenance supervisor’s email
address. These notifications are initiated real time by a
close communication between PLC and an email
scripting system (codes 1–3).

– The last platform used is a decentralized monitoring dash-
board of the motor vibration severity criteria as described

on Table 1. The monitoring dashboard is developed on a
cloud-based reporting tool called ClicData and accessible
via Internet. The reporting tool communicates with a local
MySQL database through an API from which it receives
continuous updates of the actual vibration speed as read
by the PLC (Fig. 11).

The SCADA GUI which is both an external representation
of PLC’s operation and an interface between the operators and
the overall system has two main important screens:

& The parameters setting screen: where the maintenance
technicians edit or configure new predictive mainte-
nance rules for different motors’ size, different vibration
criteria. For this paper, the vibration criteria on Table 1
was used.

Fig. 11 Decentralized vibration speed monitoring through cloud-based reporting tool

Fig. 12 Predictive maintenance settings for motors Fig. 13 Class II data filtering in PLC software
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Only maintenance technicians are entitled to do configura-
tions, therefore user identification is required to keep track of
changes performed in the system.

For more flexibility when editing or configuring predictive
maintenance rules for the system, PLC and SCADA are work-
ing together based on the programming structure in Fig. 26 in
which the entered data on the above Fig. 12 are first received
by the SCADA in a buffer, filtered, mapped to the correspond-
ing class of motors predefined in the PLC software and then
applied to the operations:

Figure 13 above is an example of data filtering in PLC
language for class II as per Table 1. The entered data in the
SCADA is equal to 18 kW, which matches the second
motor’s class (motors sizes between 15 and 75 kW).
After filtering of data, there is data mapping which is the
selection of the corresponding class II function to be ap-
plied for PLC operations. Figure 14 shows how the data
mapping is done in the PLC code.

& The message schedule screen: where notification of
reactive or predictive maintenance are displayed for
actions to be taken. Figure 15 shows one of the
SCADA message screens for predictive maintenance.

As soon as predictive maintenance is scheduled and
displayed on the SCADA’s screen, the running python
script reads a value change in the CSV file written by
the PLC and automatically sends an email to the supervi-
sor in change of maintenance for the bottling plant. In our
platform, the email is sent more than once (six times)
corresponding to the number of lines in the CSV file to
make sure that the supervisor gets properly notified
(Figs. 16 and 17).

As previously mentioned, a decentralized monitoring
dashboard of the motor vibration evolution is available in

Fig. 14 Class II motors data mapping

Fig. 15. Predictive maintenance schedule message screen

Fig. 16 Python script running on compiler—predictive maintenance
detected

Fig. 17 Predictive maintenance email received by supervisor from
bottling plant
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a cloud-based reporting tool (ClicData). Wherever they
are, when connected to the Internet, supervisors can mon-
itor the evolution of different motor vibration speed states
and anticipate preparation of a maintenance schedule. The
online dashboard represents some self-explanatory

graphical gauges of the motor vibration severity criteria
in Table 1. Data on the dashboard is updated real-time from
a local MySQL server which receives real-time vibration
speed from the PLC CSV file database. The PLC itself
reads vibration speed from the vibration sensor mounted

Fig. 18 Conveyor motor
vibration in healthy state

Fig. 19 Conveyor motor in
satisfactory state
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on the conveyor motor (Fig. 9). Below are the gauges
states available on the online monitoring tool (Figs. 18,
19, 20, 21):

Figures 22, 23, and 24 below are two graphs displaying
the impact of our predictive maintenance strategy over
systems using normal periodic and reactive maintenance:

Fig. 20 Conveyor motor in
unsatisfactory state

Fig. 21 Conveyor motor in
unacceptable state
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Most of the time, failures on a motor do not happen instan-
taneously; it is a progressive state that deteriorates with time
motor’s health. In this approach, an increase of vibration speed
is the main reason of faults. Figure 22 displays the motor
vibration speed stages without using predictive maintenance
strategy. The system waits for a predefined time before main-
taining the motor (periodic maintenance) or for a fault to occur
in the system (reactive maintenance). Unplanned outages, rep-
resented by vibration speed increase on both graphs, always
exist in real plants. Vibration speeds of a motor will increase
until they reach an unacceptable state resulting in motor fail-
ure. Waiting for a specific time to perform maintenance of the
motor is therefore a risk to spend more resources on reactive
maintenance.

On the other hand, Fig. 23 shows a system in which our
predictive maintenance schedule, as developed in cases 1–
3, is implemented. It is very unlikely for this system to
experience motor unplanned failure because it continuous-
ly monitors the speed states. As per our strategy, the only
safe state for motor operation is the healthy state defined in
Table 1 vibration severity criteria: between 0.28 and
1.12 mm/s. Any increase of speed falling in the satisfacto-
ry range will generate after the configured time (case 2) a
predictive maintenance schedule and reduce risks to reach
to unsatisfactory speed range.

5 Conclusion

In this paper, an effective predictive maintenance strategy
for a conveyor motor based on Industry 4.0 concepts was
proposed. In the proposed strategy, we have rigorously
analyzed real-time vibration speed data collected from a
vibration sensor mounted on the conveyor motor and con-
nected to a Siemens S7-1200 PLC. From the analyzed
data saved in the PLC, early motors threats were automat-
ically detected based on ISO 2372 vibration severity
criteria and predictive maintenance schedule was generat-
ed accordingly. Furthermore, the strategy proposed a
decentralized monitoring system for the conveyor motor;
it included a cloud-based dashboard report displaying
real-time vibration speed states; and an instant email no-
tification system from the bottling plant to the intended
supervisor for every maintenance schedule generated.
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Fig. 22 Motor vibration speed in a system without predictive
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Fig. 23 Motor vibration speed in a system with our predictive
maintenance schedule

Fig. 24 Legends of Figs. 22 and 23
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Appendix—Some Figures

Fig. 25 Overall system’s architecture

Fig. 26 Flexible predictive maintenance rule programming structure
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Fig. 27 SMTP Email targeted notification to expert layout

Fig. 28 Analogue input configuration in PLC hardware configuration

3268 Int J Adv Manuf Technol (2018) 97:3251–3271



Fig. 29 Analogue input conversion to a real value

Fig. 30 Vibration speed unacceptable range detection

Fig. 31 Reset expert notification variable
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