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Abstract
In recent years, there is an increased in used of titanium alloys for some parts of mass-produced automobiles and
aerospace. However, titanium alloys are characterized by difficult machinability, high melting temperature, high
strength, low thermal conductivity, and high reactivity to oxygen, which overshadowed conventional manufacturing
processes. To this end, there is a pressing need for more efficient technologies for the manufacture of low-cost
titanium structures. Over the years, several joining techniques have been considered for fabrication of titanium
alloys. Nevertheless, laser beam welding presents a viable option for welding of titanium due its versatility, high
specific heat input, and flexibility. To date, under optimum processing conditions, the strength of the laser-welded
titanium alloys can be close to the original material; however, there are still some processing problems such as lower
elongation and corrosion resistance coupled with inferior fatigue properties. In this document, the laser beam
welding of similar and dissimilar titanium alloys is reviewed, focusing on the influence of the processing parameters,
microstructure-property relationship, metallurgical defects, and possible remedies.
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1 Introduction

With growing concern on the energy and environmental
challenges by the day, considerable efforts have been
rededicated toward minimizing the fuel consumption
and exhaust gas emission in automotive industries
around the globe. Several authors suggested that the
weight reduction of energy consuming components with
light structural materials such as aluminum, magnesium,
and titanium is considered as a promising approach to
achieve this goal [1–5].

Titanium and its alloys are one of the commonly used en-
gineering materials in many areas of applications ranging
from aerospace, medical, biomedical, biomaterial, petrochem-
ical industries because of their low density, excellent corrosion
resistance, high strength, and biocompatibility [3, 6–12].
Titanium alloys are characterized by difficult machinability,
high melting temperature, high strength, low thermal conduc-
tivity, and high reactivity to oxygen at typical welding tem-
peratures. These inherent material properties impose stringent
demands to the welding conditions. With recent advance-
ments in welding technologies, a number of joining tech-
niques have been developed for joining of titanium alloys with
the main objective of improving the weld quality, high effi-
ciency, cost-effectiveness, and safety. However, among the
welding techniques, laser welding recently gained popularity
as a promising joining technology for titanium alloys in in-
dustries because of its high precision, high weld quality, high
efficiency, excellent flexibility, in addition to low deformation
and distortion compared to other traditional welding processes
[13–20].

Nevertheless, the laser welding techniques for titanium al-
loy is a complicated process due to uneven temperature, non-
uniform chemical composition, and stress. Furthermore,
change in the heat input affects the weld microstructure and
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mechanical properties due to poor thermal conductivity of
titanium alloys [21]. Moreover, the capital cost of laser
welding is significantly higher than the traditional fusion pro-
cesses although it can be compensated with high and excellent
joint quality. Additionally, accurate beam and joint alignment,
safety requirements and the severe clamping and fitting, and
surface preparation before the welding are necessary for
obtaining a good quality weld [11, 22–30]. To better under-
stand and address these challenges, there is a need to compre-
hensively review the research conducted so far and provide
the most efficient strategies to address the challenges. Based
on the existing literatures, a great deal of research has been
conducted on the mechanical properties and microstructure of
the laser beam welded titanium alloys joints, particularly un-
der static loading condition [11, 21, 31, 32]. Under optimized
processing conditions, the static strength of the laser-welded
titanium alloy samples can be close to the original material;
however, there are still some processing problems such as
lower elongation and corrosion resistance coupled with infe-
rior fatigue properties [11, 33, 34].

At present, titanium alloys are joined to other metals
by laser beam welding under optimized processing con-
ditions. Particularly, Ti/steel, Ti/Al, and Ti/Mg dissimilar
alloys have been studies for their mechanical and met-
allurgical properties. Due to the variation in the work
hardening exponents of dissimilar alloys, the formation
of intermetallic compounds (IMCs) at the interfaces is
expected during cooling stages. A variety of processing
conditions with respect to the formations and effects of
the IMCs in relation to structure-property relationships
has been studied and correlated in literature [35–37].
Therefore, the potentials of laser welding techniques
for joining titanium to metals are also reviewed, with
focus on the strategies used to control the morphology
and existence state of intermediate phase and improving
the mechanical properties.

The general motives behind this review are to critically
examine the current state of the art and the future trends in
laser beam welding of titanium alloys and serve as foundation
for reliable laser welding production of titanium alloy joints.

2 Laser welding techniques for titanium alloys

2.1 Laser welding mode

Generally, depending on the heat input, conduction and
keyhole mode laser welding have been reported [19].
The conduction mode has a laser power density of less
than 103 W/cm2, and the energy absorbed is transferred
to the entire weld metal by conduction only (Fig. 1a).
Conduction mode has an aspect ratio of less than 0.5,
low coupling efficiency, and low welding depth [10, 38,

39]. In contrast, the keyhole mode is generally charac-
terized as a high-energy process in the range of 105–
107 W/cm2. Keyhole is formed inside the weld zone
due to the high power density which causes vaporiza-
tion of the metal as shown in Fig. 1b. Under keyhole
mode, the aspect ratio is above 0.7, narrower fusion
zone and heat-affected zone, and high efficiency and
high welding depth were reported [19, 34, 39–42]. For
titanium alloys weld, keyhole mode is mostly used be-
cause of the high input energy required [19, 39].

2.2 Laser welding processing parameters

The main challenge in laser welding of titanium alloys is the
selection of the optimum process parameters for achieving
better weld quality. Some of the most significant laser welding
processing parameters and their impacts on the welding pro-
cess under keyhole mode are deliberated in this section.

2.2.1 Laser heat source

Titanium alloys are joined by different laser heat
sources such as Nd:YAG [13, 23, 34, 39, 43, 44],
CO2 [7, 14, 22, 45], diode [38, 46], disk [27, 32, 47],
and recently developed fiber laser [10, 11, 42, 48–52].
However, CO2 and Nd:YAG lasers are mostly used.
Moreover, Nd:YAG continues to dominate the CO2 laser
as a result of the improvement in the output power,
high beam quality, and fiber glass delivery [53].
Therefore, compared with CO2 laser, Nd:YAG laser is
most suitable for titanium alloys because the weldability
and efficiency of the titanium alloys weld were found to
be higher with Nd:YAG laser [13, 23, 34, 39, 54]. Disk
laser source was reported to have high efficiency and
beam quality compared to traditional CO2 and Nd:YAG
lasers [55, 56]. On the other hand, diode laser was
reported to have a better weld quality compared with
disk laser for titanium alloys [46]. For instance,
Lisiecki et al. [46] studied the weldability of Ti6Al4V
alloy using diode and disk lasers and reported that the
diode laser yields a better joint quality. Recently, fiber
laser heat source was gaining attention as a suitable
welding process for joining titanium and its alloys due
of its compact size, high efficiency, and beam quality
[11, 51, 52].

2.2.2 Laser power and welding speed

The effect of the welding speed and laser power on the weld
shape has also been reported in the literature. Laser power and
welding speed affect the weld geometry and quality. Many
authors reported that the laser power directly the weld pene-
tration depth while welding speed has an inverse effect [11,
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23, 34, 39, 52, 54, 57–63]. For example, Fig. 2 shows the
effect of welding speed and laser power on the depth of pen-
etration for Ti6Al4V alloy laser weld. Akman et al. [23] in-
vestigated the influence of the laser output parameters on the
weld quality for Ti-6Al-4V alloy using pulse Nd:YAG laser.
The results indicated that the penetration depth and geometry
could be controlled by regulating the laser output parameters
(pulse energy and pulse duration). Campanelli et al. [52] laser-
welded Ti6Al4V alloy using fiber laser and observed that at
constant laser power (1.2 kW) the change of welding speed
from 2 to 2.5 m/min transformed the weld bead geometry
from nail head to V shape. Mueller et al. [54] found that the
weld bead geometry of Ti6Al4V is determined by the welding
speed. The authors suggested that the tendency to entrap gases
is more likely while welding with high speed. Some authors
observed that for fiber laser-welded Ti6Al4V, high welding
power led to spatter and undercut, whereas, incomplete pene-
tration occurred at low laser power and high welding speed
[60]. On the other hand, Sun et al. [59] compare the bead
geometry and microstructure of Ti6Al4V alloy using TIG,

plasma, and CO2 laser heat sources. It was found that the weld
geometry depends on the welding speed. Interestingly, the
grain size of the laser weldments was observed to be smaller.

2.2.3 Defocused position

Considerable number of studies suggested that the power den-
sity is determined by the laser power and the distance between
the base metals and the focus plane [11, 23, 55, 60, 64]. Kabir
et al. [64] studied the effect of defocusing distance and
welding speed on the transverse weld geometry. It was found
that both parameters could be optimized to obtain a good
quality weld with low geometry defects. Kumar et al. [11]
laser welded Ti6Al4V. The defocused position was reported
to influence weld geometry. However, the overall fusion zone
area remained unaffected. Recently, Caiazzo et al. [55] laser-
welded Ti6Al4V sheets in butt configuration using disk laser
and reported that the defocusing affect the crown and the root
width of the weld.

2.2.4 Operational mode

Both pulsed wave (PW) [13, 23, 43, 65–70] and continuous
wave (CW) lasers [22, 34, 45, 71–73] were used for welding of
titanium alloys. However, CW is mostly employed because of
its higher penetration, excellent beam quality, higher welding
efficiency, and, therefore, gained a great attention at present for
welding of titanium alloys and will assume a dominant role in
the future because of its lower operating and investment costs
compared to pulse wave lasers [22, 73]. In comparison, pulsed
Nd:YAG laser provides benefit such as lower heat input, less
deformation, shorter solidification time, and narrower weld
bead and heat-affected zone and, therefore, a PW mode laser
is more suitable for welding thin sheet [13, 67, 69, 74].

Fig. 2 Effect of welding speed and laser power on the depth of
penetration for Ti6Al4Valloy laser weld [57]

Fig. 1 Laser welding modes [19]
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2.3 Shielding gas

Titanium alloys were reported to be extremely active at high
temperatures, particularly in a molten state and readily pick up
atmospheric gases, dirt, grease, and refractories leading to
embrittlement of the weld pool. Therefore, titanium alloys
during laser welding have to be completely shielded in an inert
or vacuum environment [6, 7, 22, 23, 75]. Additionally, the
use of inert gas during laser welding efficiently protects plume
formation and improve the keyhole stability [43, 76, 77]. The
widely used inert gas for shielding the titanium alloy welds is
argon [10, 30, 78, 79], helium [23, 41, 45], or argon-helium
mixtures [22, 34, 39, 80]. However, argon is the most pre-
ferred choice for titanium alloys welds [10, 81]. For instance,
the influence of shielding gases on the T3-2024 weld quality
revealed that both the argon and the helium gases could effec-
tively shield the welds from oxidation. However, under the
lowest speed and at the maximum focal position, higher ion-
ization potential and thermal conductivity of helium resulted
in an excessive weld width [81].

2.4 Filler materials

The addition of filler wire was reported to eliminate face/root
undercut (underfill) and enhance the mechanical properties of
the joint. However, the use of filler wire may give more op-
portunities for hydrogen contamination (porosity) [82–87].
Cao et al. [82] reported that the use of filler wire significantly
decreased the underfill defects of Ti-6Al-4V alloy and a rela-
tively high ductility was obtained but slightly increased the
porosity for laser welds. Kashaev et al. [85] studied Nd:YAG
single-sided laser beam welding of Ti-6Al-4V T-joints using a
compatible filler (Titanium Grade 2). The use of filler sup-
pressed the formation of underfills and undercuts.
Furthermore, several studies suggested that the use of filler
wire helps in modifying the weld zone and make up the loss
of volatile alloying elements [84, 88–90]. Cai et al. [91] suc-
cessfully welded ɣ-TiAl alloy using pure Ti filler metal by
laser. The use of filler improved the joint performance and
strength by about 74.8%, and an elongation of 94% of the
base metal was achieved at room temperature.

2.5 Surface preparation

Titanium alloys are readily oxidized when exposed to atmo-
spheric air and an oxide film is formed on its surface. The
oxide layer was reported to largely depend on the composi-
tion, structure, morphology, mechanical condition, and tem-
perature. Poor surface preparation and cleaning of the base
metals and the filler materials before and during welding
and/or poor shielding was reported to be the main factors
responsible for the surface oxidation [6, 7, 75, 92].
Therefore, to obtain a sound weld with titanium alloys, the

oxide layer and other contaminants need to be thoroughly
removed by surface pretreatment. Surface preparation of the
titanium alloys was also reported to improve its laser beam
absorption [22]. A number of surface preparation treatments
were reported, such as sandblasting [57, 75, 82, 93]. Bertrand
et al. [93] reported an improved laser beam absorption due to
reduced beam reflectivity in commercially pure titanium sam-
ples when sandblasted. Recently, the use of more advanced
surface treatment based on laser cleaning showed that the
surface treatment improved the absorption of laser radiation
of titanium alloy surface and the weld penetration [92, 94–97].
Kumar et al. [94] studied the laser cleaning of Ti3Al2.5V
alloy. It was found that the laser cleaning treatment improved
the laser beam absorption and weld penetration by about 20%,
and a defect free weld was produced.

2.6 Joint design

Joint preparation is an important step in laser welding, with
appropriate joint preparation, even a very thick section can be
laser welded using multipass techniques. The joint design is
generally specific in nature depending on the application.
Different joint configurations have been applied during laser
welding of titanium alloys, such as single-pass V-joint and H-
joint [98], T-joint [47, 99, 100], butt [22, 23, 34, 43, 45, 71,
101], and lap [22, 58, 102]. However, butt joints are the most
commonly used joint configuration. The general consideration
for the butt joint design is that the alignment between the beam
and the joint has to be good to prevent concavity due to air gaps
[25]. Additionally, the general fit up tolerance for butt-welded
joint was reported to be within 15% of the work piece thick-
ness.Misalignment and out-of-flatness should be less than 25%
of the work piece thickness [101]. One drawback with butt
welding is the difficulty of the joint fit up, which requires ex-
treme precision along the edges to be welded [25]. However,
the use of filler metals lowered the strict joint fit up requirement
of the butt joint [84, 87, 88, 101, 103]. Sharif et al. [84] reported
a full butt joint penetration of Ti5553 plates up to a joint gap of
0.5 mm with a Ti6Al4V filler wire. The authors suggested that
the welded joint with filler displayed a smoother transition and
minimized the sensitivity to fatigue failure. Furthermore, for
thin Ti sheets, some authors suggested that the use of filler
metal or edge preparation is not necessary [13]. Accurate
fixturing is expensive and time-consuming, but required for
successful laser welding of titanium alloys.

3Microstructural evolution during laser beam
welding of titanium alloys

For Ti alloys welds, three distinct regions, i.e., the base metal
(BM), the heat-affected zone (HAZ), and the fusion zone (FZ),
depending on the temperature were experienced during the
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welding operation [23, 34, 72, 84]. The analysis of the micro-
structure of a typical α titanium alloy (Ti-5Al-2.5Sn) showed
that the BM contained fine equiaxedα-grains as shown in Fig.
3a. The fusion zone consists of very fineα′martensite because
of the low heat input and higher cooling rate in the fusion zone
(Fig. 3b) [104]. Similar formation of α′ martensite for α tita-
nium alloys was reported by several authors [105, 106]. In
contrast, no clear evidence of martensite has been observed
in commercially pure titanium (CP-Ti) laser weld bead by
some authors [29, 38] due to relatively low cooling rate in
the letter treatments. The HAZ contains a mixture of martens-
ite, primary α phases, β phases, and transformed β phases
(Fig. 3c). Liu et al. [79] studied the microstructural
evolution of the fusion zone of commercially pure tita-
nium alloy (CP-Ti) using fiber laser. The authors found
that at a low cooling rate, granular-like grains were
formed in the fusion zone. However, with an increasing
cooling rate, the microstructure of the fusion zone
changed from granular-like to columnar-like. Liu and
co-workers suggested that the microstructural evolution
of the fusion zone of the pure titanium alloy depends
significantly on the β→ α phase transformation associ-
ated with the cooling rate. Zhang et al. [107] investigat-
ed the microstructure and properties of CO2 Laser-MIG
hybrid welded joints for 4-mm-thick Ti-70 alloy (near
α-Ti alloy). They found that coarse columnar crystals
and isometric crystals, respectively, formed in the
welding seam and HAZ, while the FZ composed of
coarse α′ martensite and spiculate α microstructure.
Recently, Junaid et al. [104] joined Ti5Al2.5Sn by
pulsed Ng:YAG and pulsed tungsten inert gas. It was
found that the higher cooling rate associated with laser

process led to a complete α′ martensitic transformation
in the FZ, whereas, due to a lower cooling rate, α′ and
acicular α were formed within an equiaxed β matrix in
pulse tungsten inert gas welded joints.

The microstructure of a typical laser-welded α+β titanium
alloy has also been described in the literature. Generally, the
BM consists of two phases: the β-phase dispersed in a domi-
nating α-matrix, the FZ consisted of α′ martensitic structure,
and the HAZ consisted of martensitic α′, acicular α, and pri-
maryα [10, 23, 34, 38, 39, 41, 58, 71, 74, 87, 108]. The typical
microstructure of the laser-welded Ti6Al4V is shown in Fig. 4
[11]. Figure 4a shows the optical micrograph of the BM, HAZ,
and FZ of the weld bead, whereas, Fig. 4b, c shows the micro-
structure of BM. It consists of two phases,β-phase dispersed in
a dominating α-matrix. The β-phase with body-centered struc-
ture (BCC) is distributed along the boundaries of α-phase.
Figure 4d, e shows the optical and FESEM microstructure of
the FZ, respectively. It can be seen that the α′martensitic struc-
ture having acicular morphology was formed. Furthermore, a
mixture of martensitic α′, acicular α, and primary α was
formed in the HAZ. The observed microstructure is typical
for laser-welded Ti6Al4V alloy [11, 23, 33, 34, 45, 55]. Cost
et al. [10] reported the same martensitic structure at the fusion
zone for Ti6Al4V alloy while using fiber laser and a fine cel-
lular dendritic structure at the HAZ. The microstructure mor-
phology of the fusion zone was reported to be significantly
dependent on the heat inputs, i.e., at low heat inputs, the weld
bead morphology was needle-like which transformed to plate-
like at higher heat inputs. Squillace et al. [39] reported that the
high heating above the beta transus and fast cooling rate of laser
welding were the main cause of martensitic α′ formation. The
authors suggested a cooling rate of 410 °C/s for the base metal

Fig. 3 Microstructure of a typical
α-titanium alloy. a BM. b FZ (α′
martensite formation). c FZ/HAZ/
BM [104]

Int J Adv Manuf Technol (2018) 97:1071–1098 1075

A 

B C 



of the Ti6Al4V alloy for a complete transformation to a mar-
tensitic α′ phase. Recently, Fomin et al. [33] joined a 2.6-mm-
thick Ti6Al4V alloy using CW ytterbium fiber laser. It was
found that the fusion zone consists of mainly acicular α′ mar-
tensitic structure within the β grains because of the
diffusionless β → α’ transformation upon high cooling rates.

In recent years, several authors focused on improving the
welding properties of titanium aluminide (Ti2AlNb-based al-
loys) containing the orthorhombic O phase because of their
excellent room and elevated temperatures properties [109] and
their microstructure have been systematically investigated.
Generally, Ti2AlNb-based alloys base metal consists of three
phases, i.e., α2, O, and B2 phases, with needle-shaped O
phase and spherical α2 dispersed within the B2 matrix as
shown in Fig. 5a [31, 110–113]. Figure 5 shows a typical
microstructure of a laser-welded Ti22Al27Nb alloy. It was
found that cellular grains whose orientation is perpendicular
to the boundary between the fusion zone and the heat-affected

zone were generated in the weld (Fig. 5b, c). The FZ of the
welded joint was composed of a single B2 phase due to the
fast cooling rate in laser beam welding greater than 120 K/s
[114] and the high content of niobium [31, 110–113,
115–117]. Boehlert et al. [112] observed that the microstruc-
ture of Ti23Al27Nb alloy was fully B2 after 1090 °C solution
treatment. Similarly, Wu et al. [113] reported that the micro-
structure of the Ti-24Al-17Nb laser weld was primarily com-
posed of an ordered B2 phase and independent of laser power.

4 Mechanical properties of titanium alloy
laser-welded joints

4.1 Hardness

The hardness of joints is closely related to their microstructure
[34, 49, 118]. The inhomogeneity of the microstructure

Fig. 4 Typical microstructures of
the different zones in the typical
α+β alloy laser-welded joint. a
Optical images consisting BM,
HAZ, and FZ. b Optical image. c
FESEM of BM. d Optical image.
e FESEM of FZ [11]
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resulted in diversity of mechanical properties. Generally, the
microhardness and strength of existing phases in the joints
follow the order martensite α′ > α phase > β phase [118].

For typical α-alloys and near-α alloy, the FZ of the titani-
um alloy welds was reported to have high microhardness val-
ue than the BM, due to the formation of a fine acicular α′
martensitic structure. Then, the microhardness drops rapidly
in the adjacent HAZ and the BMhas the lowest microhardness
value [24, 38, 79, 93, 119]. Amaya et al. [38] observed that for
high power diode laser-welded commercially pure titanium
alloy (grade 2), the FZ has the highest hardness ranging from
140 to 200 HV compared to the untreated BM (110~140 HV).
The highest microhardness obtained in the FZ was associated
with formation of acicular α-grains. Wang et al. [119] laser
welded 2-mm-thick TA15 alloy and reported that the Vickers’
microhardness of the FZ was ranging from 353.86 to
368.81 HV, HAZ has a Vickers’ microhardness ranging from
346.00 to 362.91 and the BMVickers’microhardness ranging
from 326.65 to 347.53 HV. Chamanfar et al. [24] found that
for laser-welded 76-mm thick Ti6242 alloy, the rapid solidifi-
cation of the weld pool led to the formation of the acicular α′
martensite with a hexagonal closed packed structure (HCP) in
the FZ. The average microhardness of the FZ was 108 HV
higher than the BM (328 HV). Recently, Junaid et al. [104]
joined Ti-5Al-2.5Sn by pulsed Nd:YAG laser and pulsed
tungsten inert gas. The results indicated that the BM has an
average microhardness of 343 HV, and the highest microhard-
ness value was found in the FZ of the pulsed laser-welded
joint, which is 54.57 HV higher than the microhardness of
the BM. Moreover, the average microhardness of the pulsed
TIG weldment was found to be 372.38 HV. Generally, the
microhardness of the FZ is mainly determine by the martens-
itic formation, which depends significantly on cooling rates.

Similarly, the highest microhardness was obtained in the
FZ for α-β titanium alloys because of the formation of the
needle-like martensitic α′ presence in the solidified fusion
zone [10, 11, 13, 25, 27, 34, 38, 39, 47, 55, 58, 120–122].
Akman et al. [23] observed the microhardness values ranging
between 350 and 500 HV for an α′-martensitic microstructure
in 3-mm-thick Ti6Al4V alloy weld, while that of the BM
ranges between 300 and 350 HV while using pulsed

Nd:YAG laser. Cao et al. [122] reported that for CW
Nd:YAG laser-welded 3.2-mm-thick Ti6Al4V alloy, the mi-
crohardness increases from the BM (312 ± 8 HV) to the FZ
(360 ± 4 HV). Cao et al. [34] laser welded Ti6Al4Valloy with
1- and 2-mm thickness and reported that the FZ has an average
microhardness increase of 75 and 58 HV for 1- and 2-mm
plates, respectively, compared to BM. The authors observed
that the microhardness values of the HAZ and FZ showed no
clear tendency to change with welding speed as observed by
Sun et al. [59]. Kumar et al. [11] also observed the highest
microhardness values at the FZ, ranging from 352 to 368 HV,
compared to the base metal zone (BMZ) (305~315 HV) for 5-
mm-thick Ti6Al4V alloy using fiber laser heat source.
Recently, Fomin et al. [33] joined 2.6-mm-thick Ti6Al4V al-
loy using CW ytterbium fiber laser. The microhardness distri-
bution is shown in Fig. 6. The BM has an average microhard-
ness of 336 ± 8HV05, whereas, the FZ exhibited the highest
average microhardness, approximately 18% greater than for
the BM. Fang et al. [73] compared laser-welded Ti-2Al-
1.5Mn titanium alloy under pulse wave and continuous wave
mode using fiber laser. Figure 7 shows the results of the mi-
crohardness distributions across the weld zones. It can be seen
that the average microhardness of the FZ was slightly lower

Fig. 5 The microstructure characterization of laser-welded Ti22Al27Nb. a BM. b HAZ. c FZ [31, 52]

Fig. 6 Vickers’ microhardness of laser-welded Ti6Al4Valloy across the
weld line [33]
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than that of the fully transformed HAZ: due to the finer α′
martensite structure produced by the faster cooling rate. In
contrast with pulse wave joints, the continuous wave welded
joints has a higher average microhardness value in the HAZ
and FZ due to the decreasing of welding specific heat input.
Generally, the significant fluctuations in microhardness values
at various zones were mainly associated with differences in
grain sizes and phase constituent coupled with closely packed
structure of titanium [79].

4.2 Tensile properties

Microstructures play an important role in determining the me-
chanical properties and fracture behavior of titanium alloys
[123]. The tensile strength of the titanium alloy weld was
observed to be almost similar to the base metal [34, 41, 48,
61, 70, 76, 78, 119, 122]. Fang et al. [74] observed an average
tensile strength of 661 MPa comparable to the BM (642MPa)
for thin Ti2Al1.5Mn butt welds. Similarly, the authors found
that the elongation of the FZ (22%) was comparable to that of
the BM (24%). Chamanfar et al. [24] reported that for a laser-
welded Ti6242, the ultimate tensile strength slightly decreased
from 1120MPa at the BM to 977 ± 4MPa at the FZ. The yield
strength and elongation of the FZ (775 ± 7 MPa, 13.4 ± 0.8%,
respectively) were comparable to that of the BM (880 MPa,
19.4%, respectively). However, several authors noted that the
presence of weld defects tends to deteriorate the joint mechan-
ical performance. For instance, Cao et al. [34] reported for
laser-welded Ti6Al4V alloy, the tensile strength and yield
strength slightly increased from the BM (950, 880 MPa, re-
spectively) to FZ (975–1043, 936–987 MPa, respectively).
However, a significant decrease in the FZ elongation at frac-
ture (6.5–12.4%) was observed compared to the BM (14%).
The obvious decrease in elongation at fracture of the weld was
associated to the presence of micropores and aluminum oxide

inclusions. Kumar et al. [11] reported that the ultimate tensile
strength and elongation of Ti-6Al-4V welds of 872 MPa and
3.74%, respectively, lower than the BM 957 MPa and 11%,
respectively. The presence of weld porosity was considered
the main cause of the degraded mechanical properties
observed.

The strength of the laser-welded Ti2AlNb-based alloys was
reported to be almost similar to that of the base metal [31, 111,
113, 116, 124]. For instance, the tensile strength of Ti-22Al-
27Nb was reported to be 1008–1036 MPa at room tempera-
ture, close to that of the base metal (1008 MPa). The elonga-
tion was found to be 56% of the base metal. However, the
tensile strength decreases to about 733 MPa (with an elonga-
tion of 2.93%) when tested at 650 °C. The lower ductility of
the weld was associatedwith lowO phase slip [31]. Chen et al.
[116] also reported high temperature brittle behavior due to
nucleation and growth of the O phase during laser welding of
Ti-22Al-25Nb alloy. These results suggested that both the
strength and the ductility are significantly influenced by
temperature.

Moreover, some studies suggested that the joint gap toler-
ance has a direct effect on the plastic deformation and the
percent elongation. However, the joint gap distance has no
significant impact on the tensile strength of the titanium alloy
welds. Therefore, an appropriate joint gap distance should be
maintained for judicious combination of mechanical proper-
ties [84, 125, 126]. Sharif et al. [84] recommended that the
welding-gap distance to bemaintained no less than 0.5 mm for
a laser-welded 3.1-mm-thick Ti-5Al-5V-5Mo-3Cr (Ti5553)
plate while using CW Nd:YAG laser. Furthermore, several
authors suggested that maintaining a high-notched strength
is compulsory during tensile straining at elevated temperature.
Tsay et al. [40, 127] studied the effect of notched tensile
strength on the laser-welded Ti-6Al-6V-2Sn and Ti-4.5Al-
3V-2-Fe-2Mo alloys. The notched tensile strength of the
welded specimens was found to be much lower than that of
the base metal at room temperature. However, reversed ten-
dency was observed at elevated temperature. The joint prop-
erties of the as-welded and BM samples decreased with in-
creasing testing temperature and that the post weld heat treat-
ment has helped to maintain the joint properties up to 450 °C.

Based on the existing literatures, the joint strength could be
improved by preheating, post heating, or addition of alloying
elements [40, 91, 128–130]. Liu et al. [130] studied the influ-
ence of in situ and post weld heat treatment on the laser beam
spot-welded Ti-42Al-2.5Cr-1Nb-0.7Si-0.5B TiAl-based alloy.
It was found that conventional post weld heating for 2 h at
1260 °C significantly improved the mechanical properties.
For instance, a maximum ultimate tensile strength of
564 MPa and elongation to fracture of 1.33% at 750 °C was
obtained. On the other hand, Cai et al. [91] investigated laser
welding TiAl alloy (Ti-48Al-2Nb-2Cr) by using pure Ti filler
metal and observed an improvement in the room temperature

Fig. 7 Microhardness distribution of pulse and continuous wave laser-
welded Ti2Al1.5Mn alloy [73]
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tensile strength and elongation of the laser-welded joints to
about 288 MPa and 2.19%, respectively, accounting for 74.8
and 94.0% of the BM, respectively.

4.3 Superplasticity

Considerable number of studies suggested that the Ti-6Al-4V
is well known to possess an excellent superplastic property
under suitable tensile conditions [71, 72, 131]. Joints welded
by high-energy beam welding such as electron beam welding
and laser beam welding exhibit possibly better superplasticity
because of their narrow HAZ and finer grained weld beads.
However, the electron beam technique needs a vacuum envi-
ronment, which limits its industrial application. As conse-
quence, laser-welded titanium sheets may be used for super-
plastic forming in the production of complex engineering
structures [71, 72, 131–134]. Generally, the superplastic be-
havior of the laser-welded titanium alloys is essentially de-
pends on the welding conditions. Therefore, to achieve an
equivalent superplastic performance of the parent metal, opti-
mization of the process parameters is required.

It worth noting that deformed Ti-6Al-4V laser welds also
exhibit superplastic behavior [71, 72, 132, 133, 135]. The
highest joints elongations reached 397% when deformed in
the temperature of 900 °C and 10−3/s strain rate was reported
[132]. The stress-strain curves shown in Fig. 8 exhibited soft-
ening character of superplastic deformation. When compared
with the unwelded samples, the flow stress of the welded
specimen was higher and elongation was lower under the
same condition. The analysis of the microstructure revealed
that the superplastic behavior of Ti-6Al-4V was governed by
the α to β phase transformation and grain boundary sliding
(GBS) [132, 133]. In turn, dynamic globularization process is
enhanced by increasing temperature and decreasing strain rate
[132]. In another study, the formability of the laser-welded
joints between fine grained and standard Ti-6Al-4V showed
that the superplastic forming in the fine grained Ti-6Al-4V
sheet was observed without crack formation in the HAZ or
the FZ, but the weld seam is resistant to superplastic forming
due non-equilibrium thermal process during laser welding
[136]. Similarly, Wang et al. [134] studied the mixed dynamic
recrystallization mechanism during the globularization

process under a hot tensile deformation for laser-welded
TA15 alloy at temperature range of 800–900 °C and 1.0 ×
10−1 to 1.0 × 10−3/s strain rate. The authors observed that the
continuous globularization is the major hot deformation
mechanism for the laser-welded TA15 alloys. However, the
dynamic recrystallization plays an important role during the
globularization process. A maximum elongation of 292%was
achieved at 900 °C, 0.0001 s−1, which exhibits superplastic
characteristics.

4.4 Fatigue

Welded joints of titanium alloys are usually subjected to fluc-
tuating loads leading to microcracks, which grow during the
life of the joint as fatigue. Therefore, the study of the fatigue
crack growth of the titanium alloy welded joints is necessary
to prevent the failure with prediction such that the crack will
not propagate prior to detection [137]. Generally, evaluating
the fatigue life of a welded titanium alloys joints is very diffi-
cult because of the interactions between the different factors
such as microstructural modifications induced by the thermal
cycle, distortions, residual stresses, and local and global ge-
ometry of the seam, which affect the fatigue limit of the
welded structures by producing stress concentration near the
weld toe. Unfortunately, no guidelines are actually available to
evaluate the fatigue life for titanium alloys unlike that of steel
and aluminum structures [138].

Several researchers reported that the fatigue crack growth
resistance of the titanium alloy is significantly reduced by
welding process, but titanium alloy laser welds exhibited the
highest fatigue growth resistance compared to other traditional
fusion processes [14, 15, 28, 39]. For instance, regardless of
the heat source, the fatigue resistance of Ti6Al4V alloy was
found to be lower than the base metal and laser welding was
reported to exhibit the higher fatigue performance. The pres-
ence of very fine lamellar shaped α in the weld metal was
main reason for the superior fatigue performance observed
[14, 15].

For defective welds, fatigue crack is initiated from the weld
defects such as porosity and underfill, which degraded the
fatigue performance [28, 33, 39, 42]. Tsay et al. [28] reported
that for laser-welded Ti6Al4V joints, the effect of fatigue

Fig. 8 Typical stress-strain curves
of Ti-6Al-4V laser-welded
specimens illustrating
superplastic behavior [132]
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growth resistance was highly significant at higher stress ratio
and that the FZ fatigue crack growth resistance was much
lower than for the BM. Squillace et al. [39] reported that the
underfill radius influences the fatigue performance of laser-
welded Ti6Al4V butt joints. Recently, Fomin et al. [33] inves-
tigated the high cycle fatigue performance of fiber laser-
welded Ti6Al4V butt joints. Underfill and reinforcements in
the weld degraded the fatigue performance of the joints. The
authors suggested that the fatigue performance of the joints
could be improved by machining the weld reinforcements and
underfill flush (Fig. 9). The fatigue limit of the BM in the as-
received condition was 650 MPa, compared to 720 MPa after
milling the surface of the samples, whereas, the fatigue limit
after limit after milling the weldment flush increased to
500 MPa. In addition, post weld heating above 750 °C further
increased the fatigue limit to 550 MPa.

4.5 Fracture toughness

In laser-welded structures, fracture toughness is believed to be
essentially influenced by volume defects and primarily cracks.
To evaluate the safety of structure, the investigation of the
effect of welding on the fracture toughness is crucial.
However, few works have been reported for the fracture
toughness of titanium alloys welded joints. Shi et al. [7] stud-
ied the effect of laser welding on the fracture toughness of a
Ti-6.5Al-2Zr-1Mo-1V sheet. It was found that the fracture
toughness of the weld zone in the as-welded condition was
lower than for the base metal due to rapid cooling during laser
welding, and post weld heat treatment (PWHT) at 650 °C for
2 h further reduced the fracture toughness considerably. The
further decrease in the fracture toughness observed after
PHWT was associated with the formation of coarsened cast
structure in weld metal. Fracture toughness of the weld can be
improved by slow cooling or PWHT at or above 760 °C [33].

4.6 Corrosion resistance

In view of the potential applications of titanium alloys in med-
ical, chemical, and petrochemical industries, several authors
studied the corrosion behavior of the titanium laser welds [38,
105, 139–144]. Compared with many other metals, titanium
alloys have excellent corrosion resistance due to the formation
of stable, continuous, protective, and adherent oxide film on
its surface in the presence of oxygen and moisture, further
improvement is still required for some applications such as
biomaterials [105]. Generally, the surface characteristics de-
termine the corrosion resistance and, therefore, many surface
modification techniques such as laser remelting, laser metal
deposition, heat treatment, or cryogenic treatments were
adopted to improve the wear and corrosion resistance, thus
extend their service life in harsh environments [38, 105,
139–145]. Among the techniques, laser remelting treatments
have been performed with different laser sources. For exam-
ple, Sun et al. [105] and Amaya et al. [38, 139] observed that
the microstructural transformation of the commercially pure
titanium alloy (grade 2) from the α phase to acicular martens-
ite significantly enhances the corrosion resistance in NaCl
solutions during laser remelting treatment. However, the laser
remelting treatments do not seem to alter the corrosion resis-
tance of the Ti6Al4V specimens significantly, because they do
not produce phase transformations [38]. In comparison, the
pitting corrosion resistance of laser-treated Ti6Al4V samples
in NaCl and Hank’s solutions under the influence of argon and
nitrogen-shielding gases was investigated using excimer laser
[140]. The excimer surface treatment was reported to improve
the pitting potential particularly under argon shielding. Garcia
et al. [143] reported that laser remelting treatment of Ti-6Al-
4V and commercially pure Ti in a nitrogen atmosphere pro-
duces sufficiently dense and defect-free TiN coatings which
improved the corrosion resistance of the Ti alloys.

On the other hand, Zhu et al. [145], studied the effect of
cryo-treatment on corrosion behavior and mechanical proper-
ties of laser-welded commercial pure titanium in an artificial
saliva solution (0.4 NaCl, 0.4 KCl, 0.795 CaCl2·2H2O, 0.78
NaH2PO4·2H2O, 0.005 Na2S·2H2O, 1.0 CO(NH2)2). The re-
sults showed that the laser-welded titanium after cryo-
treatment has the highest passivation behavior. The authors
also found that both the tensile strength and the elongation
of titanium and laser-welded titanium could be improved by
cryo-treatment without affecting its corrosion resistance.

5 Laser welding of titanium to other alloys

Recently, hybrid structures of dissimilar joints between differ-
ent titanium alloys as well as titanium and other lightweight
alloys such as Ti/Al, Ti/Mg, and Ti/Ti and even with harder
alloys such as steels are widely used for many applications, inFig. 9 Fatigue behavior of laser-welded Ti6Al4Valloy [33]
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order to improve performance, cost-effectiveness, and to ex-
ploit the advantages of different materials. Thus, it is impor-
tant to understand the joining mechanism and performance of
titanium to other metal dissimilar joints. However, joining of
dissimilar materials is challenging largely due to large differ-
ences in physical and metallurgical properties. Table 1 com-
pares the most significant room temperature physical proper-
ties of Ti, Al, Mg, Ni, and Fe [5, 53, 101, 146]. Over the years,
varieties of titanium/other metals have been joined by laser
welding under optimized processing conditions. In this sec-
tion, the potential of several laser-welding techniques for join-
ing titanium to other alloys is reviewed.

5.1 Ti/Ti dissimilar alloys

Recently, efforts have been intensified in developing
high temperature titanium intermetallic for high temper-
ature services, in particular, Ti2AlNb-based alloys con-
taining the orthorhombic O phase have received wide
attention as potential materials for aircraft engine be-
cause of their high fracture toughness, high specific
strength, and room temperature ductility [147, 148].
Hybrid structures made from the Ti2AlNb-based and
conventional titanium dissimilar alloys are often used
for the critical parts of some aircraft engines [110].
Thus, the establishment of the most suitable joining
techniques for Ti2AlNb-based to conventional titanium
alloys is essential [110, 149, 150]. Despite the lack of
suitable filler metals for the titanium aluminides which
hindered its wide applications [151], some work exists
on the laser welding process for Ti2AlNb-based to tita-
nium dissimilar alloys including Ti-22Al-27Nb/TC4
[110], Ti-22Al-25Nb/TA15 [150, 152], BTi-6431S/
TA15 [153], and Ti–22Al–27Nb/TA15 (laser-TIG
hybrid) [154]. So far, most of the work focused mainly

on microstructure and mechanical properties. The micro-
structural evolution of the laser-welded Ti2AlNb-based
alloys to other titanium alloys joints revealed that the
single B2 phase is easily formed in the FZ, which de-
grades the weld performance [110, 150, 152–154]. For
instance, Lie et al. [110] studied the microstructural
evolution and mechanical properties of laser-welded Ti-
22Al-27Nb/Ti-6Al-4V dissimilar joints. The weld metal
was composed of mainly B2 and martensitic α’ due to
the high cooling rate and the uneven distribution of the
β phase stabilizer. Furthermore, the phase composition
in the HAZ varied with thermal cycles during welding.
The presence of the B2 and the martensitic α’ phases in
weld improved the tensile strength up to 1043 MPa,
about 92% of the Ti6Al4V alloy, but the ductility
dropped sharply to only 5.65%. A similar trend was
observed for Ti-22Al-25Nb/TA15 dissimilar alloys
[150]. In both cases, a twinned slip system was consid-
ered the main reason for the rapid drop of the ductility
in the FZ [110, 150]. Shen et al. [152] joined 22Al-
25Nb/TA15 dissimilar titanium alloys under single and
dual beam. It was found that a single B2 phase was
formed in the FZ during the single mode because of
the β stabilizer and rapid cooling rate of the laser
welding, while B2 and O phases were observed during
the dual mode process because of the decrease in the
cooling rate. The formation of the hard O phase in the
FZ during the dual mode increased the average tensile
strength of the welded joints from 943.2 to 1011 MPa.
Furthermore, the elongation was increased from 3.56 to
5.67% due to the deeper and evener dimple compared
to the single mode process.

Table 2 compares the joint strength of Ti/Ti dissimilar
joints under different laser welding conditions. The compari-
son of the dissimilar joints tensile strength shows that the

Table 1 Room temperature physical properties of Ti, Fe, Al, Mg, and Ni [53, 101, 146]

Properties Unit Titanium Iron Aluminum Nickel Magnesium

Ionization energy eV 6.8 7.8 6 7.6 7.6

Specific heat J/kg/K 519 795 1080 460 1360

Latent heat of fusion kJ/kg 419 272 398 297 368

Melting point °C 1667 1536 660 1455 650

Boiling point °C 3285 2860 2520 2730 1090

Viscosity kg/m/s 0.0052 0.0055 0.0013 0.0049 0.00125

Surface tension N/m 1.65 1.872 0.914 1.778 0.559

Thermal conductivity W/m/K 22 38 238 88.5 78

Thermal diffusivity m2/s 2.15 × 10−6 6.80 × 10−6 3.65 × 10−5 22.66 × 10−6 3.73 × 10−5

Coefficient of thermal expansion 1/K 8.9 × 10−6 10 × 10−6 24 × 10−6 13.3 × 10−6 25 × 10−6

Density kg/m3 4500 7015 2385 8900 1590

Elastic modulus N/m3 10.3 × 1010 21 × 1010 7.06 × 1010 19.3 × 1010 4.47 × 1010

Electrical resistivity μΩm 0.4 1.386 0.2425 0.72 0.274
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tensile behavior of the welded joints depends largely on the
phase compositions. Furthermore, the results of these studies
confirmed that joint performance is significantly influenced
by temperature.

5.2 Ti/steel

Steel is currently the structural material of choice, due to their
inherent properties, including high strength and toughness,
good ductility, and low cost. With the expanding use of Ti,
there is considerable interest in joining Ti with steel as these
joints have many applications [155, 156]. Nevertheless, the
dissimilar joining of Ti with steels is very difficult due to the
limited mutual solubility of Ti and Fe in the solid state [157]
and the wide difference in the coefficient of linear expansion
develops strain at the bond interface of the dissimilar metals
[158]. When Ti is joined with steel, brittle Ti-based interme-
tallic phases, such as TixFey, TixNiy, and TixCry, are readily
produced and, hence, the bonding strength significantly dete-
riorated [155, 159–164]. Therefore, suppressing the formation
of hard and brittle IMCs is the key to obtaining a reliable joint.

5.2.1 Autogenous laser welding of Ti/steel

An autogenous laser welding would not usually be expected
to produce joint with good mechanical resistance. However,
autogenous lap welding has been reported with a joint strength
of up to 190 MPa [156, 161]. Zhao et al. [161] studied the
performance of laser-welded Ti-6Al-4V/42CrMo dissimilar
alloys using experimental and numerical simulation. The anal-
ysis interface characteristics showed that TiFe and TiFe2 in-
termetallic phases were observed at the Ti interface and that
the thickness of the IMC layer depends largely on the heat
input. The authors suggested that the IMCs could be sup-
pressed by optimizing the laser output parameters.

Similarly, laser-welded titanium to steel dissimilar joints
without transition material in butt design was also reported
in the literature. Generally, laser beam offset toward the steel
is considered as the best way to suppress liquid mixing of the
base metals during welding [162–166]. For example, Satoh

et al. [166] reported the feasibility of joining titanium to stain-
less steel without filler material using Nd:YAG laser. Hard and
brittle IMCs readily formed at the Ti interface, because the
liquid state mixing between the titanium alloy and the steel
is not fully suppressed. Chen et al. [162] critically observed
the effect of laser beam offsetting on microstructural charac-
teristic and fracture behavior of Ti-6Al-4V/201 stainless steel
joints with 1-mm thickness each using CO2 laser. The authors
suggested that laser beam offset toward the stainless steel is
the best way to suppress the liquid mixing during welding.
The IMC layers of FeTi + α-Ti and FeTi + Fe2Ti + Ti5Fe17Cr5
were formed with uniform thickness along the interface.
Under optimized processing conditions, a joint strength of
up to 150 MPa was obtained.

5.2.2 Ti/steel with interlayer

As mentioned in Sect. 5.2, autogenous welding of titanium to
steel alloys resulted in the formation of IMCs, which degraded
the joint performance. Several works suggested that one way
to improve the joints quality is to modify the composition of
the FZ using interlayer, which is compatible with the BM
[159, 167–169]. Generally, titanium demonstrates good
weldability with very fewmetals (beta isomorphous elements)
which do not form IMCs with it, such as zirconium, niobium,
molybdenum, tantalum, vanadium, and hafnium. The use of
these elements as interlayers improves the mechanical perfor-
mance of titanium to steel joints [165, 170, 171].

Taking vanadium (V) into consideration as an interlayer
between the titanium and the steel, because V has 100% sol-
ubility Ti also the Fe-V system also shows large continuous
solid solutions. Thus, V-based foil is a good choice for use as
transition material for Ti/steel dissimilar joints [165, 170]. The
earlier attempt to used V and Ta as interlayers between the
titanium and the steel alloys under keyhole mode using CO2

laser was not successful due to oxidation and brittle phases
developed [165]. However, Tomashchuk et al. [170] reported
a successful Ti-6Al-4V/AISI 316L dissimilar joint via pure V
interlayer using continuous wave Yb:YAG laser. The authors
observed that two-pass welding give the best joint quality and

Table 2 Comparison of the joint strength of Ti/Ti dissimilar joints under different laser welding conditions

Laser heat source Materials Thickness Joint
design

Joint strength
(MPa)

Reference

CO2 laser Ti-22Al-27Nb/TC4 2.5 mm both Butt 1043 [110]

Pulse YAG laser BTi-6431S/TA15 2 mm both Butt 1113 and 490 @ 550 °C [153]

CO2 laser-TIG hybrid Ti-22Al-25Nb/TA15 2.5 mm both Butt 905.9 and 424.8 @ 650 °C [154]

Nd:YAG Ti-22Al-25Nb/TA15 1 mm both Butt 1019 and 714 at (500 °C) [150]

Single and dual LBW Nd:YAG Ti-22Al-25Nb/TA15 2 mm both Butt Single (943.2) dual (1011)
at 550 °C Single (663)
dual (655)

[152]
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high strength (367 MPa). Interestingly, because of the rapid
cooling rates of the laser welding process, the brittle σ-phase
between the Fe and the V was suppressed.

Tantalum (Ta), on the other hand, has 100% solubility in
titanium and sufficiently good solubility with the Fe, Cr, and
Ni. Although the earlier attempt to used pure Ta as interlayer
failed due to oxidation problem, a joint strength of about
40 MPa was reported [165].

The use of niobium (Nb) as an interlayer for titanium to
steel dissimilar joint has also been reported in the literature.
Generally, Nb melts at 2467 °C which is very high as com-
pared to the melting point of Ti and Fe (Table 1); Nb and Ti
form a complete solid solution throughout the range of com-
position [101]. Zhang et al. [171] studied pulsed laser-welded
Ti6Al4V/301L dissimilar joint via pure Nb plate using a hy-
brid joining mechanism (fusion welding at Ti-Nb interface
and diffusion bonding at the Nb-Steel interface). The reaction
layers of Fe7Nb6, Fe2Nb, and α-Fe were observed at the Nb-
steel interface. The joint fractured at the reaction layer with a
strength of about 370 MPa.

Although zirconium, niobium, molybdenum, tantalum, va-
nadium, and hafnium interlayers could suppress the formation
of brittle Ti-Fe IMCs, their cost is high. Therefore, cheaper
and more available interlayers such as copper and nickel have
been considered as potential interlayers for Ti alloys to steel
joints [159, 167]. Many researchers have explored the use of
copper as potential interlayer for titanium and steel dissimilar
joint, because copper does not form IMCs with Fe and Ti-Cu
IMCs are less brittle than the Ti-Fe IMCs [35, 159, 172–175].
For example, Tomashchuk et al. [159] laser-welded Ti6Al4V/
AISI 316L using pure Cu interlayer. It was found that under
optimum parameters, a joint with strength of 359 MPa was
obtained and a CuTi2 + FeTi + α-Ti layer near the solid tita-
nium alloy was observed. Similarly, Groza et al. [174] and
Mitelea et al. [172] investigated laser-welded Ti6Al4V/
X5CrNi18 dissimilar joint using 600-μm copper foil by con-
tinuous wave Nd:YAG laser. Laser beam offset to the Cu-steel
interface minimized the melting of the titanium alloy and im-
proved the weld strength (400 MPa).

The results of these studies suggested that Cu-based foil
improved the metallurgical reaction of the titanium to steel
joints to some extent. However, the risk of oxidation and the
brittle IMC formation is still not resolved even with optimiza-
tion of the welding parameters; the titanium to copper interfa-
cial joint remains the weakest part of the joint. According to
the Fe-Cu-Ti ternary diagram, copper containing phases has
low temperature stability because of the copper containing
phases has low temperature transformation [176]. Therefore,
Gao et al. [177] studied the feasibility of improving the stabil-
ity and efficiency associated with high reflection of laser beam
of copper containing phases for Ti6Al4V/AISI 316 dissimilar
joints with Cu3Si wire using laser-arc hybrid welding. It was
found that under appropriate parameters, a joint with

mechanical resistance of about 212 MPa was achieved. In
another study, the use of a composite insert obtained bymeans
of explosive welding of four sheets (VT1-0 titanium, high-
purity tantalum, pure copper (M1), and 12Kh18N10T steel)
for VT1-0 titanium alloy to 12Kh18N10T stainless steel dis-
similar joints was studied with subsequent butt-end laser
welding of similar metals using CO2 laser [164]. The results
of the metallographic and spectrographic investigations
showed that the composite fractured over the copper layer,
with the highest strength of 417 MPa.

UsingMg as interlayer elements for Ti alloys/steel was also
reported in the literature, Mg could not mix with both Ti and
Fe in the liquid state at ambient pressure. In addition, it would
not react with Ti or Fe to form IMCs [178]. Thus, Mg is
chosen as an interlayer for Ti/Steel joints. Gao et al. [179]
studied fiber laser-welded Ti6Al4V/AISI 304L dissimilar
joint using pure Mg foil interlayer. It was found that at high
laser power > 2.5kW, the fracture changes from steel/weld
interface to the titanium/weld interface. An acceptable joint
with cross-weld tensile strength of 221 MPa was achieved.
The authors suggested that the laser power and the differences
in thermal conductivity of Ti6Al4Vand AISI 304L play a big
role in the joining mechanisms of Ti6Al4V and AISI 304L
joint using Mg interlayer [179].

Table 3 compares the joint strength of Ti/steel dissimilar
joints under different laser welding conditions. Based on the
existing literature, the interfacial characteristics and joint per-
formances in Ti alloys to steel joints produced using laser
beam welding process with and without the addition of inter-
layers were investigated. The benefits of using Cu, Nb, V, Mg,
and Ta as transition materials were also explored. The pres-
ence of interlayer was essential for successful joining Ti to
steel. To further enhance the reliability of the joint and im-
prove its performance, the possibility of using more inter-
layers should be explored. A comparison of the joints mechan-
ical properties shows that relatively good static strength has
been achieved with the insertion of Cu and Nb intermediate
elements. However, no study has focused on the fatigue and
corrosion behavior of the joints parts.

5.3 Ti/Al alloys

Aluminum and its alloys are one of the most widely used
construction materials because of its excellent combination
of properties such as high strength to weight ratio and superior
corrosion resistance. Recently, the application of titanium to
aluminum hybrid structures has grown particularly in automo-
tive and aerospace industries. However, joining titanium to
aluminum is challenging due to their wide physical and met-
allurgical properties differences. According to an Ti-Al equi-
librium phase diagram [180], Ti and Al IMCs such as Ti3Al,
TiAl, TiAl2, and TiAl3 are easily formed in the weld FZ and
several IMCs especially TiAl2 and TiAl3 lead to weld defects
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[146, 181–188]. Thus, fusion welding of titanium and alumi-
num has a metallurgical challenge due to the unavoidable
formation of brittle IMCs. It is necessary to suppress the for-
mation and growth of Ti and Al IMCs [36, 186]. However, if
Ti/Al dissimilar joints with high strength and toughness is
required, the IMC layers has to be limited to a maximum
thickness of less than 10 μm.

5.3.1 Ti/Al dissimilar joining using keyhole laser welding

Despite the difficulties in minimizing the mixing between the
melted titanium and aluminum alloys at typical welding tem-
perature, laser welding of Ti/Al dissimilar joint in keyhole
modewas reported [170, 181, 188–191]. The keyhole welding
process provides good flexibility and controllability. In addi-
tion, keyhole laser welding has high welding speed, which
limits the metallurgical reaction time [192]. Thus, the forma-
tion of the brittle IMCs may be suppressed using this welding
technique. For butt joint design, laser beam offset is consid-
ered as the main parameter to control the IMCs thickness.
Many authors suggested laser beam offset on the titanium side
such that the Al/weld joining is achieved by conduction [181,
188, 189]. For instance, Kreimeyer et al. [189] studied the
properties of CO2 laser-welded 1.15-mm-thick AA6016T4
to 0.8-mm Ti6Al4V alloys using CP-Ti (grade 2) wire. It
was found that the beam offset at 0.3 mm on the Ti side
minimized the melting of the Al, which enhanced the joint
static strength (200 MPa). Under optimum parameters, the
IMC layer thickness was minimized to less than 2 μm as

shown in Fig. 10. In addition, the growth of the intermetallic
phase has only minor dependence on the energy input per unit
length due to limited diffusibility of Al in titanium aluminide
phases. Mujamdar et al. [181] studied laser-welded Ti6Al4V
to wrought Al alloy (Al-1Mg-0.9Si) with 3-mm thickness
both using CO2 laser with and without Nb foil. It was found
that with laser beam offset on the Ti side, TiAl, and Al3Ti
brittle phases were observed. However, when Nb foil was
added as a buffer between the Ti and the Al, the Ti-Al IMCs
were removed and the joint strength increased from 57 to
120 MPa. Recently, Casalino [188] studied laser-welded 1.5-
mm-thick Ti6Al4V/AA5754 dissimilar joint using fiber laser
offset welding with keyhole made entirely on the titanium
side. It was found that under optimum parameters (0.75 mm
beam offset and 50 J/mm linear energy), the thickness of the
IMC layer was limited to less than 1 μm and the ultimate
tensile strength of 191 MPa was obtained.

Somework has also been conducted on titanium overlap on
aluminum [185, 186, 192]. Lee et al. [185, 186] welded CP-Ti
to A1050 using single mode fiber laser. It was observed that
high welding speed (50 m/min) at 1 kW laser power signifi-
cantly reduced the IMC layer thickness. However, narrow
width joint was observed which affects the load capacity of
the joint. Chen et al. [192] investigated the feasibility of im-
proving the load capacity of the Ti6Al4V-on-5052 Al alloy
overlap joints using multimode keyhole laser welding. It was
found that the tensile capacity of the joint increases firstly and
then decreases with increasing laser power or decreasing
welding speed. The decrease in tensile capacity observed

Table 3 Comparison of the joint strength of Ti/steel dissimilar joints under different laser welding conditions

Laser heat source Materials Thickness Joint
design

Transition material Joint
strength
(MPa)

Reference

CW Nd:YAG laser Ti6Al4V/42CrMo 1 mm/Ti6Al4Vand
2 mm/42CrMo

Lap No transition material Not reported [161]

PW Nd:YAG laser CP-Ti Gr2/SUS304 0.4 mm/SUS304
and 0.3 mm/CP-Ti

Lap No transition material 190 [156]

PW Nd:YAG laser CP-Ti Gr2/316 steel 0.8 mm both Butt No transition material 153.9 [166]

CO2 laser Ti6Al4V/201 SS 1 mm both Butt No transition material 150 [162]

CW Nd:YAG laser Ti6Al4V/X5CrNi18-10 2 mm both Butt Cu foil 600-μm thick 400 [172, 174]

CW Nd:YAG laser 12Kh18N10T
(AISI 321)/VT1-0
(grade 2)

2 mm both Butt Cu (1-mm thick) 474 [175]

PW Nd:YAG
laser

TC4/SUS301L 0.8 mm both Butt Cu (0.4-mm thick) 350 [35]

Fiber laser-arc hybrid Ti6Al4V/AISI316L 2 mm both Butt Cu3Si wire 212 [177]

Fiber laser Ti6Al4V/AISI304L 2 mm both Butt AZ31B Mg wire (1-mm thick) 221 [179]

CW CO2 laser CP Ti/SS 304 3 mm both Butt Pure Ta strip (0.5-mm thick) 44 [165]

CW Yb:YAG Ti6Al4V/AISI316L 2 mm both Butt Pure V foil (1-mm thick) 367 [170]

Nd:YAG fiber laser Ti6Al4V/AISI301L 0.8 mm both Butt Pure Nb (1-mm thick) 370 [171]

CO2 laser VT1-0/12Kh18N10T
stainless steel

3 mm both Butt VT1-0-Ta-Cu-12Kh18N10T 417 [164]
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was associated with deep underfill and mass formation of
IMCs when the laser power increases or welding speed de-
creases. The results of this study suggested that the weld ge-
ometry could be regulated by precise control of the welding
processing parameters. Generally, for keyhole laser-welded
Ti/Al alloys, enhancing the stability of the keyhole continues
to be the principal challenge.

5.3.2 Ti/Al dissimilar joining using laser welding-brazing
method

A considerable number of studies focused on titanium to alumi-
num dissimilar joining based on laser-brazing approach such
that the laser irradiates on the Al that melts and wets the solid
Ti surface [36, 189, 193–196]. During laser welding-brazing
(LWB), the thickness of the IMCs can be limited to fewmicrons,
which greatly improve the mechanical properties of the joint.

Therefore, many previous works have been performed to
control the thickness of the IMCs using filler wire containing
high silicon content, which changes the intermetallic phase
type and significantly depressed the growth of the IMC layer
[195, 196]. Chen et al. [36, 194, 197] joined Ti6Al4V to
5A06Al dissimilar joints using laser welding-brazing ap-
proach with an AlSi12 filler wire. The results showed that thin
interfacial reaction layer with thickness of less 1 μm on the
titanium-brazed side composed of Ti7Al5Si12 and TiAl3 under
optimum processing parameters was observed [195]. Peyre
et al. [196] laser-welded Ti6Al4V to A5754 alloy with 1.5-
mm thickness in overlap configuration using AlSi12 filler. It
was observed that the process parameters did not play a sig-
nificant role on mechanical strength, which reached 120 MPa.

Some authors focused on the improvement of the joint
performance by modifying the interfacial reaction non-
homogeneity and improve the spreadability of liquid metal
using rectangular spot laser beam with suitable welding
groove or U-slot to increase the length of the Ti/Al interface
[182, 183, 198, 199]. For instance, Vaidya et al. [182] studied

1.8-mm-thick Ti6Al4V/2-mm AA6056-T6 dissimilar butt
joined with chamfered titanium alloy inserted into the profiled
aluminum alloy such that only the aluminum melted during
the split beam Nd:YAG welding. Under optimum welding
conditions, the length of the Al/Ti interface and thickness of
the interfacial reaction layer were reduced. The joint strength
reached 255 MPa, about 65% of the AA6056-T6 BM. Chen
et al. [199] studied effect of the rectangular laser spot on the
dissimilar assembly of 1.5-mm-thick Ti6Al4V to 1.5-mm
5A06 with V-shaped groove and AlSi12 filler wire. It was
found that the rectangular laser spot with V-shaped groove
on the BM improved the homogenization of the interfacial
reaction layer and the average tensile strength reaches
278 MPa under optimized parameters.

Some works concentrated on the improvement of the joint
performance via fiber laser brazing with beam offset on Al and
without groove preparation or filler metal [190, 191]. Song
et al. [190] studied the effect of laser beam offset on the Ti/
Al IMC thickness for laser-welded Ti6Al4V/A6061-T6. It
was found that under optimum processing conditions (1 mm
offset laser beam offset on the Al side, 4 kW, and 4 m/min),
the IMC layer thickness was limited to only 0.26 μm, which
improved the joint tensile strength to 203 MPa. Tomashchuk
et al. [191] laser welded Ti6Al4V/AA5754 and reported that
high linear energy of the welding ≥ 37.5 kJ/m and 0.2-mm
beam offset toward the Al promoted the formation of thin
(< 20μm) TiAl IMC at the interface, which improved the joint
ultimate tensile strength (120 MPa). Recently, Sahul et al.
[187] investigated CP-Ti (grade 2)/5083 dissimilar joints pro-
duced by laser welding-brazing method using 1.2-mm 5087
(AlMg4.5MnZr) filler wire. The results showed that with the
use of Al-based filler, no reduction in the weld thickness was
observed as reported by Tomashchuk et al. [191]. The joint
with highest strength (180MPa) was obtained at 300 μm laser
beam offset on the Al side.

An important consideration for the laser beam offset on the
Al is the tilt of the laser head is crucial to minimize the

Fig. 10 Process window for laser-
welded AA6016T4/Ti6Al4V
tailored blanks [189]
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reflection of the laser beam due to the low laser beam absorp-
tion of the aluminum alloy [200]. Gao et al. [201] investigated
the feasibility of improving the high reflection of the laser
beam by the Al alloy with aid of arc preheating of the BM.
In a study of Ti6Al4V/AA6061 dissimilar joints using fiber
laser-cold metal transfer arc (laser-CMT) hybrid welding. It
was observed that at optimum heat input (83–98 J/mm), the
cross-weld tensile strength of the joints is up to 213 MPa. The
IMC layer of the accepted joint is usually thin and continuous
and consists of only TiAl2 due to fast solidification rate.

Generally, the LWB significantly suppressed the formation
IMCs, which in turn improved the joint mechanical resistance.
However, the major drawbacks with this approach are the
poor wetting and spreading, which significantly affect the
weld appearance and the process stability.

Table 4 compares the joint strength of Ti/Al dissimilar
joints under different laser welding conditions. It can be seen
that many works adopted various techniques to improve the
joint strength. These efforts result in the static strength in-
crease of laser-welded Ti/Al joints, but the tensile strength of
the joint is still at the level of about 60–70% of the Al alloy
BM. Therefore, more research efforts are required on the for-
mation mechanism of the IMCs.

5.4 Ti/Mg alloys

Magnesium being the lightest structural metal receives great
attention particularly in automotive and aerospace industries
because of its low density, high strength to weight ratio, good

formability, and easy recyclability. However, its application is
often restricted by its relatively poor corrosion resistance [4,
37, 202]. Therefore, joining titanium to magnesium would be
an excellent combination for many industrial applications.
However, joining magnesium to titanium is quite challenging
because of the notable mismatch in physical and mechanical
properties and lack of metallurgical compatibility [37, 89,
203, 204].

The literature shows that despite magnesium and titanium
are immiscible, metallurgical bonding was achieved using a
transition material, which is compatible with both base mate-
rials. The dissolution and diffusion of the filler material pro-
duced an intermetallic phase (IMC) with the titanium base
metal substrate when locally experienced high temperature.
The formation of these IMCs along the Mg-Ti alloy interface
can facilitate metallurgical bonding between the magnesium
alloy and the titanium, but they can also be detrimental for
mechanical performance of the joints [37, 89, 203, 204]. For
instance, Gao et al. [203, 204] investigated the process param-
eters, properties, and bonding mechanism of AZ31B/Ti-6Al-
4V laser-welded joints using AZ31 filler wire or melting of
thicker Mg base metal to achieve bonding. It was found that
laser beam offset significantly influences the bonding mecha-
nism and the joint performance. Under optimum laser beam
offset 0.3–0.4 mm, the intermixing of the molten titanium
with liquid magnesium during the keyhole welding caused
the formation of lamellar and granular mixtures of titanium
and aluminum element in the fusion zone, which significantly
improved the joints tensile strength (266 MPa) [203]. In

Table 4 Comparison of the joint strength of Ti/Al dissimilar joints under different laser welding conditions

Laser heat source Materials Thickness Joint
design

Transition
material

Joint strength
(MPa)

Reference

CO2 laser AA6016T4/Ti6Al4V TC4 0.8 mm/AA6016
1.15 mm

Butt CP-Ti filler 200 [189]

CO2 laser TiA16V4/Al-1 wt%
Mg-0.9 wt% Si

3 mm both Butt No transition material 57 [181]

CO2 laser TiA16V4/Al-1 wt%
Mg-0.9 wt% Si

3 mm both Butt Nb plate 120 [181]

CO2 laser Ti-6Al-4V/AA6056-T6 1.5 mm Ti-6Al-4V/2 mm
AA6056-T6

Butt AlSi12 filler 255 [182]

Rectangular
spot laser

Ti6Al4V/5A06 1.5 mm both Butt AlSi12 filler 278 [199]

single-mode
fiber laser

CP-Ti/A1050 0.3 mm both Lap No transition material 350 [185, 186]

Multimode
CO2 laser

Ti-6Al-4V/5052 Ti-6Al-4V
(1 mm)/5052
(2 mm)

Lap No transition material 184 [192]

Yb:YAG disk laser T40/A5754 1.5 mm both Lap Al5Si filler wire 120 [196]

Yb:YAG laser Ti6Al4V/AA5754 2 mm both Butt No transition material 120 [191]

Yb:YAG laser T40/5754Al 1.5 mm both Butt No transition material 191 [188]

Hybrid-fiber laser
and CMTwelder

Ti-6Al-4V/AA6061 2 mm both Butt Al-12Si wire 213 [201]

CW disk laser
weld brazing

5083/CP-Ti (grade 2) 2 mm both Butt 5087 filler wire 180 [187]
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another study, Tan et al. [89, 90] investigated the Ti6Al4V/
AZ31B lap joints both with thickness of 1.5 mm produced
using laser welding-brazing with addition of Al element into
1.2-mm diameter Mg-based filler wire. The results have
shown that with the increasing content of aluminum element,
metallurgical bonding was achieved due to the formation of
Ti3Al interfacial reaction layer with maximum thickness of
1.5 μm compared to mechanical bonding by direct joining
or using a filler wire with low aluminum content. The Ti3Al
IMC layer prevented crack propagation and enhanced the
joints strength from 25.5 ± 5.5 to 2057N through precipitation
strengthening [89]. To further improve the interfacial bonding
between the immiscibleMg and Ti, the use of electrodeposited
Ni- [37] and Cu-coated [205] interlayers have been used by
Tan and co-workers. For AZ31B to Ni-coated Ti6Al4V joints,
a formation of Ti3Al phase was observed at the direct irradia-
tion zone and Al-Ni phase, Mg-Al-Ni ternary compound ad-
jacent to the FZ at the intermediate zone. The joint tensile
shear peak load of 2387 N was obtained under optimized
processing conditions. The influence of the laser power on
the AZ31B to Cu-coated Ti6Al4V revealed that the brazed
interface consists of Ti3Al phase produced at direct irradiation
zone, Ti2(Cu, Al) formed at intermediate zone and (α-Mg +
Mg2Cu) eutectic structure formed at the seam head zone. The
joint tensile shear peak load of 2314 N was obtained at the
laser power of 1300 W. The results of these studies suggested
that the addition of Ni and Cu improved the spreadability of
the molten filler on the Ti plate.

Table 5 compares the joint strength of Ti/Mg dissim-
ilar joints under different laser welding conditions.
Based on the existing literature, the interfacial charac-
teristics and the mechanism of wetting in Mg alloys to
Ti joints produced using laser process with addition of
interlayers were investigated. The feasibility of using
Al, Ni, and Cu intermediate elements was also explored.
The selection of suitable interlayer is crucial for suc-
cessful bonding of Mg to Ti. A comparison of the joints
properties reveals that relatively good static strength
about 88% of the Mg alloy BM has been achieved
[37]. To improve the joints performance, the analysis

of the morphology characteristic, microstructure, and
mechanical properties of the Mg/Ti welded joints under
single-beam and dual-beam laser welding-brazing
methods with addition various interlayers that form eu-
tectic with Mg such as Ag, Sn, Al-Cu, and Ag-Sn
should be explored. In addition, research efforts are also
needed on the fatigue and corrosion behavior of the
joints parts.

6 Residual stresses in laser welding
of titanium and its alloys

Residual stresses are always observed in the laser titanium
alloys welds because of the differential cooling rates, the plas-
tic flow, and the allotropic phase transformations with volume
changes. These residual stresses caused distortions, deteriorate
the mechanical performance, especially the fatigue strength,
and fracture toughness. Considering the possible aerospace
applications of titanium alloys, the investigations of the resid-
ual distribution are essential. Generally, the residual stresses
distribution in the laser welding is complex and non-uniform
[14, 18, 62, 206–208]. For instance, during welding, both the
base and the weld metals experience severe thermal cycle
leading to generation of residual stresses [207]. It is worth
noting that the residual stresses and deformations are general-
ly influence by joint design, joining techniques, metallurgical
properties, and heat input [209]. Many works suggested that
laser beam welding techniques proved to be more feasible for
production of titanium alloys joints [13, 18, 104, 210]. Zhang
et al. [18] studied the residual stress distribution of BT20 and
Ti6Al4Valloys welded by CO2 laser beam and tungsten inert
gas using hole drill method (HDM). The results showed that
the distributions of residual stresses in CO2 laser welding is
similar to that obtained from the joint welded by TIG.
However, the residual stresses in the HAZ are about
100 MPa lower for laser welding than for TIG welding due
narrower weld seam. In contrast, Chuan et al. [210] carried out
finite elements simulations on 4-mm-thick Ti-6Al-4V alloy
and reported that the residual stresses are not uniform. The

Table 5 Comparison of the joint strength of Ti/Mg dissimilar joints under different laser welding conditions

Laser heat source Materials Thickness Joint design Transition material Joint strength
(MPa)/shear
load (N)

Reference

Fiber laser Ti-6Al-4V/AZ31B 2 mm both Butt AZ31B Mg filler (1 mm dia) 200.3 MPa [204]

Keyhole fiber laser Ti-6Al-4V/AZ31B-T5 2 mm Ti-6Al-4V
and 3 mm AZ31B-T5

Butt No transition material 266 MPa [203]

Laser welding-brazing Ti6Al4V/AZ31B 1.5 mm both Lap AZ31 filler 1049 ± 227 N [89]

Laser welding-brazing Ti6Al4V/AZ31B 1.5 mm both Lap AZ91 filler Mg (1.2 mm dia) 2057 N [90]

Laser welding-brazing Ti6Al4V/AZ31B 1 mm both Lap Ni coating (1.9 ± 0.5 μm) 2387 N [37]

Laser welding-brazing Ti6Al4V/AZ31B 1.2 mm both Lap Cu coating (12.8 ± 1.0 μm) 2314 N [205]
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discrepancies of these findings are mainly due to non-uniform
expansion and contraction resulted fromwelding process. Gao
et al. [13] also reported that compared with TIG welding,
pulsed Nd:YAG laser welding on Ti6Al4V produced less re-
sidual stresses, lower heat input, less deformation, narrower
weld bead, and narrower HAZ. Recently, Junaid et al. [62]
studied the residual stress distribution of pulsed laser-welded
and pulsed tungsten inert gas welded Ti5Al2.5Sn alloy using
speed hole drilling strain measurement. Figure 11 shows their
residual stress distribution. For pulsed tungsten inert gas
welded joints (Fig 11a), the maximum tensile residual stress
of 430 MPa was found at a distance of 3 mm from the center-
line. Whereas, for laser-welded joints, compressive stress of
100 MPa at 3 mm from the centerline was reported.

To relieve the residual stresses, it is recommended that the
laser-processed titanium alloys be annealed at 600 °C for 2 h
in a vacuum environment; this enables the decrease of the
welding residual stresses by almost 90% [18]. Fomin et al.
[33] studied the influence of post weld heat treatment
(PWHT) on the residual stresses of 2.6-mm-thick CWytterbi-
um fiber laser-welded Ti6Al4V using HDM. The longitudinal

and transverse residual stresses distribution of the weld is
shown in Fig. 12a. It can be seen that after annealing at
540 °C, relief the stress from 650 to 90 MPa, whereas, post
weld heating at 750 °C relieved almost all the stress (Fig. 12b).

7 Post weld heat treatment

In titanium alloys, a required mechanical performance could
be obtained by controlling microstructure. Post weld heat
treatment results in the transform the weld zonemicrostructure
can serve as viable option to achieved improved mechanical
properties [7, 18, 33, 82, 211]. Kabir et al. [64] laser welded
Ti6Al4V alloy and reported that full hardness and desired
mechanical properties are achieved after subsequent full an-
nealing and aging treatment after welding. The increase in
hardness has been attributed to the decomposition of martens-
itic α’ structure into an equilibrium lamellar α+β structure.
Recently, Fomin et al. [33] studied the effect of the PWHTon
the 2.6-mm-thick Ti6Al4V butt joints produced by CW ytter-
bium fiber laser. It was observed that PWHTat high annealing

Fig. 11 Longitudinal residual stress distribution showing a pulsed tungsten inert gas and b pulsed laser-welded Ti5Al2.5Sn joints [62]

Fig. 12 a Longitudinal and transverse residual stresses distribution of the Ti6Al4V butt weld. b Influence of PWHTon the longitudinal residual stresses [33]

1088 Int J Adv Manuf Technol (2018) 97:1071–1098



temperatures (above 750 °C) resulted in transformation of fine
martensitic structure into more ductile coarse lamellar in the
weld zone as shown in Fig. 13, which enhanced the fatigue
performance of the joint (Fig. 14). However, the authors ob-
served a slight decrease in the static strength.

With recent advances in the titanium aluminides, it was ob-
served that under high energy density joining processes (laser
and electron beam) the weld zone and the fields above the tran-
sition temperature in the heat-affected zone mainly consisted of
an unstableβ/B2 phase, which significantly deteriorates the high
temperature properties of the alloy [113, 212, 213]. Therefore,
adjusting the unstable microstructure of the weld zone is neces-
sary. Several studies suggested the use of PWHT to adjust the
microstructure and improve the joints performance [128–130,
213]. For example, Wang et al. [213] investigated the effect of
the PWHT on the microstructure and mechanical properties of
Ti23Al17b laser-welded joints. It was found that the joint tensile
ductility significantly improved to 5.50–7.88%, which is higher
than that in the as-welded condition when tested at elevated
temperature (650 °C) under suitable post weld heat treatment
condition (980 °C for 1.5 h, air cooling).

Practically, PWHT of welded structures is challenging and
expensive due to high temperature required for effective mi-
crostructural change, inert shielding required for preventing
interstitial elements ingression, and the loss of strength at el-
evated temperature. In addition, unless meticulous fixturing is

adopted, the distortion is inevitable. Therefore, PWHT is gen-
erally used where the property enhancement is a crucial re-
quirement of the design [6, 214].

8Mainmetallurgical defects for titanium alloy
laser welds

8.1 Surface oxidation

Titanium is very reactive with ambient elements such as oxy-
gen, nitrogen, hydrogen, and carbon at high temperature.
Therefore, the most commonly encountered defects for titani-
um and its alloys are the formation of hard and brittle titanium
oxide surface layer mainly coursed by poor surface prepara-
tion, poor cleaning procedures of base metals, and the filler
materials before and during welding and/or poor shielding.
The formation of the oxide layer can be detected by visual
inspection [11, 22–30]. Generally, titanium absorbs hydrogen
from 250 °C, oxygen from 400 °C, nitrogen from 600 °C.
Several authors observed that the oxygen and nitrogen deteri-
orate the strength and bending ductility of welds joint; thus,
the titanium weld joint embrittlement increases with increas-
ing Ni and O content in the weld [28–30, 215]. Tsay et al. [28]
observed that the surface oxidation significantly decreases the
tensile ductility of the titanium alloy weld. Therefore, the re-
moval of the hard and brittle surface titanium oxide layer by
either mechanical, chemical methods or both before welding
is necessary to improve the weld quality [30].

8.2 Micropores

Micropores are formed in the FZ due to the trapped gases
within the solidifying weld pool. In titanium welds, several
authors suggested that the main mechanism of micropore for-
mation is the hydrogen entering the weld pool which forms
pores on solidification [6, 24, 83, 87, 216] and the keyhole
instability and collapse at lower welding speeds [11, 28, 64,
217]. Contamination of the weld parts by the presence oil, dirt,
etc., is considered as the main sources that supply hydrogen
for gas porosity formation [24]. Considerable number of au-
thors suggested for a fully penetrated weld, the micropore

Fig. 13 Effect of PWHT on the microstructure of Ti6Al4Valloy: a Full annealing (FA1) at 750 °C/2h/AC, b full annealing (FA2) at 850 °C/1h/AC, c
duplex annealing (DA) at 920 °C/45 min/AC + 540 °C/4h/AC [33]

Fig. 14 Effect of PWHTon the fatigue behavior of Ti6Al4V laser weld [33]
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formation is limited [11, 55, 63]. For instance, Hilton et al.
[63] laser welded 5-mm-thick Ti6Al4V alloy and reported
joints free from pores. The lack of micropores observed was
associated with the keyhole formation inside the weld. In
comparison, Kumar et al. [11] observed micropores in partial-
ly penetrated Ti6Al4V laser-welded sample as shown in Fig.
15a. However, the authors reported that even for a fully pen-
etrated weld, somemicropores at the interface of the HAZ and
FZ (Fig. 15b) were observed due to keyhole instability and
evolution of hydrogen at the solid-liquid interface. Cao et al.
[34] laser welded Ti6Al4Valloy with 1- and 2-mm thickness.
It was found that for 1-mm-thick joints, the diameter of the
micropores was 0.025 mm, whereas, for 2-mm-thick joints,
the diameter of the micropores were 0.12 and 0.25 mm. The
results of this study suggest that porosity is more likely to
appear in thick joints. Furthermore, welding speed has signif-
icant influence on the pores formation. Generally, at high
welding speed, the solidification is quick and no time for the
micropores to grow [60, 83]. For these reasons, titanium alloy
thin sheets should be welded under keyhole mode.

Furthermore, a considerable number of studies have report-
ed that the formation of the micropores serves as stress con-
centrators and greatly reduce the fatigue life of the weld.
Therefore, their formation should be minimized to fulfil the
strict quality standard [23, 28, 39, 42, 43, 50, 60]. The weld
quality acceptance criteria as mentioned in European standard
BS EN: 4678 recommended that the size of the micropores
should be less than or equal to 0.40 mm [218]. Many works
concentrated on finding a solution to prevent micropore for-
mation in titanium alloy welds to improve the weld quality
[43, 50, 83, 87, 187, 219, 220]. For instance, Li et al. [50]
investigated the stitch laser-welded Ti6Al4V alloys. It was
found that the reduction of the laser input power, scanning
speed, and positive defocusing distance could significantly
suppress the micropores formation in the welded seam, while
the existing porosity could be reduced with remelting.
Furthermore, Blackburn et al. [43] observed that for titanium
alloy welds, the micropore formation depends on the heat
input waveform and the modulation of the frequency and am-
plitude. The authors suggested that the square waveform

coupled with higher frequencies effectively minimized the
micropores formation compared to continuous wave.

8.3 Microcracks

Titanium alloys are generally resistance to HAZ liquation
cracking, because of the absence of second dispersoids or
precipitates coupled with limited impurities at grain bound-
aries. However, the presence of impurities such as iron may
cause local melting of the Ti-Fe eutectic called hydrogen de-
layed cracking [12, 34, 60]. For instance, Ahn et al. [60] laser
welded Ti6Al4V alloy using a high power fiber laser. The
results indicated that no crack defect was observed. The lack
of microcrack observed was associated with the absence of
secondary phase dispersoids or precipitate particles, or impu-
rities at the grain boundaries. Similarly, Cao et al. [34] laser
welded Ti6Al4Valloy with 1 and 2 mm thickness using high
power Nd:YAG laser. The X-ray examination did not reveal
any weld cracks for either of the thickness; however, HAZ
cracking was occasionally observed. The HAZ microcrack
observed was associated with iron capture during primary
manufacturing process of the titanium alloy.

8.4 Face/root undercut (underfill)

Face/root underfill/undercut defects have been observed by
many researches for laser-welded titanium alloys. The pres-
ence of underfill/undercut in the titanium welds serves as
stress concentrators and deteriorates the joints properties [23,
34, 39, 60, 64, 73, 84, 98, 122, 221–223]. Generally, the
formation of the undercuts defect is related to the high welding
speeds, whereas, evaporation of the molten weld metals is
considered as the main cause of underfill defects [34, 60, 73,
122, 224]. For instance, Cao et al. [34] reported that the FZ
area and the underfill depth depend on the welding speed and
suggested welding at higher speed in order to minimize the
underfill defects. Ahn et al. [60] laser welded Ti6Al4Valloy. It
was observed that high welding power led to spatter and un-
dercut, whereas, incomplete penetration occurred at low laser
power and high welding speed. Recently, Kumar et al. [11]

Fig. 15 Typical micropores
appearance for a laser-welded
Ti6Al4Valloy. a Partially melted
weld. b Solid-liquid interface of a
fully penetrated weld [11]
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laser welded Ti6Al4Valloy and reported that the underfill and
micropores served as stress concentrators for fatigue cracks
and significantly degraded the joints mechanical properties.
Therefore, their formation should be minimized to fulfil the
strict quality standard.

In view of the detrimental effects of underfill on titanium
alloys welds, the fusion welding specification for aerospace
application (AWS D17.1) recommended that the maximum
depth of the underfill for a class A welds should be limited to
7% of the material thickness (7%T) [225]. Therefore, a consid-
erable number of works concentrated on exploring the laser
welding techniques to reduce or even suppress the underfill
and undercut formation in titanium alloys welds. For instance,
using a compatible filler wire has been reported to decrease the
number of the underfill/undercut and improve the joint ductil-
ity, fatigue life, and tensile strength [82–87]. Kashaev et al. [85]
studied Nd:YAG single-sided laser beamwelding of Ti-6Al-4V
2.5-mm-thick T-joints with a compatible filler (Titanium Grade
2). The filler wire was found to suppress the underfill and
undercut defects. Recently, Fang et al. [108, 226] investigated
the effect of transversal pre-extrusion load on underfill forma-
tion during laser welding of Ti2Al1.5Mn alloy. It was found
that the underfill defects can be minimized or eliminated and
high tensile strength can be obtained by welding with pre-
extrusion load under suitable laser welding parameters.

9 Future trends

Despite the inherent material properties (such as lightweight, fuel
efficiency, and performance) of Ti alloys, the cost of rawmaterial
and fabrication overshadowed the wide applications of titanium
alloys particularly where the corrosion and weight reduction are
not essential factors. Therefore, future research should focus
more on the development of more efficient technologies for the
manufacture of low-cost complex titanium structures.

Research and development of laser welding techniques for
titanium alloys are mainly focused on industrial needs.
Therefore, to fully understand the maximum capabilities, fur-
ther work is needed on modeling and simulation for optimi-
zation, controlling, and defining the laser welding parameter-
operating windows for different titanium alloys to produce
consistently good quality welds.

Interestingly, the use of fiber and disk laser may help to
improve the reliability of laser welding techniques in titanium
alloys industries because of their low susceptibility to plasma
plume formation. Future researchers should therefore focus on
using fiber and disk lasers for different grades of titanium alloys.

Welding process imposed microstructural variation of tita-
nium alloys, which affect the corrosion behavior of the welds
joints. Because of the corrosion resistance and reliability of
weld joints keep a close relation, the investigations of corro-
sion behavior of laser-welded titanium alloys joints are

crucial. However, the studies on the corrosion behaviors of
titanium alloys joints are rare.

Titanium alloys are usually applied in fatigue critical com-
ponents; however, the laser-welded Ti alloys exhibited poor
axial fatigue performance. Thus, extensive study on the fatigue
life of laser-welded Ti alloys is of great scientific interest.

In order to evaluate the life safety for the critical compo-
nents and structures, studies on the influence of welding on the
fracture toughness is essential. However, fewworks have been
reported on the fracture toughness of titanium alloys under
laser beam welding condition.

Another important area that requires a great attention is the
control of residual stress distribution and associated deforma-
tions due to the welding phenomenon in laser-welded titanium
alloys.

Additionally, despite a lot of progress in the laser welding of
titanium alloys so far, the effect of post weld heat treatment on
the laser-welded Ti alloys joints has not been extensively studied.

Many researchers had reported hybrid structures made
from titanium to other metals, but their weldability character-
istics and the effect of the transition materials on the dissimilar
joints properties have not been clearly understood. Therefore,
future researchers should focus on improving joint properties
using alternative interlayers.

Dissimilar joints between different titanium and compos-
ites will probably gain considerable attention in the future due
to the compatibility of titanium alloys with composites and
potential applications of titanium-composite hybrid structures
in the aerospace industry. However very little work has been
done in this aspect.

10 Summary

Recent studies suggested that laser beam welding is a viable
option for welding of titanium due its versatility, high specific
heat input, and flexibility and facilitates their applications in
medical, chemical, aerospace, biomaterial, marine, petrochem-
ical, and aviation industries. The literature reveals that the laser
processing parameters have great influence on the joint micro-
structure and properties. However, titanium alloy laser welds
were reported to exhibit some processing problems and weld
defects, such as lower elongations, inferior fatigue properties,
surface oxidations, porosity, undercut/underfill, and weld
cracking. Therefore, scientific observations are needed to better
understand and address these problems.

Over the years, varieties of titanium to other metals have
been joined by laser beam welding under optimum processing
conditions. In particular, Ti/steel, Ti/Al, and Ti/Mg dissimilar
alloys have been studies for their mechanical and metallurgi-
cal properties. Several authors adopted various techniques to
improve the joint strength. These efforts result in the static
strength increase of the laser-welded Ti/other metals joints,
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but the strength of the dissimilar joints is still low compared to
the BM. Therefore, more research efforts are required on the
formation mechanism of the IMCs.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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