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Abstract
A fundamental strategy to diminish variations in manufacturing process urged the practitioners to characterize the quality
of a process by a relationship between the response variable and one or more explanatory variables instead of a single
quality characteristic; this state is known as a profile or a function. Profile monitoring mainly aims to test the stability of this
relationship. Many researches have been carried out to study the different sampling techniques in the performance of linear
profile under the maximum likely hood (MLE) estimation strategy, whereas using different estimation strategy has not been
discussed so far. This paper is dedicated to introduce Bayesian estimation strategies with a proposal of novel control charts
for jointly monitoring the linear profile. We considered restricted and pretest estimators, besides the estimation of distrust
probability under the null hypothesis. Analytical and numerical results showed that the proposed estimators outperformed
the MLE method. The proposed control charts have been used to monitor the two-phase flow in the oil industry to control
the relationship between the flow rate and the pressure difference between two points.

Keywords Intercept · Slope · Error variance · EWMA · Linear profiles · Restricted estimator · Pretest estimator ·
Average run length

1 Introduction

Statistical process control (SPC) is a bunch of techniques
used to monitor and manage the special causes of variation
in a manufacturing or service processes. SPC has been
adopted widely in variant new applications such as
medicine, business, engineering, and social sciences (cf. [1,
2]). Control charts is the most widely used SPC toolkit; it
can be used for monitoring location, dispersion, coefficient
of variation, intercept, slope, etc (cf. [3, 4]).

Mainly control charts are classified into memory less and
memory control charts. [5] introduced Shewhart chart as a
memory less chart by using the current sample information
which makes it effective to detect large shifts. In contrast, [6,
7] proposed cumulative sum (CUSUM) and exponentially
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weighted moving average (EWMA) charts, respectively,
both charts utilize past and present information of the process
which makes them effective to detect small and moderate
shifts. From the practical perspective, control charts consists
of two parts: retrospective phase (phase I) and monitoring
phase (phase II). In phase I, a dataset is collected from the
targeted process under stable conditions that represents the
in-control state of the process, construct the control limits,
and investigate their reliability. Phase II utilizes the control
limits from phase I to monitor the process in the future (cf.
[8–10]).

Many studies have been carried out to improve control
charts for linear profiling, for example, [3] introduced
two control chart structures to monitor a semiconductor
manufacturing that was formulated as a simple linear
regression with known coefficients. They used multivariate
T 2 chart and EWMA/Range(R) chart (i.e., EWMA chart
in conjunction with R chart to monitor the mean and the
variation respectively). Their charts based on the bivariate
normality assumptions of the least square estimators. [11]
proposed a control chart as combination of three univariate
EWMA charts to monitor the intercept, slope, and the
standard deviation in phase II simultaneously.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-018-1835-y&domain=pdf
mailto:almomani@kfupm.edu.sa
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[12] compared the performance of two control charts
for linear profiling in phase II. Their first control charting
scheme was proposed by [13] that is known as the classical
calibration method to monitor the deviation from the
regression line. The second one is known as the individual
monitoring of linear profile parameters of [11]. Results
showed that Crowder & Hamilton’s method performed
poorly compared to Kim’s scheme. [9] proposed the use
of three control chart schemes for phase II monitoring of
multivariate simple linear profiles. The results revealed that
their schemes were effective in detecting the shifts in the
process parameters. Recently, [14] proposed a novel control
chart for jointly monitoring the linear profile, location
shifts in the latent continuous distribution, and the random
explanatory variables. Their simulated results revealed that
the proposed chart was efficient in detecting abnormalities
and was robust to various latent distributions. For more
details about linear profiling, the reader is referred to [3].

Finding a consistent model by using any non-sample
information has a vital role in making inferences and
predictions about the characteristics of a phenomena.
The non-sample information is known as uncertain prior
information (UPI), and injecting the UPIs into the
estimators is known by Bayesian statistical methods. A
family of estimation strategies that involve the use of
sample information has been introduced in the literature;
under particular conditions, they outperform the traditional
estimators when judged by criteria such as the mean squared
error and the risk of the estimators. There has been many
studies in the area of the efficient estimation relying on
the work of [15] that was known by the preliminary
test estimator. Later on, [16] introduced an improvement
for the preliminary test of Bancroft, known as shrinkage
estimator or Stein-rule for multivariate normal population
that dominates the usual maximum likelihood estimator
under the squared error loss criterion. More details about
shrinkage strategies can be found in [17].

In this paper, we will introduce more efficient estimation
strategies to estimate the linear profile coefficients that will
lead to quick detection of abnormal variations in these coeffi-
cients. We employ the estimation strategies introduced by
[18, 19]. Our results are compared with the results of [11].

The remainder of this paper is organized as follows:
Section 2 contains some assumptions, restricted and pretest
estimation strategies of simple linear regression. In Section 3,
properties of the proposed strategies has been discussed.
We constructed the limits of the proposed control charts in
Section 4. In Section 5, we evaluated the performance of
our control charts. The results of an extensive simulation
study have been discussed in Section 6. Section 7 represents
a real-world example that assures our simulated results. In
Section 8, we give some conclusions.

2 Estimation strategies of simple linear
regressionmodel

Assume that we have a set of samples that has been
collected, each of size n; the observations were given in a
form of explanatory variable x and response variable y as
(xij , yij ), i = 1, . . . , n and j = 1, . . . , N , where N is the
number of samples. The model for the j th sample is given
by the following regression equation

yij = β0 + β1xi + eij , (1)

where e is the error component associated with the response
variable. β0 is the intercept parameter, and β1 is the
slope parameter. Errors are assumed to be independently
and identically normally distributed with mean zero and
variance σ 2. The model can be represented in matrix form

y = Xβ + e, (2)

where y is n × 1 vector of responses, X is an n × 2 design
matrix, β = (β0, β1)

′ and e is an n × 1 vector of errors.

2.1 TheMLE estimator of the intercept and the slope
parameters

For the j th sample, the MLE estimator of β0 and β1 are
given as follows:

βU
0j = ȳj − βU

1j x̄j , βU
1j =

∑n
i=1(xij − x̄j )yij

∑n
i=1(xij − x̄j )2

,

where x̄j =
∑n

i=1 xij

n
and ȳj =

∑n
i=1 yij

n
.

βU
0j and βU

1j have a bivariate normal distribution with the
mean and variance-covariance given as follows:

μ =
[

β0

β1

]

, � = σ 2

n

⎡

⎣
1 + nx̄2j

Q
−nx̄j

Q

−nx̄2j
Q

n
Q

⎤

⎦ ,

where Q = x′
j
xj − 1

n
(1′

nxj )2.

σ 2 is estimated by S2, that is given by

S2 = (y − ŷ)′(y − ŷ)

n − 2
,

where ŷj = βU
0j + βU

1j xj .

This unbiased estimator of σ 2 follows a χ2 distribution
with (n − 2) degrees of freedom.

For more details about the MLE of the slope and
intercept, refer to [20].
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2.2 Restricted estimators

Assuming the UPI of the slope parameter is given by the
following null hypothesis:

H0 : β1 = β10. (3)

Our target is to incorporate both the sample information and
the UPI to estimate the slope. The likelihood ration (LRT)
test statistics for testing the hypothesis using the j th sample
in Eq. 3 is given by

Lj = Sxxj
(βU

1j − β10)
2

S2
j

. (4)

The statistic follows central F-distribution with degree of
freedom (1, n−2) under the null hypotheses (3), and a non-
central F-distribution with (1, n − 2) degrees of freedom
with non-centrality parameter 1

2�
2 under the alternative,

where

�2 = Sxxj
(β1 − β10)

2

σ 2
.

Usually�2 is the departure constant from the null-hypothesis.
Following [17, 18], the restricted estimator of β1 denoted

by βR
1j (d) is defined by

βR
1j (d) = dβU

1j + (1 − d)β10. 0 ≤ d ≤ 1, (5)

where d is the degree of distrust in the hypothesis (3). Here,
d = 0, means there is no distrust in H0 or βR

1j (d = 0) = β10,
while d = 1 means there is a complete distrust in the H0

and we get βR
1j (d = 1) = βU

1j .
Similarly, we can define the restricted estimator of β0 as

follows

βR
0j (d) = dβU

0j + (1 − d)(ȳj − β10x̄j ). (6)

2.3 Preliminary test estimators

The pretest was introduced by [15], it uses the test statistics
defined in Eq. 5 and the pretest estimate of the slope
parameter β1, denoted by βPT

1j using the j th sample, and
defined as

βPT
1j (d) = βU

1j − (1 − d)(βU
1j − β10)I (Lj < Fα), (7)

where Fα is a one-sided (1− α)-level critical value from F-
distribution with (1, n − 2) degrees of freedom. I(A) is an
indicator function of a set A.

The pretest estimator of β0 is defined by

βR
0j (d) = βU

0j + βU
1j x̄j (1 − d)I (Lj < Fα) (8)

For the proofs about these formulas, the reader is referred
to [17, 18].

2.4 Estimator of residuals

Following [3, 11], to extract the residuals of a simple linear
regression model at the j th sample can be achieved by the
following formula:

êij = yij − ŷij , ŷij = β∗
0j + β∗

1j xi, i = 1, . . . , n

where β∗
0j ∈ {βU

0j , β
R
0j , β

PT
0j } and β∗

1j ∈ {βU
1j , β

R
1j , β

PT
1j }.

The average of the residuals at the j th sample can be
formulated as follows:

ēj =
∑n

i=1 êij

n
,

Residuals are independent and normally distributed random
variables with mean equal zero and variance σ 2, where σ 2

is estimated by

MSEj =
∑n

i=1 ê2ij

n − 2
. (9)

MSEj is unbiased estimator for σ 2. In literature, the natural
log of MSEj is used more than MSEj ; hence, we will use
ln(MSEj ) as a measure of error variance. An approximation
of the variance of ln(MSEj ) due to [13] is given by

Var(ln(MSEj )) ≈ 2

n − 2
+ 2

(n − 2)2
+

4

3(n − 2)3
− 16

15(n − 2)5
.

For more details about the error variance, the reader is
referred to [3, 11, 13].

3 Some properties of the introduced
strategies

βR
1j (d) is normally distributed with mean (μ) and variance

(σ 2R
1j ) given as

μ = dβ1 + (1 − d)β10

σ 2R
1j = σ 2

Sxxj

[d2 + (1 − d)2�2] + [ σ
√

Sxxj

(1 −

d)�]2.
The biasness (B) and mean squared error (MSE) based on
the j th sample are given as follows:

B(βR
1j ) = − σ

√
Sxxj

(1 − d)�

MSE(βR
1j ) = σ 2

Sxxj

[d2 + (1 − d)2�2]
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Also, the restricted estimator βR
0j (d) is normally dis-

tributed with mean (μR
0 ) and variance (σ 2R

0j ) given by

μR
0 = β0 + (1 − d)β1x̄j .

σ 2R
0j = σ 2

{

d2{1
n

+ x̄2
j

Sxxj

} + (1 − d)2
x̄j�

2

Sxxj

}

−[ x̄j σ
√

Sxxj

(1 − d)�]2.

As a result, the biasness and MSE of βR
0j (d) are given as

B(βR
0j (d)) = x̄j σ

√
Sxxj

(1 − d)�.

MSE(βR
0j (d)) = σ 2

{

d2{1
n

+ x̄2
j

Sxxj

} + (1 −

d)2
x̄j�

2

Sxxj

}

.

The mean, the biasness, andMSE of βPT
1j (d) are given by

E(βPT
1j (d)) = E(βU

1j ) − (1 − d)E

[

(βU
1j −

β10)I (Lj < Fα)

]

= β1 − (1 − d)
σ

√
Sxxj

E

(√
Sxxj

(βU
1j − β10)

σ

I (
Sxxj

(βU
1j − β10)

2

S2
nj

< Fα)

)

B(βPT
1j (d)) = −(1 − d)(β1 − β10)G3,n−2(

1

3
Fα; �2)

MSE(βPT
1j (d)) = σ 2

Sxxj

[

1 − (1 − d)2G3,n−2(

1

3
Fα; �2) + (1 − d)�2

{

2G3,n−2(
1

3
Fα; �2) −

5G5,n−2(
1

5
Fα; �2)

}]

where Gm1,m2(.; �2) is the non-central F-distribution with
(m1, m2) degrees of freedom and non-centrality parameter
�2.

The mean, the biasness, and the MSE of βPT
0j (d) are

given below:

E(βPT
0j (d)) = β0 + (1 − d)x̄j

σ
√

Sxxj

E

[√
Sxxj

βU
1j

σ
I (

√
Sxxj

βU
1j

2

S2
nj

< Fα)

]

.

B(βPT
0j (d)) = (1 − d)x̄β1G3,n−2(

1

3
Fα, �2).

MSE(βPT
0j (d)) = σ 2{1

n
+ x̄2

j

Sxxj

} + (1 − d)2x̄2
j

E(βU
1j

2
I (Lj < Fα)) + 2x̄j

(1 − d)E(βU
1j (β

U
0j − β0)

I (Lj < Fα))

Proofs of the results besides the joint distributions are
available in [17–19].

Usually, we use the mean-squared relative efficiency
(MRE) to compare the MSE of our estimators with respect
to the MLE; it is the ratio of the MSE for the MLE estimator
to the MSE of the new estimator.

The MRE of these biased estimators depends on the
departure constant �2 and the degree of distrust d. Different
cases are reported below:

• The MRE of βR
0j compared to βU

0j is

MRE(βR
0j (d) : βU

0j ) = A[d2A + (1 − d)2
x̄2

Sxx

�2]−1

(10)

where A = { 1
n

+ x̄2

Sxx
}. The function takes its highest

possible value at �2 = 0 for d = 0. As �2 increases,
the MRE decreases for all d. For some moderate to large
value of �2, it approaches to 0. For d = 1, the βR

0j and

βU
0j are equally efficient regardless of the value of �2.

• The MRE of βPT
0j compared to βU

0j is

MRE(βPT
0j (d) : βU

0j ) = A[A + x̄2σ 2

Sxx

g(�2)]−1 (11)

where A is defined in Eq. 10,

g(�2) = �2{2(1 − d)G3,v(
1

3
Fα; �2)

−(1 − d2)G5,v(
1

5
Fα; �2)} −

(1 − d2)G3,v(
1

3
Fα; �2) (12)
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For any d, the maximum value for the MRE attains at
�2 = 0. As d grows larger, the MRE decreases.

• The MRE of βR
1j compared to βU

1j is

MRE(βR
1j (d) : βU

1j ) = [1 + (1 − d2)2�2]−1 (13)

If �2 = 0, βR
1j is more efficient than βU

1j . If �2 > 0, the

MRE depends on the value of d. For example, if d = 1
2

the interval in which βR
1j is more efficient than βU

1j is [0,

3), while βU
1j is more efficient in [3, ∞) than βR

1j . For

d = 0.5, the maximum efficiency of βR
1j over βU

1j is 4.
• The MRE of βPT

1j compared to βU
1j is

MRE(βPT
1j (d) : βU

1j ) = [(1 − d2)G3,v(
1

3
Fα;

�2) + (1 − d)�2 ×
{2G3,v(

1

3
Fα; �2)

−(1 + d)G5,v(
1

5
Fα;

�2)}]−1 (14)

The MRE of βPT
1j to βU

1j monotonically decreases to

minimum for�2 between 1+d
2 and 1+d

1−d
then after mono-

tonically increases, to approach the unit value from below.

4Monitoring linear profile coefficients
in phase II

In this section, we will discuss the structures of control
charts that can be used in the monitoring of the linear profile
parameters. The slope and the intercept will be monitored in
addition to the residuals.

Following [11], we eliminate the correlation between the
slope and the intercept before constructing the control charts
for linear profiles, that can be achieved by replacing X by
X′ = (X − X̄). So that the mean of the adjusted-X is zero.
After the adjustment, the model in Eq. 2 will be as

y = X′β + e, (15)

where β = (β0 + β1x̄, β1).
Hence, we can conduct separate control chart to monitor

each parameter without any problem that might result if the
estimators were correlated.

Since for each sample we have n observations, we fit the
model and estimate the intercept (β0j ), the slope (β1j ), and
variance of the residuals (ej ) for the j th sample

Using theMLEmethod.We apply the proposed estimation
strategies, then we adopt EWMA control chart structure for
all the three parameters.

To construct the EWMA structure for monitoring the
intercept (β0), we use the estimate of β0 at sample j; β∗

0j ,
then compute the EWMA statistics as follows:

EWMA[j ] = λβ∗
0j + (1 − λ)EWMA[j − 1], (16)

where 0 < λ ≤ 1 is a smoothing constant, EWMA[0] = β0

and j = 1, 2, . . . .
The out-of-control signal of monitoring the parameter is

given when EWMA[j ] < LCL or EWMA[j ] > UCL,
where LCL and UCL are the lower and upper control limits,
respectively. The values of LCL and UCL are relying on the
MSE of the estimator, and are given by

LCL = β0 − L

√
MSE(β∗

0j )λ

(2 − λ)n

UCL = β0 + L

√
MSE(β∗

0j )λ

(2 − λ)n
,

where MSE(β∗
0j ) ∈ {MSE(βU

0j ),MSE(βR
0j ),MSE(βPT

0j )}
and L is chosen arbitrary to give specified in-control average
run length (ARL).

Similarly, to construct the EWMA structure for monitor-
ing the slope (β1), we use the estimate of β1 at sample j;
β∗
1j ∈ {βU

1j , β
R
1j , β

PT
1j }, then compute the EWMA statistics

as follows:

EWMA[j ] = λβ∗
1j + (1 − λ)EWMA[j − 1], (17)

where EWMA[0] = β1.
The LCL and UCL are given as follows:

LCL = β1 − L

√
MSE(β∗

1j )λ

(2 − λ)n
,

UCL = β1 + L

√
MSE(β∗

1j )λ

(2 − λ)n

Finally, to construct the EWMA structure for monitoring
the error variance (σ 2), we use the estimate of σ 2 at sample
j; MSEj , then compute the EWMA statistics as follows:

EWMA[j ] = max{λln(MSEj ) + (1 −
λ)EWMA[j − 1], ln(σ 2

0 )},
where EWMA[0] = ln(σ 2

0 ).
It is more significant to detect the increases in the error

variance; therefore, we well focus on UCL; for example, see
[11, 21]. UCL uses theMSE of ln(MSEj ) as defined in Eq. 10
that is given by

UCL = L

√
Var(ln(MSEj ))λ

(2 − λ)n
.



3982 Int J Adv Manuf Technol (2018) 96:3977–3991

As we adopted the EWMA control chart structure, we
will come up with two proposed control charts that are as
follows:

1. EWMAR : this control chart will use the EWMA
structure with the restricted estimators.

2. EWMAPT : this control chart will use the EWMA
structure with the pretest estimators.

The analytical results in Section 3 showed different
behaviors with respect to their performance under the MRE.
None of the estimators is found to be uniformly dominating
the others.

Under H0, βR
0j , and βR

1j are better choices than βU
0j and

βU
1j because they produce higher MRE, in contrast, as we

go far from H0, the MRE of βR
0j and βR

1j is decreasing dras-

tically to zero. As βPT
0j and βPT

1j are binary combinations of

{βU
0j , β

R
0j } and {βU

1j , β
R
1j } respectively, their MRE will lay

between those combinations.
From the general structure of our adopted control chart

(EWMA) as it relies on the standard deviation (mean-
squared error) of the estimator, the proposed estimators are
supposed to excel the MLE by having smaller width of their
control charts and that will play a role for early detecting
the unnatural shifts in the linear relation of the monitored
process.

5 Performance evaluation of charts in phase II

In this section, we compare and contrast the efficiency
of our proposed control charts in phase II against the
control charts that were proposed by [11]; we compare the
performance in term of ARL. We adopted the same example
used in their simulation study.

We will use the underlying in-control linear profile model
used by [3, 11]. The model is given by

Yij = 3 + 2Xi + eij , (18)

where β0 = 3, β1 = 2, and eij are i.i.d. normally distributed
random variables with mean zero and variance one. Xi

where taken arbitrary for the purpose of comparison with
the previous proposed methods, as Xi = {2, 4, 6, 8}.

As we mentioned in the previous section, we start by
adjusting the values of the explanatory variable. So, X′

i =
{−3, −1, 1, 3} with x̄ = 0, the model is represented as

Yij = 13 + 2X′
i + eij , (19)

As our proposed estimators are biased estimators,
following [10], the biasness should be removed. To set up
the control limits for the unrestricted estimator, we followed
[11], as they chose L for each control chart separately
in order to get the in-control ARL(ARL0) = 584. As a
result, they got the joint ARL0 = 200 for the simultaneous
monitoring for all the parameters. The values of L as
reported by [11] are given as the following: intercept (βU

0 ),
L = 3.0156, the slope (βU

1 ), L = 3.0109, and for the error
variance (MSE), L = 1.3723.

Following the same methodology with the new estima-
tion strategies, we choose L that will give ARL0 = 200
under the simultaneous monitoring. Some values of the
constant L for some cases are given in Table 1.

Ten thousand replications have been used in our
simulation study to estimate each ARL that will assure for
getting stable results. In our simulation, we considered four
different types of shifts. We started by introducing shifts
into the intercept (β0), slope (β1), and the error variance;
besides that, we introduced negative shifts into the slope.
Similarly to [11], the description of these shifts is given as
follows:

1. Shifts for the intercept δ =
(0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0) in model
(19),

2. Shifts for the slope β=(0.025, 0.050, 0.075, 0.100,
0.125, 0.150, 0.175, 0.200, 0.225, 0.250) in model (18),

3. Shifts for error variance γ=(1.2, 1.4, 1.6, 1.8, 2.0, 2.2,
2.4,2.6, 2.8, and 3.0) in model (18),

4. Negative shifts for the slope β=(−1, −0.9, −0.8, −0.7,
−0.64, −0.5, −0.4, −0.3, −0.2) in model (19).

All our results represented in figures are based on ARL =
200.

Table 1 Control chart
multiplier L to fix
ARL0 = 200 for EWMAR

and EWMAPT control charts
for different values of d

d

Chart Estimator 0.1 0.25 0.5 0.75 0.95

EWMAR βR
0 3.855 4.137 3.084 3.82 3.16

βR
1 3.498 3.283 3.1 3.039 3.028

MSE 1.624 1.504 1.407 1.374 1.368

EWMAPT

βPT
0 3.8552 3.25 3.086 3.016 3.005

βPT
1 3.498 4.75 3.625 3.139 3.028

MSE 1.624 1.492 1.407 1.373 1.368
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Fig. 1 Log(ARL) comparisons for the intercept with shift from β0 to
β0 + δσ . a d = 0.95. b d = 0.25. c d = 0.1

Fig. 2 Log(ARL) comparisons for the slope with shifts from β1 to
β1 + βσ . a d = 0.95. b d = 0.25. c d = 0.1
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Fig. 3 Log(ARL) comparisons for the error variance with shifts from
σ to γ σ . a d = 0.95. b d = 0.25. c d = 0.1

Fig. 4 Log(ARL) comparisons for the slope with shifts from β1 to
β1 + βσ . a d = 0.95. b d = 0.25. c d = 0.1
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6 Discussion and comparative analysis

Here, we investigate the performance of our proposed
methods and compare the results under different shifts with
the results reported by [11]. All the control charts under the
in-control state (the null hypothesis) have the same AR.

To study the performance of the control charts under the
shifts of the intercept (β0), the comparison is provided in
Fig. 1. The different values of shifts have introduced into
the intercept in terms of σ as β0 + δσ . It is clear that the
performance of our proposed methods did not excel the
performance of EWMA 3; this is due to the phenomena of
adjusting our explanatory variable to have a zero mean to
get rid of the autocorrelation between the intercept and the
slope, where βU

0 = βR = βPT
0 = Ȳ .

As we use an approximate control limits instead of the
exact limits of the original EWMA control chart, they
slightly delay in the detection of shifts occurring with the
first samples (for more details, see [22]).

Figure 2 depicts the performance of our proposed
methods compared to EWMA 3 under the shifts introduced
into the slope a function of σ as β1 = δσ . The performance
of our proposed methods significantly are relying on the
value of the distrust parameter (d). The large values of

Fig. 5 Darcy law of the flow of
water through sand filter

d means that we are more distrust in the null hypothesis
and the performance approach toward EWMA 3 which are
typically equal when d = 1.

Our proposed methods uniformly excel EWMA 3 with
smaller values of d, where we have more trust in the
null hypothesis over the entire range of shifts considered.
The performance of the restricted estimator outperforms
other estimators under the small amount of shifts and its
performance decays with moderate and big shifts.

Figure 3 shows the ARL performance of our proposed
methods compared to EWMA 3 chart for detecting out-
control state in σ under a range of shifts that are expressed
in terms of σ as γ σ . Our proposed methods outperform
EWMA 3 under the small amount of shifts, whereas under
the large amount of shifts, all the methods almost have the
same performance. In addition, the degree of the distrust
has a significant impact on the performance of the proposed
methods as the methods with the smaller degree of the
distrust excelled the methods with the larger degree of the
distrust.

Figure 4 shows the performance of the control charts
under the negative shifts in the slope. The performance of
the proposed control charts under small-to-moderate shifts
excels EWMA 3 as long as d decreases.
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Fig. 6 Two-phase experimental setup

7 Illustrative examples

In this section, illustrations with the real-life example of
linear profiles in the oil industry is discussed.

Fig. 7 Acrylic section for visual flow investigation and temperature
sensor

7.1 Darcy law of single-phase flow

Very early, [23] investigated the flow of water (single-
phase) through sand filter, and throughout his experiment,
he concluded the following points:

• The flow rate is direct proportion to the difference of
water levels in the two manometers.

• The flow rate is direct proportion to the cross-sectional
area of the sand pack.

Fig. 8 Air flow rate measuring device
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Fig. 9 Water flow rate measuring device

• The flow rate is inversely proportion to the length of the
pack.

The water level in the manometer can be represented as
the pressure head at that point, so the level difference can
be replaced by the pressure difference. Figure 5 shows
the experimental setup of Darcy. The outcome of Darcy
experiment is summarized in the following formula:

q = C
A

L
(h1 − h2), (20)

where q is the measured flow rate, A is the cross-sectional
area, L is the Length, h is the level of water, and C is the
proportionality constant.

Fig. 10 Data acquisition integrated with a software package

Table 2 The values of the constant L

EWMA 3 EWMAR EWMAPT

Intercept 2.997 3.137 3.009

Slope 2.992 2.973 3.005

MSE 65.897 66.32 65.91

7.2 Multiphase flow

The term of multiphase flow refers to the flow of any
fluid consists of more than one phase or component with
different chemical properties through a pipe or channel
simultaneously. This term was coined lately by [24]
and it comprises of fluid dynamics motion of multiple
phases. Multiphase flow is commonly seen in industrial
processes such as pipeline transportation, fluidized beds,
and power plants. Liquid-liquid flows have many important
applications in a diverse range of process industries in
the petroleum production particularly, where oil and water
are often produced and transported together. A typical
multiphase oil-water two-phase flow is often encountered
in petroleum industries, and measuring their process
parameters (especially individual flow rate of oil and water)
is an important issue in oil exploitation and transportation.
Analogously in multiphase flow, probably the key toward
understanding the phenomena of pressure drop behavior in
oil field industries in order to optimize between the huge
costs of production and transportation.

7.3 Experimental setup and data description

The experiment of two-phase flow has been conducted
in the laboratories of Petroleum and Geological sciences
college at King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia. The experiment was designed to
investigate the influence of some additives on the flow
behavior of water, oil, and air mixture. The loop contains
two 200-l barrels for water and oil respectively, besides an
air connection instrument to supply the air. The flow rate of
the feed streams was measured and adjusted by regulating
valves.

Table 3 Control limits for each control chart

EWMA 3 EWMAR EWMAPT

Intercept LCL 358.6052 358.6989 358.7782

UCL 381.6548 381.5611 381.4818

Slope LCL 25.3246 25.3267 24.3370

UCL 26.8476 25.4754 26.4630

MSE UCL 8.0148 8.0663 8.0642
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The feed pumps for the liquids (oil and water) are rotary
pumps equipped with axial face sealing. Water, air, and
oil can be separated in the separator or using cyclone and
separator which are connected to the outlet of the test
section. The test section was made of stainless steel tube
with an outer diameter of 0.5 in. and an inner diameter
of 0.4 in. Its total length is approximately 5 m divided
into two straight horizontal sections separated by elbows
(90◦ elbow). The horizontal sections are equipped with
differential pressure transducer to measure the pressure drop
inside the test section. At the end of the test section, an
acrylic section of 20 cm allows the visible inspection of the
flow behavior. After having passed the test section, the fluid
can be directed to the phase separator where water and oil
can be separated by gravity or alternatively to the cyclone
whose outlet is connected to the phase separator. The sketch
layout of the experiment is shown in Fig. 6.

The generated air-water two-phase flow is circulated
through the flow loop using a vertical centrifugal pump
that can provide a maximum flow rate of 40 l/min of
water (see Fig. 7). On the other hand, the air is introduced
to the system using a pressure regulator connected at the
inlet of the compressed air; the air pressure in this step
is measured by the equipment in Fig. 8. The flow rate of
the water is measured using an electromagnetic flow meter
and an accurate pressure transducer is used to measure the
differential pressure drop over 1.5 mb long and mounted
about 3.5 mb downstream the mixing section (see the device
in Fig. 9).

The data acquisition procedure is carried out for better
and more accurate data gathering; we used the machine
in Fig. 10 for this purpose. We targeted a group of
the experimental observations at 25 ◦C, 54 different
measurements of Q and �P have been collected, and

Fig. 11 EWMA 3 chart for
monitoring two-phase flow
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preliminary investigations have been conducted on the
gathered data. There exist 18 levels of the volume flow rate
(in liter/min) that equal 2.5, 3.8, 5.6, 7.2, 8.9, 10.6, 12.3,
13.9, 18.6, 20.3, 22.3, 24.0, 21.4, 22.2, 23.1, 24.3, 25.7,
and 26.7. In the stated study, we consider the difference
of pressure in two point (�P ) as a dependent variable and
the flow rate (Q) as an independent variable. We used an
approach based on bootstrapping method similar to that been
introduced by [25] and repeated the scenario for 10,000
iterations to extract the true parameters for our model.

The flow rate (Q) is direct proportion to the difference of
pressure in two point (�P ) and the model mathematically
is represented as

�P = −43.46 + 25.37 ∗ Q (21)

The model in Eq. 21 is considered as a reference to the
relationship between the flow rate (Q) and the difference of
pressure in two point (�P ) with an estimated value of σ to
equal 48.9.

7.4 Implementation of EWMAR and EWMAPT charts

Tomonitor the flow rate (Q) as it is a direct proportion to the
difference of pressure in two point (�P ), after we estimated
the model in Eq. 21, we proceed with the following steps:

• From the bootstrapping, we found the value of the
distrust constant d = 0.0524.

• We transformed the flow rate (Q) into Q′ = (Q − Q̄).
• We fixed λ = 0.2,ARL0 = 200 with associated values

of L given in Table 2.
• For the diagnosis purpose, the plotting statistics were

plotted against the control limits given in Table 3.

Findings of diagnose have been plotted in Figs. 11, 12,
and 13. It is clear from these figures that results assure our
findings in the simulation study. We figure out the following
outputs:

• For the intercept parameter, there is no significant
improvement under different estimation strategies

Fig. 12 EWMAR chart for
monitoring two-phase flow
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Fig. 13 EWMAPT chart for
monitoring two-phase flow
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because we standardized the explanatory variable. All
the control charts failed to declare any out of control
signal for the shifts in the process intercept.

• For the slope parameter, it is clear that EWMAPT

excelled EWMA 3 and EWMAR to detect the shift
in the fluid’s pressure difference (�P ) regarding the
associate changes in the flow rate. The results matched
what was concluded in the analytical and simulated
results when �2 > 0.

• Regarding the error variance, it is clear that EWMAPT

and EWMAR excelled EWMA 3 to detect the shift
in the fluid’s pressure difference (�P ) regarding the
associate changes in the flow rate.

8 Conclusions

An innovative scheme EWMA 3 was proposed for simul-
taneous monitoring of shifts in the parameters of a linear
profile including the intercept, the slope, and the error

variance of the process. In this study, we proposed new
control charts by using new estimation strategies restricted
estimator and pretest estimator.

The results showed that

• The EWMAR control chart outperforms all the other
control charts under the different values of shifts in the
slope and the error variance of the considered linear profile.

• The three control charts performed similarly under the
shifts of the linear profile that was due to the useless of
theUPI that caused by the adjusted exclamatory variable.

• Based on our numerical study, a bootstrapping method
can be used to find the degree of distrust (d) in the null
hypothesis. We observed that d has a significant impact
on the performance of all estimates.

Overall, EWMAR performs performed better under the
smaller values of d and small shifts, whereas EWMAPT

with the smaller values of d was the worse. Under the
larger values of d, EWMAR and EWMAPT approach to
EWMA 3 and they perform similarly when d = 0.
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