The International Journal of Advanced Manufacturing Technology (2018) 97:1195-1207
https://doi.org/10.1007/s00170-018-1976-z

ORIGINAL ARTICLE

@ CrossMark

ART?0ol: a model-driven framework to generate target code for robot
handling tasks

E. Estévez' - Alejandro Sanchez Garcia' - Javier Gamez Garcia' - Juan Gémez Ortega'

Received: 23 May 2017 / Accepted: 2 April 2018 /Published online: 22 April 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract

Nowadays, robotic manipulation tasks are present in modern production industries, making robotics a decisive discipline in the
industrial sector. Additionally, in a short period of time, handle robots will be also become essential in daily life. There is an
increase in demand for applications for handle robots with software requirements such as reusability, flexibility, and adaptability.
Unfortunately, the current lack of standardization of hardware and software platforms hinders the fulfillment of these require-
ments. Hence, it is necessary to define a methodology that provides guidelines to design, implement, and support at runtime of
such types of applications. This work explores the advantages of Model Driven Engineering (MDE) in the design and develop-
ment of tasks performed by handle robots. Concretely, the authors present the ART?00l (Arm based Robotic Tasks modeling
Tool), a MDE framework, which is very useful for application domain experts, because it guides them along the design of the
application functionality, abstracting from the emerging techniques. Besides, the proposed framework supports an automatic
code generation by Mode to Text transformation techniques for component-based and ROS communication middleware, achiev-

ing the requirements mentioned previously.

Keywords Handle robots - Model Driven Engineering - ROS—Robotic Operating System - OROCOS

1 Introduction

Nowadays, robotic manipulation is a decisive discipline in
manufacturing and service industries. In fact, there is an increase
in investment by public institutions in these industries in order to
encourage innovation, economic growth, and job creation.
Hence, initiatives such as [1-4] promote the reusability, integra-
tion, flexibility, and optimization of industry processes, which
are the major requirements demanded by modern production
facilities due to the continuous changing market demands.
Unfortunately, the fulfillment of previous commented re-
quirements in handle robot-based applications is a very com-
plex issue because of (1) the great variability of robots in the
market for different purposes and execution platforms, (2) the
proprietary solutions due to missing standards, and (3) the lack
of interoperability between those tools involved in the

< E. Estévez
eestevez@ujaen.es

Departamento de Ingenieria de Electronica Automatica, EPS de Jaén,
Jaén, Spain

development cycle of the tasks performed by robots in pro-
duction processes.

Independently of the task, every handling robot application
is composed of distributed, heterogeneous software compo-
nents (i.e., sensors, processing algorithms, and controllers)
interacting in a highly dynamic, uncertain environment.
Nevertheless, the integration and collaboration among these
modules are not easy because of the lack of standards. In fact,
although many elements, such as sensors, actuators, auxiliary
elements, and tools, need to be added to a robot to make it
more flexible and adaptable, their integration and collabora-
tion are not easy because the followed software development
methodology does not keep reusability in mind.

In order to ensure meeting these requirements, hardware
and software platforms should allow developers to cope with
complexity imposed by applications themselves: hardware,
software, time requirements, and distributed computing envi-
ronments. In this context, this work explores the advantages
delivered by the use of Model Driven Engineering (MDE) [5]
to provide support to the development cycle of applications
based on handling robots.

In recent times, the MDE discipline is being introduced in
the robotics field [6, 7]. Hence, for instance, [8] shows the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-018-1976-z&domain=pdf
mailto:eestevez@ujaen.es

1196

Int J Adv Manuf Technol (2018) 97:1195-1207

EasyLab tool for mechatronic systems. Later, the authors
adapted this tool to the Robotino Mobile Robot© platform
[9]. This is based on two graphical proprietary languages:
Synchronous Data Model for software and other language
for hardware description as a collection of sensors and actua-
tors. The former is very similar to the Sequential Function
Chart of IEC 61131-3 standard [10], but the latter, as far as
authors know, does not follow any wide spread standard. [11]
by means of a set of Unified Modeling Language diagrams
defines robotic applications, but also generates ADA code,
running over CORBA. More recently, [12] shows the
MDSD toolchain for the SmartSoft framework which pro-
vides a stringent component model to define middleware in-
dependent components and their interfaces. Currently, two
implementations of the SmartSoft are available. The first is
based on CORBA (using ACE/TAO library), and the other
is based on simple message passing (using Adaptive
Communication Environment).

Following MDE techniques, The Best Practices in
Robotics (BRICS) European Project defines the BRIDE
(BRICS Development Environment) toolchain [13] in order
to facilitate the design of robotic applications. BRIDE is based
on Eclipse Modeling Framework (EMF) [14]. Before starting
the design of applications, the target middleware must be se-
lected. As far as authors know, BRIDE toolchain provides
customized support for two platforms: OROCOS [15] and
ROS (Robotic Operating System) [16]. Thus, depending on
the selection, the toolchain allows interconnecting OROCOS
components or ROS nodes [17] graphically. In this context,
BRIDE allows the reuse of OROCOS application components
or ROS nodes in different handling robot tasks.

ReApp [18] is a component-based modeling tool for ROS
and generic 10s for FANUC robots which allows the reuse
and replace of ROS nodes without the necessity of redefinition
of the robotic task.

Even though previously cited works use Model Driven
Design techniques, the reusability is achieved in different han-
dling robot applications running over same middleware.
Nevertheless, the required code that performs the configura-
tion of a sensor and the measurement, or that performs the
control strategies, it could not be reused in the case of having
the same sensor(s)/actuator(s) or control strategies in different
handling robotic tasks running in different middlewares.

This work goes one step further, it proposes the ART?00l
(Arm based Robotic Tasks modeling Tool) framework that guar-
antees code reuse independently of the runtime platform. It pro-
vides the mechanisms for defining graphically the functionality
of the applications, making use of concepts managed by appli-
cation domain experts (i.e., sensors, processing modules, and
actuators), later lists the runtime platform (middleware) to select
in which one is going to be running the robotic task. Finally, this
framework has a code generator to generate the target code
according to selected runtime platform properties.

@ Springer

A previous work of the authors [19] identified and charac-
terized common interfaces for the components that can appear
in every handle robot-based application, independently of the
manufacturer in case of sensors and actuators.

The reuse of this atomic code is guaranteed with the
ART?00l framework. Because it is composed by two main
modules: (1) a graphical editor, designed specifically for ro-
botic field experts. This editor is essentially twofold, on one
hand, it offers guidelines for defining the functionality of the
tasks but it also abstracts the domain experts from underlined
technologies. (2) Code generator module that applying Model
to Text transformation techniques of MDE which, once select-
ed the runtime platform, generates automatically the target
code ready to be run over runtime platform. Currently, this
code generator supports the generation for OROCOS and
ROS middlewares.

The remainder of this work is as follows: Sect. 2 describes
the guidelines for modeling handle robot-based applications.
This section concludes with a meta-model that describes the
lexicon and syntax of applications functionality. Section 3
identifies the transformation rules for generating target code
for the most wide spread middleware in the robotics commu-
nity. Section 4 details ART?00l framework. The proposed
framework is tested in Sect. 5 with a service robot case study.
Finally, Sect. 6 introduces conclusions of this paper.

2 Modeling of handle robot-based
applications

Previous works like [20, 21] have identified and characterized
which types of components take part in handle robot-based
applications. To be more precise, there are three types of com-
ponents: sensors, actuators, and processing algorithms such as
trajectory planning.

Figure 1, with a Unified Modeling Language (UML)
class diagram, shows the common characteristics of all
identified types of components. Afomic Task is an abstract
UML class that collects the minimum common information
of all types of components that take part in handling robot-
ic applications. It is formed by sample property whose
value indicates how many times the component is executed
per second (sample). Furthermore, every component could
be configured, started, and stopped. All components (sen-
sors, robots, and controllers) inherit an essential property
from the Atomic Task.

Hence, all type of sensors inherit sample property which
contains information about how often the measurement must
be updated but also the are defined by the nature of the mag-
nitude to be measured (#pe), the number of samples (size),
and the value of the measurement. Furthermore, there are
properties and methods which are dependent on the magni-
tude’s nature. Consequently, for capturing images, a raw

Int J Adv Manuf Technol (2018) 97:1195-1207

1197

Fig. 1 Characterization of the
atomic code components of
handle robot-based applications

Accel
{type=ACCEL}

Sensor AtomicTask

size sample

.
WristForce —l> type:Magnitude) .
{type=FORCE} N Accel <> AtomicTask()
O Accel() g1 valuel’] >
> % setSample()
<> WristForce() {> % Sensor(in type, in size) & getSample()
- DAQ Si {» configure()
«» removeBias() _ & getSize())
{type=VOLT} _l> g > start()
. » getType() & stonl)
Position » getValue()
{type=POS} O DAQ()
Controller
«» Position()
{> Camera Rob
{type=IMAGE} obot
I
«enumeration» Gupy80 GX1050 ; .
gl imageRaw SR4000
Magnitude @] hande i 5-1 width
EI] parameter El] handle heiaht D ip
VOLT ﬁ[frame frame 51 9 handle
FORCE
- & Gupy80() O GX1050() » Camera() & SR4000
@» cature() > capture() » getimageRaw() @ capture()
IMAGE &> configure() > configure() O setWidth() > configure()
POS O start() » start() (:'\’ setHeight() » start()
& stop() O stop() O getwidth) O stop()
> setWidth() » setWidth() 9) » getValue()
O setHeight() O setHeight() > getHeight() > getWidtth()
¢» getimageRaw() | | {» getimageRaw() ‘\") savelmage() » getHeight()

image format with its width and height is added jointly with
the corresponding set and get methods. This abstract class is
the starting point capture images for all cameras. Then, for a
specific camera (e.g., Guppy F-080C, Prosilica GX1050),
manufacturer-dependent parameters (as private properties)
and the capture private method are added (See Guppy80,
GX1050, and SR4000 Classes of Fig. 1 that represent the
interface of the atomic code for managing the corresponding
cameras independently of the logic of the application.).

Manufacturer-independent proposed interfaces help devel-
opers to add new minimal codification units in a database. On
the other hand, they provide a complete abstraction to applica-
tion domain experts. Hence, robotics domain experts do not
require knowledge about manufacturer proprietary drivers [19].

The logic of all handle robot-based applications can be
defined as a set of interconnected components [7]. Every com-
ponent will encapsulate a minimal codification unit to which
the logic of the application is added. This is possible by de-
fining an external accessibility to the component by means of
input and output ports. The dialog between components is
specified by a connector composed by a set of connections
which represent a single data interchange.

The following figure shows a meta-model highlighting on-
ly those properties which relate the logic to the isolated atomic
source code units.

Hence, every component-encapsulated atomic code is char-
acterized by two properties: identifier of such a code
(refAtomicCode) and the path (pathAC). Connectors represent
the dialog between components where source and target prop-
erties are required for modeling the sense of such communi-
cation. Finally, connections normally will collect the value of
a protected property of an atomic code. Therefore, the name of
the method to get the value of the source component
(refSourceMet) and the name of the method to set the value
to target component (reflargetMet) are required. The instant
when the values are updated is related to the value of a sample
property of the atomic code (see Fig. 1). So, if this property
has a value different from zero, this implies that the value is
updated periodically. Otherwise, the value is updated by an
event (i.e., this is an on-demand update).

3 Automatic generation of target code
for handle robot-based applications

This section is centered in the code generation phase. MDE
recommendations have been followed which rely on the mod-
el and model transformation concepts in order to automate the
software development process. MDE defines two kinds of
transformations: Model to Model (M2M) and Model to Text

@ Springer

1198

Int J Adv Manuf Technol (2018) 97:1195-1207

(M2T), and both have a model as input. In this case, the sec-
ond type of transformation is defined where the input model is
an instance of the Fig. 2 meta-model, and the target code
depends on the selected platform. Therefore, the identification
and specification of M2T transformation rules implies having
knowledge not only of the structure of the input model but
also of the particularities of the target platform.

The following sub-sections first detail the main character-
istics of the most wide spread communication middleware
(MW) in the robotics field and then identify the transformation
rules for the most common component-based MW (e.g.,
OROCOS) and for ROS, which is a node-based platform
which provides libraries and tools to help software developers
create robot applications.

3.1 Main features of selected communication
middleware

The M2T generator module needs knowledge about the target
code structure and requirements. Section 2.1 of [22] describes
the main features of the most accepted communication
middleware in the robotics scientific community. Table 1 sum-
marizes the main characteristics, all except ROS are
component-based communication middleware.

Processing the information of the previous table, the au-
thors identified the main transformation rules to generate code
for listed runtime platforms:

* RI: Generation of application dependent software units
(components/nodes).

* R2: Publish data.

* R3: Subscribe to data.

* R4: Middleware execution engine.

HRApplication

¢

+connectors +components
" 1.
Component
Connector | *+target
+source [refAtomicCode
[71 pathAC
+connections sinPorts TroutPorts
1.7 * *
1
Connection InPort OutPort
[] refSourceMet 1
[] refTargetMet

Fig. 2 Meta-model of the logic of the application

@ Springer

This paper selects OROCOS from those component-based
MW because of the fact that it supports real-time applications.
Every application running over this MW is a set of intercon-
nected OROCOS application components. The communica-
tion between those components could be performed following
Publish/Subscribe or Client/Server models. The former is
achieved by input and output ports, the latter, by means of
request and response operations. Hence, Sect. 3.2 of this work
details the particularities of R1...R4 in order to generate target
code to be run over the OROCOS runtime platform.

In order to demonstrate the code reuse, this paper also
considers ROS in which, every application is formed by a
set of modular programming units called nodes. The commu-
nication between nodes could be performed by Publish/
Subscribe and Client/Server communication models as well.
The former is achieved with a topic and message interchange,
so a node that is interested in making data accessible to other
nodes, publishes a topic. In the same way, if a node requires to
access specific information must subscribe to the correspond-
ing topic. On the other hand, if the communication model is
Client/Server, the node that acts as server remains waiting for
a request from the client. When a Client Node makes a re-
quest, the Server node performs a processing (service) and
responds to client node. Hence, in this case, two messages
are interchanged (request and response). Actually, this inter-
action is presented as a remote procedure call. When many
nodes are running, it is convenient to render peer-to-peer com-
munications graphs. Section 3.3 details the particularities of
R1..R4 in order to generate target code to be run over the
ROS runtime platform.

3.2 Transformation rules for OROCOS

The RTT provides the core of the OROCOS component’s
interface/structure (7TaskContext Class), and the logic of the
application is collected in a DeploymentComponent markup
language model.

Figure 3 shows the defined templates for generating auto-
matically both header and source files for every application
dependent on the OROCOS component. Additionally, sched-
uling properties of OROCOS components must be detailed in
the DeploymentComponent markup language (ML) file,
which acts as the execution engine of this MW, because it
collects information to ensure a successful execution of
applications.

DeploymentComponent file is composed of three main
parts: (1) path of the libraries where application OROCOS
components are and (2) connection points collecting the infor-
mation interchanged between components and (3) component
execution scheduling. OROCOS manages two primitives for
selecting the schedulers: ORO_SCHED RT for real-time
schedulers and ORO_SCHED OTHERS for the rest types
of schedulers.

Int J Adv Manuf Technol (2018) 97:1195-1207 1199

Table 1 Main features of the MWs most spread in the robotics domain

Component-based middlewares

OROCOS [15].

Modular MW that provides a set of libraries from which the Real-Time Tookit (RTT) must be mentioned, because it provides the resources
for developing real-time applications.

Command (Asyn.) Method (Syn.) Data/buffer Modifiable parameters State

Operation Operation Port Property Preop, stop, run

OpenRTM [23].

Open source middleware developed by AIST.

Command (Asyn.) Method (Syn.) Data/buffer Modifiable parameters State
- Port service Data port Interface config. Created, inactive, active
Player [24].
MW developed by the Southern California University.
Command (Asyn.) Method (Syn.) Data/buffer Modifiable parameters State
Command - Interface data Port -
Service
Node-focused middlewares
ROS [16].
A set of code libraries and open source tools to help with the development of robotics applications.
Command (Asyn.) Method (Syn.) Data/buffer Modifiable parameters State
- Service Topic Parameter
Fig. 3 Templates for generating @ namespace GRAV{
header and source code of class OrocosAtomicClassName: public(TaskContext) public AtomicClassName
application OROCOS protected: RTT OROCOS library Atomic source code
components /* Definition of Ports*/ [OutputPort | InputPort] TypeOfProperty port_NameOfProperty;
public:
OrocosAtomicClassName (); @ GRAV::OrocosAtomicClassName

virtual ~OrocosAtomicClassName ();

bool configureHook();

bool startHook(); portPropertyName
void updateHook();

void stopHook();

3
}

TaskContext

Source
@ namespace GRAV{
OrocosAtomicClassName::OrocosAtomicClassName(const std::string name)
: RTT::TaskContext(name, PreOperational),AtomicClassName(){
// Labels that publish ports
this->addPort("label", port_NameOfProperty);
this->addOperation("label",&0rocosAtomicClassName::setPropertyName, this, RTT:OwnThread);
// protected properties access
this->addProperty("label",NameOfProprty); // public properties access
bool OrocosAtomicClassName ::configureHook(){configure(); return true;}
bool OrocosAtomicClassName ::startHook(){start(); return true; }
void OrocosAtomicClassName ::updateHook(){
portNameOfProperty.write(this.getNameOfProperty()); //Update of Output ports @
portNameOfProperty.read(aux); this.setNameOfProperty(aux); // Input Ports @
}
void OrocosAtomicClassName ::stopHook(){stop();}
JORO CREATE COMPONENT TYPE() ORO LIST COMPONENT TYPE(GRAV::OrocosAtomicClassName);

@ Springer

1200

Int J Adv Manuf Technol (2018) 97:1195-1207

The following is detailed how implement R1...R4 rules for
generating OROCOS application components and the corre-
sponding DeploymentComponent file which acts as the engine
in OROCOS runtime platform.

* Rule 1: Generation of application dependent compo-
nents. An OROCOS application component is gener-
ated from a component modeled in the logic of the
application. As stated previously, the interface of the
resulting component follows the structure fixed by
the execution engine of the selected MW. For
OROCOS, this structure is provided by
Task Context (see Fig. 3).

* Rule 2: Publish data. Those output ports (OutPorts in Fig. 2)
which appear as source in connectors are the result of the
component providing external accessibility to this data. To
publish data in OROCOS, first, an output port is defined:
[OutputPort] #peOfProperty port nameOfProperty. Later,
an updateHook method, provided by Task Context, is up-
dated with the external accessibility of defined output port:
portNameOfProperty.write(this.getNameofProperti)),

* Rule 3: Subscribe to data. Those input ports (InPorts in
Fig. 2) which appear as target in connectors are the result
of the component subscription to data. To subscribe
to data in OROCOS, first an input port is defined:
[InputPort] typeOfProperty port nameOfProperty.
Later, the updateHook method is updated with
portNameOfProperty.read(aux);
this.setNameOfProperty(aux);

* Rule 4: Generation of DeploymentComponent file. As it is
formed by three parts, (1) path property processing, (2)
connection points in OROCOS directly related with con-
nectors, and (3) scheduling information of every applica-
tion, OROCOS components are generated by processing
the value of sample property. More specifically, if the val-
ue of sample is different from zero, it is because it is
periodic.

3.3 Transformation rules for ROS

This section details the transformation rules for generat-
ing a code from designed applications to be executed in
an ROS platform. The following figure shows templates
to follow in order to generate final ROS nodes. As in
previous sections, italic font is to highlight the informa-
tion coming from designed applications. Although ROS
permits different source code as C++, Python, and Lisp,
this paper generates C++ code.

The following is detailed how develop R1...R4 rules for
generating target code to be run over ROS runtime platform:

* Rule 1: Generate application dependent ROS nodes.
A ROS node for each application component is

required.

The declaration in the header file is

class RosNodeComponent[@id] : public Component[@refAtomicCode] {

protected:
ros::Handle node;

public:
RosNodeComponent[@jid] ();

virtual RosNodeComponent[@id]();

¥

On the other hand the application-dependent node in the
source file is the following class:

RosNodeComponent[@id]::RosNodeComponent[@id](ro-
s::NodeHandle n_): node(n_){/*code to be generated*/}.

In which Component[@id] is the name given by domain ex-
pert during the design phase to the conceptual module

@ Springer

* Rule 2: Publish data. Those connections in a connector
which uses as source an output port of a component im-
plies that the resulting ROS node must publish them as
topics.

Hence, to publish a basic type of data, [25] implies a def-
inition of a message in the header file. The left part of Fig. 4
with R2 details the sentences for a basic type but also for
images types of data.

Int J Adv Manuf Technol (2018) 97:1195-1207

1201

#include
//inclu

#include 0
class RosNodeComponent[@id] : public Component[@refAtomicCode]{
protected:
ros::Handle node;
/** Publisher (s) Y
/*

for every out port search those connectors that have it ource */

ros::Publisher msgConnection[@id]l; // if type of data is a
// If type of data is Image

c type

image_transport: : ImageTransport iTranspConector([@id];
image_transport::Publisher iPubConector[@id];

VA Subsc: opics *x/

/* For evert input port, thos ors that have it as t
ros:: Suscriber msgConector[@id];

// 1f type of data is Image

wx)

// if type of data is a basic type

image_transport::ImageTransport iTranspConnection[@id];
image_transport::Publisher iPubConnection[@id];

public:
virtual RosNodeComponent [€id] ()

RosNodeComponent [@id] () ;

void Connection[@id]CallBack(const typeOfData::ConstPtr& message) ;
void PublishConnection[@id](); // for every published topic

cv_bridge::CvImagePtr iCv Connection[@id]; E

Header.h

#include “RosNodeComponent [@id].h”
RosNodeComponent [€id] : :RosNodeComponent [2id] (ros: :NodeHandle n_): node(n_){
/** for every topic to publish **/

// if a basic type of data

msgConnection[@id]=node.advertise<TypeOfData>(connection[@id],) ;

// if type of data is Image

iPubConnection[@id] = iTranspConnection[@id].advertise(Connection[@id],1);
/** for every type of Data to subscribe to **/

// if a basic type of data

msgConnection[@id]=node.subscribe (conection[@id],,&RosNodeComponent[@id]: :

Connection[@id]CallBack, this);

}
/* For every topic to publish, the following action is required*/
RosNodeComponent [@id] : : PublishConnection[@id] () {
// if a basic type of data

typeOfData message;

message.data=Connection[@id]/@refSourceMethod;

msgConnection[@id] .publish (message) ;
// If Type of data is Imae

cv_bridge::CvImagePtr message;

message->image= Connection[@id]/refSourceMethod;

iPubVisionValueConn.publish (message->toImageMsg()) ;

@ 0660 6

}

/* For every topic to subscribe to, the following action is required */

RosNodeComponent [@1d] : :Connection[@id]CallBack(const TypeOfData::ConstPtr& message) {
Connection[@id]/@refTargetMet (message->data); // if a basic type of data

}

/* main*/

int main (int arge, char** argv)({
ros::init(argc,argv, RosNodeComponent[@id]);
ros: :NodeHandle n;

RosNodeComponent [@id] rosNode (n) ;

ros::Rate loop_rate (Component[@id]/@sample) ;
while(ros::ok()){

rosNode.Update () ;
rosNode. PublishConnection[@id] () ; // for every topic to publish
ros::spinonce() ;
loop_rate.sleep();
}return (;

}

Source Code.cpp 7

Fig. 4 Templates to follow for generating header and source code of ROS nodes

Additionally, independently of which type of data to pub-
lish, this rule finishes with a publication method for every
topic to publish.

The right part of Fig. 4 with R2 indicates the different
command sentences to publish a topic in the source file.

* Rule 3: Subscribe to data. Those connections in a connec-
tor which have as target an input port of a component
indicate that the resulting ROS node must subscribe to
such data.

The header file required sentences for declaring the data to
publish by the ROS node are highlighted in the right part of
Fig. 4 with R3 for a basic type but also for images type of data.

Additionally, independently of which type of data to sub-
scribe to, a subscription method is required:

Finally, every topic to subscribe to must be initialized by
the constructor. To do this, the actual parameters of the sub-
scription method are as follows: name of the topic to

ART?00L Framework

Graphical Editor
A
- C mf

Code Generator

m2T
transformation

Rules $@

1 #ROS

Fig. 5 General scenario of the ART200l framework

HRAplication

Eclipse Modeling Framework ~xml

Atomic code
Data Base
[19]

subscriber to, number of data that will be stored in a buffer
(1), and the method that accesses the information of the sub-
scribed data (Connection/@id]CallBack). This function is re-
sponsible for the data update with the value of the subscribed
topic.

The right part of Fig. 4 with R3 indicates the different code
sentences to add in order to subscribe to a topic in the source
file.

* Rule 4: Generate main ROS nodes. A fixed structure has
been given for every ROS nodes in the source file. It
follows this sequence:

— Initialization of ROS node. Definition of a node handler
to communicate with the ROS Master [26].
— Definition of an instance object of the class that represents
the application ROS node.
This definition invokes a default constructor, to which
the handler of node is given.

— If ROS node publishes data, it is mandatory to indicate
how often the value has been updated:

— The functionality of the ROS node is performed by a loop
where

1. Execution of the atomic code encapsulated in ROS
node. Publish all topics.

2. ROS Master processes messages.

3. ROS node is asleep till to update the value.

@ Springer

1202

Int J Adv Manuf Technol (2018) 97:1195-1207

W e mf mm) |eCore (Meta-Model)

! &

Eclipse Modeling Framework

Domain Model
Pictogram Model
Link Model

4 Basic Editor +

= HRApplication £

mekaRPosCon

7 .
=r Customized
: Code

& Components
& Robot

visionValueConn

posValueConn

posValueConn E)le jectRlannL

trajectPlannerLSPConn

mekalPosCon

trajectPlannerRSPConn

= Sensors
MEKA # Strength
 position

£ Marquee

[% eclipse]

& Contrcl
= Connections
® Conecor
/0 Ports
@ioport

¥ outpont

Camera

{14 |

Fig. 6 Graphical modeling example

The right part of Fig. 4 with R4 lists all sentences automat-
ically generated following this sequence.

Once generated application-dependent ROS nodes, they
require to be compiled. To do this, the CMakeList.txt file must
be composed by the following sentences for every generated
ROS node:

Rosbuild add executable(RosNodeComponent[@ id]src/
RosNodeComponent[@id].cppsrc/RosNodeComponent[@id]/
@refAtomicCode.cpp);

Finally, in order to launch the application in ROS platform,
a launch [26] is defined. This file is an ML that collects the
package where it is, the type of node, and its name.

4 ART?ool: graphical framework
for generating target code automatically

Figure 5 illustrates the general scenario of the proposed frame-
work which follows MDE principles, and it is composed
mainly by two modules: (1) a graphical editor that guides
the modeling of handle robot-based applications, providing
an abstraction layer to the platforms where application is go-
ing to be running. (2) Code generator module that performs
previous section identified rules by means of Model to Text
transformation techniques of MDE. The logic of these trans-
formation rules depends of the target runtime platform.
Following sub-sections detail each module.

@ Springer

4.1 Graphical editor

The graphical editor is based on Model Driven Techniques which
has been developed in Eclipse with two wide spread plug-ins:
Eclipse Modeling Framework (EMF) and Graphiti [27].

On the one hand, EMF provides the basis for modeling and
the facilities for automatic code generation in order to develop
tools or other applications based on structured data model
(ecore) stored in a ML format. To be precise, ART?00l has
implemented in ecore the meta-model shown in Fig. 2.

On the other hand, Graphiti supports a fast and easy crea-
tion of graphical editors that visualize an underlying Domain
Model using a tool-defined graphical notation and is editable.
This paper, concretely, has supported a Spray platform for
generating Graphiti files, which are

* Domain Model: implements the meta-model illustrated in
Fig. 2. As commented previously, this file is defined in
EMEF and linked to the Graphiti eclipse project. From the
Graphiti point of view, this file contains the concepts
which can have a graphic symbol.

* Pictogram Model: contains the complete information for
representing a diagram. That implies that each diagram
can be represented without the presence of the Domain
Data. As a result, a partially redundant storage of data is
required that is present both in the Pictogram Model and in
the Domain Model.

Int J Adv Manuf Technol (2018) 97:1195-1207 1203

 HRApplication
“ Connection (7)
= O O O
name source target type
1 visionValueConn 7| source function=ssvalue id=Prosilica/passinfo 'jtarget function=ssvalue id=PosSensor/passInfc string
2 posValueConn " source function=ssvalue id=PosSensor/passPosition v!target function=ssvalue id=TrajectPlannR/refreshR string
3 posValueConn source function=ssvalue id= ensor/passPosition 7| target function=ssvalue id=TrajectPlannL/passPosition string

4 trajectPlannerLSPConn | source function=ssvalue id=TrajectPlannl/movePositionl 7|target function=ssvalue id=MEKA/m ositionl string
5 trajectPlannerRSPConn "I source function=ssvalue id=TrajectPlannR/movePositionR ﬂtarget function=ssvalue id=TrajectPlannR/passPosition string
6 mekaRPosCon 7 source function=ssvalue id=MEKA/refreshR ‘| target function=ssvalue id=TrajectPlannR/passPosition string
| 7 mekalPosCon " source function=ssvalue id=MEKA/refreshl Ttarget:uw“ww ssvalue id=Traj annl/refresh string
"/ Component (5
= functionality “ name “ path “mport “OutPort
1 CoreCamera Prosilica /home/gabriel/Documents/Codigo Base/Template/CoreCamera.h " OutPort (1)
2 CoreSensor PosSensor /home/gabriel/Documents/Codigo Base/Template/CoreSensor.h [InPort (1)] OutPort (2
3 CoreControl TrajectPlannR /home/gabriel/Documents/Codigo Base/Template/CoreControl.h InPort (2) OutPort (1)
4 CoreControl TrajectPlannL /home/gabriel/Documents/Codigo Base/Template/CoreControl.h TInPort (2) | OutPort (1
| | 5 CoreRobot MEKA /home/gabriel/Documents/Codigo Base/Template/CoreRobot.h T1nPort (2) T OutPort (2
Fig. 7 HRApplication example
» Link Model: connects data from the Domain Model and The following figure the main shows an example of an
the graphical representation (i.e., data from the Pictogram application defined with the graphical modeling editor.
Model). These connections are again needed by many Customized code includes the generation of

actions in the graphical editor. For instance, a deletion or ~ HRApplication.xml file which is the output of this module
a move of a graphical object needs also access to the and the input for the code generator. Figure 7 the
associated object of the Domain Model in order to be able ~ HRApplication XML file graphically designed in Fig. 6.

to make the necessary changes.

Fig. 8 General flow followed by

code generators Sta rt

. No
i<= Num of Comp
] Yes
1++
Naming of header
and source files
Y
Implementation of Implementation of Implementation of
R1,R2and R3 R1,R2and R3 R4
for header file for source file
/
Close Source

and Header files E n d

@ Springer

1204

Int J Adv Manuf Technol (2018) 97:1195-1207

Fig. 9 Main function for
generating OROCOS application-
dependent components

String orocos = "Orc
String fileName;
String atomicClassName;
Element component;

public void genOrocosFiles () {

ArrayList<String> typeOfProperties;

// instance of the Class that implements methods to generate Deployment XML

DeploymentFileGenerator deployment = new DeploymentFileGenerator();

for (int i =

; 1 < getcomponents () .getLength(); i++) {

component = (Element)getcomponents().item(i);

fileName = orocos.concat (component.getAttribute ("name")) ;
atomicClassName = component.getAttribute ("refAtom

// header and source files naming

initOrocosFiles (fileName) ;

typeOfProperties =

getTypeOfProperties (component.getAttribute ("name"));

/* Header file generation */

genIncludesFiles (atomicClassName, typeOfProperties);
// Implemetation of Rule 1

genClassDeclaration(fileName, atomicClassName) ;

//Implementation of Rule 2

genOutputPortVars (getOutputPortNames (component) , typeOfProperties);
//Implementation of Rule 3

genInputPortVars (getInputPortNames (component), typeOfProperties);

genOrocosDeclaration (fileName) ;

/* Source file generation */

genClassConstructor (fileName, atomicClassName); // Rule 1

genLabelForPublishPorts (fileName, getOutputPortNames (component)); //Rule 1

//Escribe las funciones en el fichero .cpp

genOrocosMethods (fileName) ; //configureHook, start, stop and header of updateHook

//Implementation of Rule 2

genPublishData (getOutputPortNames (component)) ;

//Implementation of Rule 3

genSubscribeData (getInputPortNames (component)) ;
genOrocosPrimitives (fileName); // Rule 1

closeOrocosFiles() ;

}
deployment.generate() ;

4.2 Code generator

Before starting with code generation, it is necessary indicate the
target runtime platform. This module processes previously gen-
erated HRApplication.xml file (see Fig. 5) with a set of M2T
transformation rules. It is based on Java and DOM (Document
Object Model) for managing the input information
(HRAplication model) (Fig. 7). As stated previously, the current
version supports generation by OROCOS and ROS. The flow
followed by these two generators is the following (Fig. 8):

Figure 9 shows the general algorithm for generating
OROCOS application components (genOrocosFiles). For in-
stance, to generate the header file, in addition for naming
issues, it is also necessary to define genOutputPortVars and
genlnputPortVars functions, which perform rules R2 and R3,
respectively (i.e., they define the ports of the OROCOS appli-
cation component). Source file generation involves seven
functions, five for performing R1, one for R2, and the other
for performing R3.

On the other hand, Fig. 10 shows the main logic to generate
target code for the ROS platform (genROSNode). The algorithm
starts processing all components of the logic. For every

@ Springer

// generation of Deployment XML File

application component, a RosNode is generated with two files
(h and .cpp).

For instance, to generate a header, a set of functions has been
developed to implement every transformation rule. Figure 10
details the genSubscribersMsg function which returns a list of
topics to subscribe to. In fact, it processes every InPort of the
component and adds its name as a topic to subscribe to.

5 Case study: tracking an object in movement

Object tracking is a quotidian task that humans perform
easily, but when this task is performed by a robot, it is
not trivial for many reasons. On the one hand, it is nec-
essary to have a complete knowledge of the environment
where the robot can move. It is important to emphasize
that sometimes there can be object-obstruction problems.
On the other hand, once the object is located, a trajectory
control must be defined that allows tracking the object
successfully, avoiding collision with other objects present
at the scene.

Int J Adv Manuf Technol (2018) 97:1195-1207

1205

public void genROSNodeFiles () {
String rosNode
String fileName;

boolean havePublisher

"RosNode" ;

false;

Element component;

ArrayList<String> connectionTypesOfData;

for (int i ; 1 < getComponents().getLength(); i++) {
component = (Element)getComponents().item(i);

//header and source files naming
initRosNodeFiles (fileName) ;

/* Header file generation */

// Implementation of Rule 1
connectionTypesOfData
setIncludeFiles (component.getAttribute("re

\tom
//Implementation of Rule 2
//Implementation of Rule 3

genSubscribersVars (getSubscribersMsg (component)) ;
o //Implementation of Rule 4

fileName= rosNode.concat (component.getAttribute ("name")) ;

getDataTypes (component.getAttribute ("name")) ;

setClassDeclaration(fileName, component.getAttribute("refAtomic

havePublisher =genPublishersVars (getPublishersMsg (component)) ;

e"), connectionTypesOfData) ;

"))

try {
for (String message : messages) {
_headerFile.write("\n\trc
_headerFile.flush();
}
} catch (IOException ex) {
Logger.getLogger (RosNodeGenerator.class.getName()) .log(Level.

iber "+message+";");

}

/ genNodeDeclarations (fileName,component) ; public ArrayList<String> getSubscribersMsg(Element component) {
i /* Source file generation */ Element inPort;
. // Implementation of Rules 1,2&3 Element connection;
1 genClassConstructor (fileName, component) ; ArrayList<String> topicsToSubscribe = new ArrayList<>();
o genSubscriberFunctions (fileName, component) ; for (int i = 0; i < component.getElementsByTagName ("I ct") .getLength(); i++)
! genPublisherFunctions (fileName, component) ; {
1 // Implementation of Rule 4 inPort = (Element)component.getElementsByTagName ("InPort").item(i);
- genMainFunction(fileName, havePublisher, component) topicsToSubscribe.add(findConnection (inPort.getAttribute ("name")));
! closeRosNodeFiles () ; }
\ } return topicsToSubscribe;
.} }
\ ¥
.
\ public void genSubscribersVars (ArrayList<String> messages) {

SEVERE, null, ex);

Fig. 10 Main function for generating ROS application-dependent nodes

This case study describes how the Meka humanoid robot
performs a tracking task of an object in movement with the
two arms. This implies not only a 3D object location but also
two-arm trajectory control to avoid any type of collision with a
conveyor belt or between themselves.

To perform this tracking task, Prosilica GX1050 has been
used as a vision sensor that has detected the object’s 3D posi-
tion jointly with other processing algorithms. In order to sim-
plify the case study, this task will be based on a partially
known environment, because the position of obstacles such
as the conveyor belt is known. Hence, this task starts with the
identification of the object to track. Then, a Meka robot ad-
justs the position of its arms depending on the 3D position
provided by the computer vision system.

Fig. 11 Tracking of an object in
movement by the Meka robot

Figure 11 shows a sequence of movements of the Meka
robot. As demonstrated previously, the object has been labeled
with a known pattern and with a conventional camera jointly
with four processing points: a processing algorithm allows
locating the object.

Figure 6 shows the functionality ofthe application modeled
with the ART?00l. The target platform for this example is
ROS.

Figure 12 details target code generated automatically to the
definition of camera ROS node. As can be seen, this node
publishes 20 images per second, because the time spent be-
tween two images acquisition and processing is 50 ms, the
camera takes 30 ms in the acquisition and the processing al-
gorithm 20 ms.

@ Springer

1206

Int J Adv Manuf Technol (2018) 97:1195-1207

#include <ros/ros.h>
#include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h>
#include <sensor_msgs/image_encodings.h>
#include “Prosilica.h”
class RosNodeCamera : public Prosilica]{
protected:
ros::Handle node;
image_transport::iImageTransport iTranspVisionValueConn;
image_transport::Publisher iPubVisionValueConn;
public:
RosNodeCamera ();
virtual RosNodeCamera();
void PublishVisionValueConn();

b RosNodeCamera.hV

#include “RosNodeCamera.h”
RosNodeCamera::RosNodeCamera(ros::NodeHandle n_): node(n_){
//publicar una imagen
iPubVisionValueConn =
iTranspVisionValueConn.advertise(“VisionValueConn",1);
}
RosNodeCamera::PublishVisionValueConn(){
cv_bridge::CvimagePtr message;
message->image= getimageRaw();
iPubVisionValueConn.publish(message->tolmageMsg());
}
int main (int argc, char** argv){
ros::init(argc,argv, RosNodeCamera);
ros::NodeHandle n;
RosNodeCamera rosNode(n);
ros::Rate loop_rate(20.0);
while(ros::ok()){
rosNode.Update();
rosNode.PublishVisionValueConn(); // por cada topico a publicar
ros::spinOnce();
loop_rate.sleep();
}

return 0;

} RosNodeCamera.cppV

Fig. 12 Target ROS code for the RosNode camera

In order to launch the application, the launch file with the
list of nodes to start running is also automatically generated.

Finally, the authors want to note that the atomic code en-
capsulated in application components is reused in other appli-
cations that run over OROCOS [28]. More specifically, the
four-point processing algorithm that provides a position, hav-
ing as input an image, and a trajectory control algorithm have
been reused in two very different handle robot-based
applications.

6 Conclusions

A platform that provides support for the development cycle of
handle robot-based applications has been proposed, following
MDE principles. In particular, guidelines for designing these
applications have been provided, guaranteeing the reuse of the
atomic code for applications, independently of the platform
they will be running. The ART?00l is very useful for applica-
tion domain experts, because it guides them along the design
of the logic, abstracting them from the emerging techniques.

On the other hand, guidelines of MDE have been followed
for the automatic code generation M2T. In summary, the cur-
rent version of ART2tool provides support for component-
based robotics middleware and for ROS.

@ Springer

Funding information This work was financed in part by the
MCYT&FEDER under DP12016-78290-R.

Publisher's Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

References

1. European Commission: Research and Innovation (2013) Factories
of the future PPP: towards competitive EU manufacturing.
European Union

2. BlanchetM, RinnT, Von ThadenG, ThieulloyG (2014) Industry 4.0:
the new industrial revolution—how Europe will succeed

3. National Science and Technology Council (2016) Advanced
manufacturing: a snapshot of priority technology areas across the
Federal Government Subcommittee for Advanced Manufacturing

4. RobMoSys (2017) Composable models and software for robotic
systems [online]https://robmosys.eu/about/

5. Selic B (2003) The pragmatics of model driven development. IEEE
Softw 20(5):19-25

6. Brugali D, Scandurra P (2009) Component-based robotic engineer-
ing (part I) reusable building blocks. IEEE Robotics Automation
Magazine 16(4):84-96

7. Brugali D, Shakhimardanov A (2010) Component-based robotic
engineering (part II) systems and models. IEEE Robotics
Automation Magazine 17(1):100-112

8. BarnerS., GeisingerM., BuckIC., KnollA. (2008) EasyLab: model-
based development of software for mechatronic systems. Proc
IEEE/ASME International Conference on Mechatronic and
Embedded Systems and Applications, pp:540-545

9. Michael Geisinger, Simon Barner, Martin Wojtczyk, Alois Knoll,
(2009) A software architecture for model-based programming of
robot systems. LNCS, Advances in Robotics Research, Springer,
pp: 135-146

10. Commission IEC (2013) International Standard IEC 61131-3,
Programmable Logic Controllers Part 3

11. AlonsoD., Vicente-ChicoteC., OrtizF., PastorJ., AlvarezB. (2010)
V3CMM: a 3-view component metamodel for model-driven robot-
ic software development. J Software Eng Robot, pp: 3-17

12. Schlegel C, Steck A, Brugali D, Knoll A (2010) Design
abstraction and processes in robotics: from code-driven to
model-driven engineering Simulation, Modeling, and
Programming for Autonomous Robots, LNCS, Eds.
Springer Berlin/Heidelberg 6472, pp: 324-335

13. GarciaH, BruyninckxH (2014) Tool Chain (BRIDE) delivered as
BRICS software distribution. [online]http://www.best-of-robotics.
org/bride/

14. Steinberg D, Budinsky F, Paternostro M, Merks E (2008) EMF:
eclipse modeling framework, 2nd ed. Addison-Wesley Professional

15. Bruyninckx H. (2001) Open robot control software: the OROCOS.
Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA), pp:
2523-2528

16. Jesse Russell, Ronald Cohn (2012) ROS (robotic operating system,
VSD

17. Kumar PS, Emfinger W, Kulkarni A, Karsai G, Watkins D, Gasser
B, Ridgewell C, Anilkumar A (2015) ROSMOD: a toolsuite for
modeling, generating, deploying, and managing distributed real-
time component-based software using ROS. Proc. of Rapid
System Prototyping Symposium, pp 1-7

18. Reusable Software Apps for Robotic Applications (ReApp) (2018),
[website] http://www.reapp-projekt.de/index.php?id=reapp project

19. A.Sanchez-Garcia, E.Estevez, J.Gomez Ortega, J.Gamez
Garcia. (2013) Component-based modelling for generating

https://robmosys.eu/about/
http://www.best-of-robotics.org/bride/
http://www.best-of-robotics.org/bride/
http://www.reapp-projekt.de/index.php?id=reapp_project

Int J Adv Manuf Technol (2018) 97:1195-1207

1207

20.

21.

22.

robotic arm applications running under OROCOS
middleware IEEE International Conference on Systems,
Man, and Cybernetics pp 3633-3638

Alvarez B, Ortiz F, Pastor JA, Sanchez P, Losilla F, Ortega N (2006)
Arquitectura para control de robots de servicio teleoperados.
Revista Iberoamericana de Automatica e Informatica Industrial
3(2):79-89

Garcia GJ, Corrales JA, Pomares J, Torres F (2009) Survey of visual
and force/tactile control of robots for physical interaction in Spain.
Sensors 9:9689-9733

DeliverableD-2.1 Best practice assessment of software technologies
for robotics, [Online] Available: http://www.best-of-robotics.org/
pages/publications/BRICS Deliverable D2.1.pdf

23.

24.

25.

26.

27.
28.

OpenRTM. [Online] Website: http://www.openrtm.org/openrtm/en/
node/780

Gerkey B, Vaughan R, Howard A (2003) The player/stage project:
tools for multi-robot and distributed sensor systems. Proc. of the
International Conference on Advanced Robotics

ROS msg. [Online] http://wiki.ros.org/msg

Martinez A, Fernandez E (2013) Learning ROS for robotics pro-
gramming. Publishing Itd., Packt

Graphiti (2016) [online] https://eclipse.org/graphiti/documentation/
Estévez E, Sanchez-Garcia A, Gamez-Garcia J, Gomez-Ortega J,
Satorres- Martinez S (2016) A novel model-driven approach to
support development cycle of robotic systems. Int J Adv Manuf
Technol 82(1):737-751

@ Springer

http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://www.openrtm.org/openrtm/en/node/780
http://www.openrtm.org/openrtm/en/node/780
http://wiki.ros.org/msg
https://eclipse.org/graphiti/documentation/

	ART2ool: a model-driven framework to generate target code for robot handling tasks
	Abstract
	Introduction
	Modeling of handle robot-based applications
	Automatic generation of target code for handle robot-based applications
	Main features of selected communication middleware
	Transformation rules for OROCOS
	Transformation rules for ROS

	ART2ool: graphical framework for generating target code automatically
	Graphical editor
	Code generator

	Case study: tracking an object in movement
	Conclusions
	References

