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Abstract
The current study on digital factory (DF) meets some problems, such as disconnected manufacturing sites, independent digital
models, isolated data, and non-self-controlled applications. In order to move current situation of DFs forward towards smart
manufacturing, this paper attempts to present an overview of current digital situation of factories, and propose a systematical
framework of cyber-physical integration in factories, with consideration of the concept of digital twin and the theory of
manufacturing service. Particularly, the proposed framework includes four key issues, i.e., (a) fully interconnected physical
elements integration, (b) faithful-mirrored virtual models integration, (c) all of elements/flows/businesses-covered data fusion,
and (d) data-driven and application-oriented services integration. The corresponding implementable solutions of these four key
issues are discussed in turn. As a reference, this paper is promising to bridge the gap in factories from current digital situation to
smart manufacturing, so as to effectively facilitate their smart production.
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1 Introduction

To meet the inevitable trends and thereafter derived require-
ments of socialization, personalization, servitization, intelli-
gence, and green in manufacturing, it is necessary to make
smart manufacturing come true gradually based on current
digital situation of factories and then to achieve therein smart
production operation and management [1, 2]. Along with the
maturity and applications into manufacturing of some new-
emerging information technologies (ITs), such as cloud com-
puting (CC), Internet of things (IoT), big data, and artificial

intelligence (AI), it makes both chances and challenges for
industry and academia [3]. However, the one of the most typ-
ical challenges is how to apply those new ITs comprehensive-
ly to cope with the aims of manufacturing industry around the
world as indicated above. In response to this context, different
countries have come up with their own national strategies [4],
for instance Industry 4.0, Industrial Internet, cyber-physical
system-based manufacturing, and Made in China 2025.
After analyzing those national strategies carefully, it is found
that although the background is different, there exists one
common goal, namely to realize the interconnection and inter-
operability between physical world and cyber space of
manufacturing so as to achieve smart manufacturing.
Specifically, how to bring out the cyber-physical integration
is the one of the most important hurdles [5].

In order to solve the main bottleneck of cyber-physical inte-
gration in different scopes, step by step frommanufacturing sites
to workshops, and even to factories, the concept of digital factory
(DF) [6, 7] is proposed and discussed for years. Scholars and
practitioners have carried out a large number of theoretical re-
searches and valuable techniques on DF. These studies analyzed
the issue of physical-cyber integration to a certain extent either in
theoretical view or in technical view, and put forward some cor-
responding solutions. However, nomatter fromwhich aspect, the
core issue of cyber-physical integration to be addressed based on
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current digital situation of factories could be exactly classified
into two stages. In view of the production-related data in DF, the
first one is physical data integration, and the second one is cyber-
physical data integration.

The first stage of physical data integration means
collecting massive data from the manufacturing sites in phys-
ical world of factories and transmitting those data into the
information systems deployed in factories. In recent years,
many new ITs have been applied. For examples, IoT-related
technologies and devices, e.g., radio frequency identification
devices (RFID), Zigbee, and various kinds of advanced sen-
sors, are used to collect different types of data concerning the
full production lifecycle. CC-related technologies, e.g.,
Hadoop and MapReduce, are adopted to store and process
the collected data [8]. AI technologies such as deep learning
could support manufacturing data mining and its value crea-
tion. Moreover, service-oriented technologies, e.g., service-
oriented architecture (SOA) and web service, help to achieve
the service encapsulation and on-demand use of manufactur-
ing data. As a result, the manufacturing service-based ap-
proach devoting to realizing data integration, especially the
application of big manufacturing data [9] in factories, is
proved to be an effective way and trend. However, the existing
studies just concern SOA-based crusade of an information
system deployed in factories, or service-based integration of
some deployed information systems. Unfortunately, as
manufacturing services are inseparable from data, just those
finite data in the related information systems are considered,
while not including the real-time collected data from the phys-
ical manufacturing sites. It also lacks the presentation, consid-
eration, and interaction of the real-time collected data, thus it
is really hard to reflect both physical world and cyber space of
factories relying on the existing theories and methods of
manufacturing services. Furthermore, when applied
manufacturing services to address some decision-making
problems in the actual production operation processes, how
to comprehensively reflect the interaction, iteration and fusion
between the real-time collected data from physical world and
other data existing in these deployed information systems
which are both involved in manufacturing services? How to
depict and support co-existence, co-evolution, and co-
simulation between complex dynamic production activities
in physical world and the corresponding data and models in
cyber space of factories? Those are the key points to determine
whether manufacturing services could be further applied into
DFs so as to improve production operation and management.

The second stage of physical-cyber data integration sig-
nifies to add value and efficiency of both the data collected
from the physical manufacturing sites and the data generated
or existing in these deployed information systems. For these
multi-sourcing heterogeneous data either from physical world
or in cyber space of factories, digital twin [10] is being widely
concerned. It is an effective way to realize the real-time

interaction and integration between physical world and cyber
space, and has the following three main features [11, 12]: (a) It
integrates various types of data of the physical objects, and it is
the faithful mirror of the physical objects. (b) It is co-
evolutionary with the physical objects, accompanied by the
constantly updating of real-time data collected from the phys-
ical objects. (c) Based on virtual models, it could not only
describe the physical objects, but also optimize the physical
objects. Actually, digital twin has been successfully applied
into the defense, aerospace, and other important areas. For ex-
ample, the U.S. Department of Defense introduced the concept
of digital twin to the health maintenance of aerospace crafts
[13], and defined it as an integrated simulation process of vir-
tual models mirrored the whole lifecycle of the physical crafts.
Grieves et al. combined the physical systems with their equiv-
alent virtual systems as a comprehensive system based on dig-
ital twin to study fault prediction method, and validated it in the
related systems of NASA [14]. Parametric Technology
Corporation (PTC) established a real-time connection between
the virtual world and the real world of its products based on
digital twin, to provide customers with efficient after-sales ser-
vices based on digital twin data [15]. Siemens put forward the
concept of digital twin to help manufacturing enterprises build
a production system model in cyber space, in order to achieve
the entire digital process from product design to manufacturing
in physical space [16]. These mentioned typical examples and
applications all indicate that digital twin is a promising effective
method to achieve physical and cyber data integration and fu-
sion of factories.

Therefore, combining the concepts of digital twin and
manufacturing service, their complementarity and interdepen-
dency pave the way for addressing the core issue of cyber-
physical integration based on current situation of DFs. This
paper attempts to propose a systematical framework of cyber-
physical integration with consideration of these two concepts,
in order to move current DFs forward towards the aims of
smart manufacturing. The remainder of this paper is organized
as follows. Section 2 describes state-of-the-art of DFs. To
reveal the gap between current situation of DFs and the objec-
tives of smart manufacturing, Section 3 analyzes and summa-
rizes the characteristics and aims of pursuing smart
manufacturing in factories. Thereafter, to narrow this gap, a
systematical framework of cyber-physical integration based
on digital twin and manufacturing service and the derived
operational mechanisms, as well as the corresponding en-
abling technologies, are presented in Section 4. Finally,
Section 5 concludes the full text.

2 State-of-the-art of digital factories

In order to build a DF, to implement digitalization and
virtualization in DFs, and to achieve its operational
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improvements in final, the existing relevant studies are ana-
lyzed carefully from the following four aspects.

2.1 Physical connection and data collection

Physical connection refers to making factories and their pro-
duction processes have the ability to collect more data from
the physical manufacturing sites through perception of sepa-
rate manufacturing resources, thus supporting data acquisition
and transmission from the underlying equipment to MES, and
even supporting instruction release and control from MES to
the underlying equipment. The related studies can be divided
into the following two stages.

2.1.1 Perception and access of relevant elements

With the expansion of digital degree and scope in factories,
data collection from the physical manufacturing sites depends
on intelligent numerical control (NC) equipment itself, or
using intelligent acquisition devices with the corresponding
automatic acquisition technologies. Therefore, the perception
and access of production-related resources and other elements
for their data collection becomes the core of the integration
and interaction between the physical manufacturing sites and
the information systems.

Perception and access of different production-related equip-
mentTraditional production-related equipment can be divided
into NC equipment and non-NC equipment. For a single NC
equipment, it mainly relies on a specific acquisition device,
such as the embedded PLC acquisition module, to collect and
read status information of the NC equipment and its running.
For multiple different NC equipment, the perception and ac-
cess mode is developed from early direct numerical control
(namely early DNC) to current distributed numerical control
(DNC) network systems [17]. In those DNC network systems,
the sub-system of manufacturing data collection (MDC) could
support five kinds of acquisition methods, including direct
acquisition, adding the dedicated acquisition hardware,
barcode scanning, special PLC-based acquisition, and
human-computer interaction. To date, those DNC network
systems could achieve both the compatibility of hundreds of
control systems and the compatibility of various hardware
interfaces and communication standards. As to the type of
non-NC equipment, the traditional acquisition method is
based on large number of electrical sensors, strain gauges,
fiber grating sensors, etc. However, this method could just
measure finite number and accuracy of physical parameters
of the non-NC equipment [18].

Perception and access of other production-related elements
A factory including the production activities in it could be
treated as a complex eco-system [19], which is composited

by all kinds of heterogeneous production-related elements,
such as manufacturing machines and auxiliary equipment,
materials, semi-products, and operators, only to realize data
collection of the production-related equipment, cannot sup-
port the further optimal operation in DFs. Considering all
kinds of heterogeneous production-related elements in DFs,
there are some technologies applied for collecting the real-
time data of activities from the physical manufacturing sites,
for examples data collection based on automatic identification
technologies, online measurement technologies and corre-
sponding digital detection equipment, and information sys-
tems integration [20]. Nowadays, RFID, wireless sensor net-
work (WSN), and other IoT-related technologies, as well as
the corresponding specific devices, are more and more used.
However, due to the shortages of incomplete elements access,
finite collected data, and separate acquisition methods, it is
still hard to make sure system-wide interconnection and inter-
operability considering all of heterogeneous elements and the
related multi-sourcing data.

2.1.2 Processing of the collected data

Processing of the data collected from the physical
manufacturing sites is to provide reliable data for status
monitoring and health management of elements, and
even operation optimizations of the entire factories.
However, dynamics and complexity of the physical
manufacturing sites result in some characteristics of the
original perceived and collected data. The characteristics
include multiply sources, wide types, and high redundan-
cies. Then, unreliability and uncertainty in transmission
process of the collected data usually cause some typical
problems [21], such as data missing, packet loss, con-
flict, out-of-order, and delay. Facing the above character-
istics and typical problems, processing of the collected
data is mainly classified into data cleaning and data fu-
sion operations.

Data cleaning It aims to ensure higher quality of the sources
and flows of the collected data. As aforementioned, most of
data collections mainly rely on DNC network systems, RFID,
and WSN. There are lots of data cleaning models for the data
collected by these perception and access methods in the
existing studies [22]. For example, space or time smoothing
mechanism-based model, machine learning-based model for
misreading problems of the collected data, path constraint-
based model for out-of-order problems of the collected data,
and prepared path matching-based model for dirty data.
However, these models have better performance for cleaning
the static data, rather than considering the frequent transition,
distributed processing, time delay, and other dynamic charac-
teristics in the data collection and transmission processes with
multiple data sources.
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Data fusion It is an operation to generate meaningful informa-
tion from the original collected data. Besides the widespread
applications of RFID in factories, WSN is also increasingly
playing an important role in monitoring the ever-changing
environment in factories. The existing related researches focus
on two aspects, i.e., data fusion within WSN and heteroge-
neous data fusion between RFID and WSN. For the aspect of
data fusion within WSN, because of different configuration
environment of sensors and therein different monitored ob-
jects, there are four kinds of architectures adopted, i.e., the
centralized, distributed, mixed, and heuristic architectures.
As to the other aspect of heterogeneous data fusion between
RFID and WSN, the existing related discussion refers to three
kinds of architectures, i.e., heterogeneous wireless integrated
networks, distributed intelligent node networks, and smart
sensing tag networks.

2.2 Digital/virtual models and simulation

Digitization stimulates feasibility verification of production
activities and optimization of production management
through the relevant virtual models building and simulation.
The modeling ability is an important criterion to measure the
digitization degree of DFs [23]. Virtual models are treated as
another kind of existence of data, and would generate much
valuable information by their simulation processes.
Considering different modeling objects and virtual models,
the existing related studies are analyzed from the following
two aspects.

2.2.1 Virtual modeling and simulation for DFs

Considering various elements and entities as well as the
real production operation processes in DFs, it leads to
differences in both variety and function of virtual models
of DFs. There are almost the following three kinds of
virtual modeling and simulation applications. (a) For
production layout [24], there are two categories of sim-
ulation optimization, either based on mathematical
models and algorithms or based on virtual models. (b)
For specific entities [25], one of the most typical entities
modeling is based on digital prototyping [26] in order to
achieve structure and performance optimization, assem-
bly simulation, mechanical dynamics simulation, multi-
dimensional display of the entities’ appearance and func-
tion, and so on. (c) For production processes [27], it is
to create the relevant entities classes with their logical
relationships in the modeling and simulation environ-
ment, thus to carry out simulations to verify the details
of production processes and to test production plans, as
well as to balance production lines.

2.2.2 Classification of DFs-related virtual models

Most of DFs-related virtual models take on the modeling and
simulation analysis for the preliminary production operation.
The existing typical virtual models can be mainly classified
into the following categories. (a) Product models [28] extract
the product structure and shape characteristics through
methods of mapping, abstract and others. (b) Resource geo-
metric models describe size, shape, and trajectory of the rele-
vant elements to achieve the interference tests for production
processes and the simulations of time or cost. (c) Resource
physical models consider physical factors based on resource
geometric models [22]. Most researches focus on the model-
ing of equipment and personnel, and the simulation to discuss
physical parameters varying and compensation of equipment.
(d) Production capability models depict production capability
and characteristics of the systems. They are used to both de-
scribe the feasibility of a specific product design and evaluate
the detail production process with low cost under a particular
manufacturing system [29]. (e) Process models link process-
related parameters to design attributes of a product and reflect
interaction between the models of the production process and
the corresponding product [30]. Therefore, due to different
purposes of simulations, the existing virtual models are such
independent that it still needs a set of systematic modeling
methods and unified standards for models integration [31],
so as to enrich DFs-related virtual models to support the faith-
ful mirror and meet various application requirements of the
dynamic production operation processes.

2.3 Data and information systems integration

Data integration is not only the inevitable trend and require-
ment of DFs, but also the essential premise for comprehensive
applications of those information systems deployed in DFs. In
order to overcome information islands and improve manage-
ment efficiency, more and more researchers pay attention to
data or information integration in favor of much broader shar-
ing and wider applications.

2.3.1 Data/information integration in cyber layer

The existing relevant researches mainly reveal the data or
information integration and sharing in cyber layer, which re-
lies on a certain platform integrated with some information
systems [32]. In light of different scopes of data integration
in DFs, it can be divided into the following five cases. (a)
Integration of different deployed information systems, e.g.,
the integrations between PDM and ERP, between PDM and
MES, and between ERP and SCM. (b) Integration among
different modules within the same one deployed information
system, e.g., integration among fieldbuses and integration be-
tween fieldbus and industrial Ethernet. (c) Data conversion
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between different information systems or between different
CAx software. (d) Integration between the internal ERP and
the external e-commerce platform [25]. (e) Integration be-
tween software and hardware systems, e.g., the integrations
between ERP and bar code system, and between ERP and
automated storage and retrieval system [33]. However, with
the increasing demand for information sharing and applica-
tion, it is difficult to adapt to the requirements just integrating
the data or part of real-time data in the deployed information
systems. The comprehensive integration covering different
information systems and running through upstream and down-
stream of business processes is becoming the inevitable trend
of digital improvements in DFs.

2.3.2 Data integration from physical layer to cyber layer

Driven by the rapid development and gradual applications of
ITs and automation technologies in DFs, various kinds of
advanced sensors and data acquisition devices provide the
capability to collect massive real-time physical data. The en-
vironment of production operation in a DF is complex and
changeable, thus the real-time data collected from physical
world is not enough [34]. Actually, the existing ERP, PDM,
CAx, and other deployed information systems cannot support
the bi-directional interconnection and integration between the
data collected from physical layer and the data existing or
generated in cyber layer [35]. It is hard to ensure the sharing
of all of data which could cover each production stage and suit
various application requirements. Furthermore, due to the in-
tegrated data either in cyber layer or collected from physical
layer that would be used across different information systems
and multiply production stages, it needs to unify the existing
data modeling methods. In general, the collection and integra-
tion of real-time data from physical layer is relatively less
considered. The lack of data integration from physical layer
to cyber layer, and especially the lack of real-time interaction
and fusion between these two layers of data, both result in
separation between the real production processes in physical
factories and the operation management in cyber space.

2.4 Data-based production operation modes
and management methods

The high-efficient production operation and management is
the ultimate goal of DFs. No matter the efforts for their digi-
talization upgrading based on physical connection and infor-
mation integration, or the efforts for their virtualization im-
provement based on digital/virtual factories modeling and
simulation, they collectively push forward the continuous
evolution of production operation modes and management
methods.

2.4.1 Improvement of production operation modes

The production operation in a factory faces a variety of opti-
mization issues, including product quality control [36], pro-
duction planning/scheduling and control [37], fault diagnosis
[38], and predictive maintenance. To solve those issues, most
of the existing studies modeled the optimization problems
based on limited data, and then figured them out by some
analytical methods. Most of them are carried out with the
common procedures, which include the in-order steps of prob-
lem analysis, modeling, algorithm design and solution, and
optimized control. As the complexity of production operation
increases, the traditional operation modes are of poor adapt-
ability because of the high-complexity of problemmodels and
algorithms. After big data, IoT, and other new ITs applied into
manufacturing, the approaches begin to be converted. Firstly,
enough data are collected by intelligent equipment and sen-
sors, which are reflecting the real-time status of production
operation. Then, some correlations and knowledge are mined
from those collected data, some dynamic evolution rules of
those data are also studied to reveal and find the potential
information. Finally, the potential information stimulates the
active and predicted production operation mode [39]. That is
to say, this mode is based on the procedures of data and
correlation mining, dynamic evolution, simulation and
prediction, and intelligent control.

2.4.2 Evolution of production management methods

The evolution of production management methods has
undergone several typical stages. So far, service-based
production management [40] is paid more and more at-
tention. With the continuous development of digitalization
degree in DFs, the service-based method could effectively
integrate the resources and information in both physical
layer and cyber layer, and then pave the way to achieve
high-efficient and precise production management. The
typical evolution stages are listed as follows [41]. (a)
Based on manual management. The production factors
and plans related data are recorded in the form of papers.
To obtain the required data in this stage is of low quality,
efficiency and accuracy, and poor real-time performance.
(b) Based on an independent information system. Some
data in the specific independent information system can
reflect the physical real-time status, but there exist char-
acteristics of complex relationships, high-degree correla-
tions, and data redundancy. (c) Based on the integrated
information systems and services. The relevant resources
and the corresponding models and data could be orga-
nized effectively based on some information systems in-
tegration in the form of services. It is the basis of data
integration, fusion, and further utilization for optimal pro-
duction management.
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2.5 A brief summary

There summarizes the following four findings corresponding
to the above four aspects of analysis on DFs.

For physical connection and data collection: At the under-
lying manufacturing sites in factories, it is an extremely com-
plex situation consisting of various machines, materials,
humans, and other heterogeneous elements. Even though it
achieves physical connection of some production-related ele-
ments in DFs, but it lacks technologies for system-wide phys-
ical connection and even interconnection of all of relevant
elements, as well as the corresponding general device which
cloud support both perception and access of heterogeneous
elements and processing of all kinds of data collected from
multiple sources.

For digital/virtual models and simulation: The existing re-
searches mainly focus on building models of the systems and
processes, or simulation analysis of the geometric models of
some specific elements. However, in order to depict and re-
flect all of the real production-related activities, behaviors,
rules, and constrains in factories, it still lacks the comprehen-
sive faithful-mirrored models, and is also without consider-
ation of the real-time data in their simulation processes. It is
necessary to carry out the multi-dimensional integrated
models to cover both the geometric information of each ele-
ment as well as its behaviors, rules, constrains, and others.

For data and information systems integration: The situation
of information integration and sharing depends on the related
information systems deployed in factories. The existing re-
searches mainly focus on data integration and sharing in the
deployed information systems, such as manufacturing execu-
tion systems (MES), enterprise resource planning (ERP), and
computer-aided process planning (CAPP). Due to lack the de-
vice for system-wide interconnection of all elements, they are
almost with rare consideration of the real-time collected data
from the physical connected elements. There is still a long way
to go for realizing the system-wide data fusion and interopera-
bility of the integrated data from both physical and cyber layers.

As to data-based production operation modes and man-
agement methods: As different ITs developed and applied into
manufacturing, production operation and management in fac-
tories have been changing from the traditional procedures of
“problem analysis, modeling, algorithm design and solution,
and optimized control” to the innovative procedures of “data
and correlation mining, dynamic evolution, simulation and
prediction, and intelligent control”. No matter how the mode
changes, it always depends on the data and models which are
reflecting real processes and status of production operation.
However, physical elements and information systems are sep-
arate, and multi-dimensional integrated models are scarce.
They both result that management in cyber space and opera-
tions in physical production are out of sync and consistence,
and restrict the accuracy of their operation optimizations.

3 Aims and characteristics of smart
manufacturing in factories

By the innovation of ITs applied into manufacturing, smart
manufacturing is both the trend and result of sustainable de-
velopment of current DFs. The concept of smart factory (SF)
is accordingly derived, representing the aim to carry out smart
manufacturing in factories. To date, there is no consistent def-
inition about SF, while there are some concepts similar to it,
e.g., the ubiquitous factory [42] and factory-of-things [43].
According to the selected typical one of various definitions
on SF [44], the smartness of a developed DF comes from data
as well as the ability to carry out the process of “Data-
Information-Knowledge-Wisdom” (DIKW) [40]. More specif-
ically, it uses advanced sensors to collect data. Data and
models provide real-time information. Information is then
used to run the factories better and generate knowledge.
When knowledge is used across factories and enterprises, this
is where smart manufacturing and wisdom are achieved [36,
40]. Exactly, it is similar to the coming procedures indicated in
Section 2.4.1. Therefore, the main aims of SF are marked in
brief as information transparency, autonomous control, and
sustainable manufacturing. Indeed, all of these depend on da-
ta, actually, the big manufacturing data.

However, there also is no uniform description and classifi-
cation of the characteristics of SF. Based on the above four
findings summarized on current situation of DFs, the relevant
characteristics that are pursued in a SF are correspondingly
discussed in the following items.
(1) Physical separation but ubiquitous interconnection.

Ubiquitous interconnection with scalable and modular
structure is to make real production be with context-
awareness and collaborative initiative by physical data
collection, interaction, and even interoperation. It means
that the autonomous decisionmaking and sustainable pro-
duction take place by gathering, exchanging, and using
information transparently anywhere and anytime with
networked interaction between man, machine, materials,
and systems [39, 41].

(2) Systematic virtual models-based digital counterpart. The
digital counterpart of factories and therein productions
based on systematic virtual models is desired to support
reliable and synchronous co-simulation, and then closed-
loop correction and control. The co-existence and co-
simulation of the digital counterpart include operations
of virtual commissioning, the real line commissioning,
and running/operation in reality [45].

(3) Thorough integration and transparent fusion of all of
data. Considering all of data both perceived from physical
world and existed in cyber space, as well as generated
iteratively in their co-evolution process by their bi-
directional interoperability, the core to achieve smartness
is thorough integration and transparent fusion of all of data.
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Moreover, the co-evolution of both the physical factory and
the digital counterpart is also as coordinated evolution cov-
ering products, processes, and production systems [46].

(4) Value creation and efficiency adding of data by its
utilization. It takes copious and diverse data to produce
information and knowledge, as well as add its value from
which knowledge is derived to make robust decisions. In
view of integration, adaptation, and replacement, it could
scale up or down the production capacity and efficiency
to satisfy uncertain demands or to respond flexibly to
unpredictable disruptions and failures.

After the comparison between the aims of smart
manufacturing in factories and their current digital situation,
some main features of the gap between these two are pointed
out as indicated in Table 1. All of these features and issues of
the gap are summarized as cyber-physical integration.

4 How to bridge the gap of cyber-physical
integration?

For the sake of transition from traditional information integra-
tion to cyber-physical integration in factories, so as to provide
theoretical and technical supports for improving the intelli-
gence or smartness, efficiency, and precision of their produc-
tion operation and management, a systematic framework
based on digital twin data [38] and manufacturing service is
proposed in this section.

4.1 Framework of cyber-physical integration
in factories

In view of the gap features indicated in Table 1, a framework
of cyber-physical integration in factories for the aims of smart
manufacturing is composited of the corresponding four layers
of integration as well. As shown in Fig. 1, the four layers and
their relationships in the proposed framework are illustrated
respectively as follows.

(1) Fully interconnected physical elements integration

Fully interconnected physical elements integration means to
realize the connection and even interconnection, and then to
carry out the comprehensive integration, thus to support self-
control with context-awareness, for all of heterogeneous
production-related elements existing at the manufacturing
sites or in the production processes, i.e., machines, robots,
materials, parts/semi-products/final products, and participa-
tors. It is in order to provide the real-time relevant data from
multiple dynamic sources of the physical manufacturing sites
as much as possible for the subsequent virtual models integra-
tion and the overall data fusion. Mainly based on the

architecture of CPS, new intelligent perception technologies
and devices, heterogeneous networks convergence technolo-
gies, and others, it aims to carry out the significant vision of
heterogeneous production-related elements which are separate
in physical but aggregate in logical.

(2) Faithful-mirrored virtual models integration

Faithful-mirrored virtual models integration is to come up to
the integration of all of models related to factories and therein
production systems and processes, simultaneously consider-
ing the real-time perceived data by physical interconnection,
so as to provide both enough models and reliable data for the
simulation, analysis, and visualization required in production
management. Due to ensure the virtual models be as the mir-
rors of physical factories as well as their production operation
processes, those integrated virtual models are classified into
different categories, i.e., geometrical models and physical
properties models of production-related elements, response
models of production-related behaviors, and logical models
of production-related rules. They finally form the faithful-
mirrored virtual factory models corresponding to the physical
one, which is the digital counterpart after coupling such com-
plicated virtual models in multiple dimensions. Furthermore,
looking forward to the virtual-real interaction more than only
mirroring in their co-simulation and synchronous operation
processes, how to make sure of the real-time interaction and
control between the digital counterpart and the physical world
attracts much more attention.

(3) All of elements/flows/businesses-covered data fusion

All of elements/flows/businesses-covered data fusion refers to
such big manufacturing data both perceived from physical world
and existed in cyber space, as well as generated iteratively in their
co-evolution processes, which is derived after the multi-layer
integrations and co-evolution based on the multi-source data
generated by both fully interconnected physical elements and
faith-mirrored virtual models. As a result, the indicated big
manufacturing data covers and fuses all of production-related
elements, flows, and businesses. In detail, it consists of the real-
time data perceived from the physical production field, the sim-
ulated data generated from the virtual mirrored models, the pre-
scriptive and descriptive data existing in the deployed informa-
tion systems. Alongwith the continuous processes of integration,
interaction, iteration, and evolution of the big manufacturing da-
ta, the result of this dynamic evolutionary reaction is called as
digital twin data [41], after introducing the concept of digital
twin. Actually, the co-evolution process after multi-layer integra-
tions of both fully interconnected physical elements and faith-
mirrored virtual models does make a big difference to the tradi-
tional industrial information integration and data fusion.
Inevitably, there derives a series of laws and a systematical theory
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need to be explored on the dynamic generation and evolution
phenomenon of digital twin data in the operation process of
factories.

(4) Data-driven and application-oriented services integration

The dynamic fusion process of digital twin data not only re-
flects the running conditions of physical elements and virtual
models, but also keeps driving and affecting the iterative run-
ning processes of both physical production and virtual simu-
lation respectively as well as the co-evolution between these
two parts. The dynamic generation and evolution phenome-
non of digital twin data covering all of elements, flows, and
businesses in factories is also a process along with value cre-
ation and efficiency adding of those data, which also could be
presented in the form of manufacturing services. Considering
the valuable data mined from digital twin data to manufactur-
ing services, an innovative method for production operation
and management in factories is brought out. That is data-
driven and application-oriented services integration, which is
divided into two stages of integration for operation optimiza-
tions in factories: the underlying digital twin data-driven ser-
vices integration and the subsequent integrated services-
driven application. In one hand, digital twin data-driven ser-
vices integration is resulted from the integration in a certain
extent of software/hardware and the deployed information
systems in factories, which is based on physical elements in-
tegration, virtual models integration, and the dynamic fused

digital twin data in their co-evolution processes. In another
hand, the integrated services-driven application is the
supply-demand matching issues of manufacturing services
[47] after demand decomposition and application analysis.

4.2 Operational mechanisms based on cyber-physical
integration

Respectively and complementally, Fig. 2 depicts the derived
closed-loop operational mechanisms based on the proposed
layered framework of cyber-physical integration in factories.
It includes the following ten mechanisms which are collective-
ly supporting the circular stream of all of the production-
related data.

Mechanism (1): Tasks decomposition by analysis on real
demands, provides factories the input of decomposed
tasks which could be matched and executed by the prim-
itive manufacturing services.
Mechanism (2): Operation of the fully interconnected
physical factories driven by uncertain demands and dy-
namic tasks gives rise to generation of the perceived data
from physical factories.
Mechanism (3): Co-simulation of the faithful-mirrored
virtual models accompanied with the operation in physi-
cal factories leads to generation of the simulated data
from virtual models based on the virtual-reality
interaction.

Table 1 Comparison between current digital situation and the further aims of smart manufacturing in factories

Analysis aspects Current DFs Aims of SFs The gap features

Physical connection and data
collection

Physical connections in part of
production-related elements,
which are separate and
independent in their location

Physical separation but ubiquitous
interconnection supporting data
collection, interaction, and
interoperation, so as to make
production be with
context-awareness and
collaborative initiative

Fully interconnected physical
integration of any
production-related elements (e.g.,
equipment, materials, humans, and
environments,), and their
corresponding behaviors and rules

Digital/virtual models and
simulation

Specific digital modeling and
independent simulation of some
elements, production systems,
and processes

Systematic virtual models-based
digital counterpart of factories and
therein productions supporting
co-simulation (both reliable and
synchronous), closed-loop
correction, and control

Faithful-mirrored virtual models
integration considering
multi-dimensional models which
include geometrical and physical
properties models of elements,
response models of behaviors, and
logical models of rules.

Data and information systems
integration

Information integration and data
sharing in part of information
systems deployed in factories

Thorough integration and transparent
fusion of all of data both perceived
from physical world and existed in
cyber space, as well as generated
iteratively in their co-evolution
process

All of
elements/flows/businesses-covered
data fusion both accompanying with
and resulting in the dynamic
generation, iteration, and evolution
of big manufacturing data

Data-based production
operation mode and
management method

Few data assisting to analysis and
decision making related to
product design and
manufacturing

Value creation/adding of data by its
utilization based on physical-cyber
consistency and synchronization, for
operation optimizations in factories

Data-driven services integration and
application by the on-demand
matching and utilization of services
for the real production
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Mechanisms (4) and (5): Transmission of both the per-
ceived data from physical factories and the simulated data
from virtual models offers enough constituent data of
digital twin data.
Mechanism (6): Dynamic generation of digital twin
data is derived by continuous interaction, iteration,
fusion, and evolution among the perceived data
from physical factories, the simulated data from vir-
tual models, and the descriptive and prescriptive
data existing in the deployed information systems,
etc.
Mechanism (7): Integration of manufacturing services is
facilitated along with dynamic evolutionary digital twin
data, so as to result in a different mode of services appli-
cation in the production operation and management
processes.

Mechanism (8): Correlation mining of manufacturing ser-
vices is caused by data mining-based value creation and
adding of digital twin data.
Mechanism (9): Supply-demandmatching of the integrat-
ed and correlated manufacturing services improves the
efficiency of services application in production with con-
sideration of digital twin data covering all of physical
elements, flows, and businesses.
Mechanism (10): Digital twin data-driven services appli-
cation through supply-demand matching makes a big dif-
ference to achieve operation optimizations in the whole
production lifecycle of factories.

In summary, the above closed-loop operational mecha-
nisms collectively portray and discuss both the bi-directional
interconnection between physical layer and cyber layer of

T
racking the past 

tn
er

ru
c

eh
t

gn
ir

oti
no

M

er
ut

uf
eh

t
gn

it
sa

ce
ro

F

Data-
driven & 

application
-oriented 
services 

integration

Drive

Iteration &
value adding

Tasks

Decomposed
tasks

All of elements/flows/businessed-
covered data fusion

Data dynamic evolution

Data generation mechanisms

Digital twin data modelling

The physical field of 
factories

Perceived data integration

Perceived data convergence

Elements interconnection
Fully-interconnected

physical elements integration

The digital counterpart 
of factories

Interaction/control of models

Virtual models integration

Multi-dimension modelling

Faithful-mirrored
virtual models integration

Data-driven service integration

Service application strategies

Service integration mode

Service generation/modelling

Supply-demand matching 
of manufacturing service

Demand analysis

Demand and application 
analysis

Demand decomposition

Service platform building

Iteration &
evolution

Operation 
optimization

Fig. 1 Framework of cyber-physical integration in factories

Int J Adv Manuf Technol (2018) 97:1209–1221 1217



factories, as well as the digital twin-based co-existence and co-
evolution between the real factories and the corresponding
digital counterparts.

4.3 Enabling technologies to achieve cyber-physical
integration

Aiming at the proposed framework and the corresponding
operational mechanisms, the following technologies effective-
ly enable to bridge the gap of cyber-physical integration from
current digital situation to the aims of smart manufacturing in
factories.

4.3.1 Technologies for fully interconnected physical elements
integration

Interconnection technologies of all of relevant heterogeneous
elements in physical factories There are three aspects of inter-
connection technologies need to be addressed:

– features extraction methods of all of heterogeneous ele-
ments and the corresponding perceived data,

– multi-source sensors-based protocol analysis technology
and collaborative measurement technology, and

– fusion networking and layout optimization methods of
multi-site heterogeneous sensors.

Dynamic convergence and interaction technologies of multi-
source and multi-mode data perceived from heterogeneous
elements Specific to lack of standardized uploading and inter-
operability of the perceived data, there are the following two
problems need to be addressed:

– grammar and semantic mapping rules of multi-mode data
for integrating the structured, semi-structured, and un-
structured heterogeneous data; and

– devices for multi-source and multi-mode data collection
which could provide interfaces and access methods and
support a variety of communication protocols.

Integration technologies of multi-source perceived heteroge-
neous data In production operation processes of physical fac-
tories, the complexity of production condition leads to the
perceived data becoming with characteristics of multi-dimen-
sionality, coupling, time variability, nonlinearity, etc. Thus, it
also brings out some challenges on pre-processing, fusion, and
storage of the perceived data, e.g.,

– efficient methods of data cleaning, integration, reduction,
and conversion specific for the perceived data;

– dimension reduction method for the massive data and the
corresponding clustering and fusion technologies; and

– distributed storage method oriented to smart environment
to support information complementation and integrated
management which are of characteristics of cross-layer,
cross-time, and cross-space.

4.3.2 Technologies for faithful-mirrored virtual models
integration

Faith-mirrored modeling technologies for multiple dimen-
sions of production-related elements, behaviors, and rules
To ensure the faith-mirrored mapping between production-
related virtual models and the complex activities and behav-
iors in physical factories, there are following three categories
of models need to be built:

– for the category of elements, both scalable geometrical
models and physical properties models of heterogeneous
elements are essential;

– for the category of behaviors, behaviors models and cor-
responding response models are complementary to depict
the functions and influences of some drive and
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disturbance in production processes, as well as the ordi-
nal, concurrent, linkage, and other characteristics; and

– as to the category of rules, models of operation rules and
evolution laws, and the derived logical models for those
rules and laws related to production activities, are also
necessary to enrich the digital counterpart of a factory.

Integration and verification technologies of multi-dimension
virtual models Considering various granularities and accuracy
requirements of above different models, how to evaluate the
correlation and compatibility of different categories of models,
how to represent the comprehensive digital counterpart of a
factory, are the key points to couple and integrate those virtual
models. In addition, application reliability of the integrated vir-
tual models should be verified according some indexes, e.g.,

– completeness for elements-related models,
– accuracy for behaviors-related models, and
– rationality for rules-related models, etc.

Real-time interaction and collaborative control technologies
for the running of integrated virtual models Based on the
specific perception and interconnection devices and the col-
lected data, it aims to achieve both reliable and synchronous
operations in the co-simulation processes of the physical fac-
tories and their mirrored virtual models. In detail, to ensure the
reliability, it depends on the dynamic interaction technologies
of virtual models driven by the real-time production activities
in factories. As to the other aim of keeping synchronism, it is
determined by the events-driven consistency collaborative
control modes and strategies, including:

– the registration method between the geometrical models
and physical elements,

– the tracking method between the response models and
production-related behaviors, and

– the mapping method between the logical models and
production-related rules, etc.

4.3.3 Technologies for all of elements/flows/businesses-
covered data fusion

Modeling technologies of digital twin data covering all of
production-related elements, flows, and businesses Digital
twin data is derived and evolved from both physical world and
cyber space of factories, so that therein data covering all of ele-
ments, flows, and businesses should be uniformly classified at
first. Then it should turn to the feature extraction methods spe-
cific to each category of the constituents of digital twin data, and
finally to establish the unified description models.

Generation mechanisms of multi-source integrated digital
twin data Digital twin data provides sufficient data for pro-
duction operation and management anytime. Thus, its gener-
ation mechanisms should cover the following two stages of
both initialization and real-time growth.

– For the initialization stage, the integration framework of
physical factories, virtual models, and information sys-
tems is desired to utilize digital twin data to improve the
production operations in factories.

– For the real-time growth stage, the updated modes and
dynamic growth rules of digital twin data need to be
discussed following the operation processes of factories.

Interaction and iteration-based dynamic evolution theory of
digital twin dataDifferent categories of constituents of digital
twin data in the continuous closed-loop interaction processes
are of the abilities to absorb multi-source data continuously,
and to add value through updating, expanding, and enhancing
capacity and quality of data. Therefore, the dynamic evolution
theory mainly includes:

– the correlation and comparison methods between the cat-
egories of real-time data and historical data,

– the correlation and mapping methods between the cate-
gories of the perceived physical data and the simulated
virtual data, and

– the evolution laws derived by the interaction and iteration
between each two categories of data, etc.

4.3.4 Technologies for data-driven and application-oriented
services integration

Generation mechanisms of digital twin data-driven services
The previous generation and modeling of manufacturing ser-
vices only consider the data in cyber level. After coming up to
integrate physical and cyber levels of data, there appear some
new forms and generation mechanisms of services driven by
digital twin data. Based on as well as driven by the generation
mechanisms of digital twin data, the generation mechanisms
of services cover hierarchical expression and closed-loop cor-
rection correspondingly, including

– various dominant actions and recessive influences of dig-
ital twin data on services; and

– hierarchical models from physical elements, virtual
models, and digital twin data, to services, etc.

Integration mode and integrated application mechanisms of
services based on dynamic digital twin data The hierarchical
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models of services reveal both vertical actions and horizontal
correlations. First of all, there are coupling and cohesion proper-
ties that need to be analyzed preferentially in the hierarchical
models. The dynamic evolutionary digital twin data along with
the real production operation processes of factories will result in
the iterative gains of coupling and cohesion properties among
services. Moreover, the potentiation result of coupling and cohe-
sion properties also lead to services integration for their applica-
tions, and then bring changes on the application flow.

Integrated services-based control strategies for operation op-
timization in factories In order to reach smart manufacturing
and production management in factories, the typical applica-
tion demands in operation processes of factories are mainly
divided into elements allocation, planning making, process
monitoring, and so on. The result of service integration paves
a better way to respond to the demands. When built the de-
scription models of demands, the iterative and evolutionary
digital twin data and their derived integration properties of
services both make some differences. Thus, the supply-
demand matching mechanisms between digital twin data-
driven integrated services and the description models of de-
mands are the core for operation optimizations and control of
factories.

5 Conclusions

Cyber-physical integration in current DFs is a key scientific
issue that needs to be solved towards smart manufacturing.
Some typical problems exist and hinder their operational op-
timizations. Aiming at improving production operation and
management in factories from digital to further smart situa-
tion, the main contributions of this paper are concluded and
highlighted as follows:

– Four findings are summarized after the multi-
dimensional analysis on current situation of DFs.

– A gap of cyber-physical integration in factories is brought
out by comparing the current digital situation with the
aims and characteristics of smart manufacturing, and is
correspondingly divided into four sub-aims, i.e., fully in-
terconnected physical elements integration, faithful-
mirrored virtual models integration, all of elements/
flows/businesses-covered data fusion, and data-driven
and application-oriented services integration .

– A systematical framework of cyber-physical integration
and its closed-loop operational mechanisms for moving
factories forward towards smart manufacturing are
discussed with consideration of digital twin and
manufacturing service, and the enabling technologies to
implement the indicated four sub-aims step by step are
pointed out, respectively.

This work provides a reference for moving current DFs
forward towards smart manufacturing. Recently, as the exam-
ple of upgrading of current DFs towards smart manufacturing,
a concept of digital twin shop-floor, especially its cyber-
physical integration implementation, as well as its preliminary
application, is discussed [48, 49]. It makes sense to test these
technologies first under near-industrial conditions and to de-
velop them further in order to ensure their suitability in indus-
trial environments. However, there is still a long way to go for
transferring the vision of smart manufacturing into the reality
thoroughly based on current situation of DFs.
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