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Abstract
This study is conducted to observe the optimal effect of rotational speed, feed rate, depth of cut, and tool tip radius on the surface
roughness of a material. In the machining processes, surface roughness value should be made as low as possible and is
determined by the value of the optimal process parameters. Currently, the application of differential evolution (DE) optimization
technique in optimizing the process parameters for achieving minimum surface roughness, especially in CNC lathe machining of
Co28Cr6Momedical alloy, is still not given any consideration by the researcher. Therefore, in this study, a new approach of CNC
lathe parameters optimization using DE algorithm is introduced. At first, a regression model is developed from the actual
machining data provided by Asiltürk, Neşeli, and İnce [1]. The regression model of the surface roughness is formulated as a
fitness function for DE algorithm. The results of this study have proven that the DE optimization technique is able to estimate the
optimal process parameters that yield minimum surface roughness. The application of DE as a solution approach in process
parameter optimization has significantly improve the surface roughness (Ra) where the Ra value is reduced by 81, 72, and 30%
when compared to the experiments, regression modeling, and response surface methodology (RSM) respectively.

Keywords CNC lathe machining . Regression modeling . Differential evolution . Response surface roughness . Surface
roughness . Optimization

1 Introduction

In the manufacturing industry, the surface texture of a product
reflects the quality of the product as it affects the appearance,
function, and reliability of the product itself. Customers have

increasingly focused on product quality making surface
roughness one of the most competitive dimensions nowadays
as market competitiveness grows [2]. In CNC lathe machining
operation, selecting suitable process parameters is an impor-
tant task in achieving better cutting performance. The adopted
process parameters are usually determined based on experi-
ences or by the use of handbooks. However, the range of the
process parameters given in these sources is actually the
starting values and not the optimal values for the machining
operation [3]. Thus, it is needed to develop an efficient opti-
mization technique that can accurately predict the surface
roughness of machining output and search for the best param-
eter setting. Theoretically, the relationship between process
parameters and the desired response can be quantified using
regression model. Regression modeling has existed for de-
cades and it is the process in predicting optimal solutions with
a minimum value of machining performance [4, 5].

Several techniques, such as the statistical regression and
conventional optimization techniques have been implemented
by researchers in developing the regression model and
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optimizing machining parameters. The conventional tech-
niques include the Taguchi method, response surface method-
ology (RSM), and weighted principle component analysis
(WPCA) [6–8]. Qureshi, Sorte, and Teli [9] stated that the qual-
ity of turned steel was commonly determined by the surface
quality. The study was conducted to investigate the effects of
process parameters in CNC lathe machining of AISI P20 steel
with TiN-coated tungsten carbide insert. The process parame-
ters investigated were spindle speed, feed rate, and depth of cut
in achieving minimum surface roughness. In this study, the
Taguchi method was applied to optimize the process parame-
ters of the machining operation and analysis of variance
(ANOVA) was employed to study the effects of the process
parameters on surface roughness. They stressed that in order
to minimize the surface roughness, it is necessary that a com-
bination of high-level cutting speed, low-level feed rate, and
middle-level depth of cut be employed. In another study by
Kajal and Yadav [10], the calculations of surface roughness in
CNC turning operation of EN354 alloy steel with CNMG
120408 GT cutting tool were made based on the cutting speed,
feed rate, and depth of cut. In this study, the Taguchi method
was employed in optimizing the process parameters of CNC
turning by developing the regression model and analysis of
variance (ANOVA) was then used in analyzing the end results.
It was finally concluded that the cutting speed had the most
significant effect on surface roughness followed by feed rate
and depth of cut. Adem et al. [11] studied the effects of cryo-
genic treatment and drilling parameters on surface and hole
quality in dry drilling using AISI 304 stainless steel. Two
methods had been employed, i.e., Taguchi and RSM. Taguchi
was used to achieve better surface roughness and minimize
roundness error while RSM was used to find the most influen-
tial parameters affecting surface roughness and roundness error.
Experimental results showed that cutting speed and feed rate
were the most significant factors affecting surface roughness
and roundness error. The regression model obtained from
RSM was able to predict the optimal surface roughness and
roundness error with the desired drilling parameters and heat
treatments applied to the drilling machine. Even though con-
ventional methods produced better results, the methods are of
low efficiency and very time consuming apart from the repeti-
tive desirable value achievement produced. A large sample data
is needed in order to obtain the regression model from
ANOVA. This method of optimization is not efficient when
the practical search space is too large and is also not robust.

Realizing this, several efforts have been taken to minimize
the surface roughness by applying a computational approach
rather than doing the trial and error approach applied in real
experiments. Several researchers have used the concept of
non-conventional optimization techniques such as genetic al-
gorithm (GA), symbiotic organisms search (SOS), simulated
annealing (SA), firefly algorithm, particle swarm optimization
(PSO), differential evolution (DE), and ant colony

optimization (ACO) in process parameter optimization for
achieving minimum surface roughness in various machining
operations [12]. The capabilities of non-conventional optimi-
zation techniques are not only limited to minimizing the sur-
face roughness but also have been employed in other
manufacturing field such as multi-pass milling [13], optimiz-
ing the stiffener layout design of machine tool structures [14],
electrical discharge machining (EDM) process parameter op-
timizing [15], production planning and scheduling [16], im-
proving the quality of laser cutting process [17], and product
quality produced from injection molding process [18].

A new algorithm known as differential evolution (DE) algo-
rithm which is similar to the concept of GAwas introduced by
Storn and Price [19]. Considering the ability factors of DE for
the machining optimization problem, work has been done to
estimate the best combination of process parameters for the Ra
performance in CNC lathe machining process. DE is one of the
evolutionary algorithms (EAs) which is a population-based
method that relies on mutation, recombination, and selection
to evolve a collection of candidate solutions toward an optimal
state [20]. Like most EAs, DE exploits the population via re-
combination. However, DE does not attempt to mimic natural
searches, like those of ants, bees, the immune system, or those
arising from social interaction, and only DE directly samples
the population to drive mutation which is a beneficial strategy
[21]. Consequently, DE owes it to a special kind of differential
operator which is invoked to create new offspring from parent
chromosomes instead of classical crossover of mutations [22].
A comparative study by Huanzhe, Kungi, and Xia [23] showed
that the scheme of DE, i.e., “DE/best/1/exp” has excellent per-
formance in solving unimodal function problems such as
Quadric and Rosenbrock function when compared to artificial
bee colony (ABC) and bee algorithms, and it can even get a
better solution by crossover rate (CR) adjustment. In another
study carried out by AbdulKader and Salam [24], DE was
found to give better accuracy and converges to globalminimum
faster than that of particle swarm optimization (PSO) in training
and testing feed-forward neural network for stock price predic-
tion. Therefore, the study, in this aspect, has the potential in
improving the surface roughness and optimizing the process
parameters of the machining operations.

In a study by Marko et al. [25], where carbonized steel was
subjected to CNC lathe machining operation, the result of which
the cutting force, surface roughness, andmaximal tool life values
were calculated based on the input parameters of surface speed,
feed rate, and cutting depth. Particle swarm optimization (PSO)
was employed in order to determine the optimum process param-
eters for the minimum values of the responses with the use of
Matlab software. It was finally determined that PSO gave better
results when compared to the conventional optimization
methods. Fuzzy logic artificial intelligence technique was used
by Marani Barzani et al. [26] in order to study the effects of
cutting speed, feed rate, and depth of cut on the surface roughness
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of Al–Si–Cu–Fe die casting alloy during CNC turning. ANOVA
analysis was employed in optimizing the parameter conditions
for the machining process. As a result, surface roughness in-
creased with increasing feed rate and improved with rising cut-
ting speed. In a study by Roque et al. [27], a modified couple
stress theory was used to study the influence of a scale parameter
of a Timoshenko functionally graded beam in free vibration. The
beam was required to resonate at low frequencies for the micro
device energy harvesting. In this study, differential evolution
(DE) algorithm was applied in order to minimize the free vibra-
tion frequency of the beam. Three-parameter volume fraction
laws of power law, sigmoid law, and exponential law were cho-
sen in describing the volume fraction variation along the beams’
thickness. The results showed that the scale parameter had no
effect on the optimal material distribution across the beam thick-
ness for the selected volume fraction law when linear analysis
was considered. The results obtained were insensitive to the test-
ed boundary conditions. Sreenivasa Rao and Venkaiah [28] had
conducted an experiment on Nimonic-263 material by WEDM.
They had studied thematerial removal rate and surface roughness
as the performance measures with the input parameters of pulse-
on time, pulse-off time, peak current, and servo voltage. The
responses were identified with RSM from the developed mathe-
matical model. In optimizing the WEDM process, a differential
evolution (DE) technique was applied. The optimal values from
the DE was evaluated and compared with the RSM technique.
The results showed that DE algorithm was found to be more
accurate than RSM. The most significant parameters in the
WEDM process were pulse-on time and peak current.

Based on the literature reviews, it is clear that there is a
deficiency of research in themedical material process parameter
optimization. Furthermore, the differential evolution (DE) opti-
mization technique has not been widely used in the optimiza-
tion of the machining operations. Thus, the study of process
parameter optimization of medical material in CNC lathe ma-
chining with the use of non-conventional optimization tech-
niques can be taken as a new contribution in any domain of
the machining fields. With the application of DE, it is expected
to provide a better result of Ra compared to conventional meth-
od. Comparison of the results of minimum Ra based on exper-
imental data, regression modeling, response surface roughness,
and DE was made to find out which method would provide the
best result. The percentage of variation in the values of Ra

obtained by these four approaches is described.

2 Methodology

Factors such as machining parameters, cutting phenomena,
work-piece properties, and cutting tool properties influence
the surface roughness of a material. Optimization of rotational
speed, feed rate, depth of cut, and tool tip radius for the surface
roughness, Ra performance measure in CNC lathe machining

by means of the differential evolution (DE) technique can be
taken as a new contribution to the machining area.

In obtaining the optimal operating conditions to minimize
machining surface roughness, Ra values in CNC lathe operation,
the experimental study underwent four different phases. The four
phases of process parameters optimization is illustrated in Fig.1.

The explanation for each of the phases is given below:

i. Themachining experimental data set were studied in order to
examine the process parameters used (rotational speed, feed
rate, depth of cut, and tool tip radius) which contribute to the
surface roughness, Ra results. The CNC lathe machining of
Co28Cr6Mo ASTM F 1537 steel were conducted under dry
machining conditions using the experiment data set.

ii. The machining model was developed to describe the re-
lationship between the process parameters (rotational
speed, feed rate, depth of cut, and tool tip radius) and
the response (surface roughness) by using the regression
technique. The regression model was selected based on
the ANOVA test for the fitness function (objective func-
tion) in the DE optimization module.

iii. The optimal values of the process parameters were deter-
mined to provide the minimum objective function by
using DE technique. The objective function or fitness
function of DE leads to the minimum (lower) value of
surface roughness. The Matlab programming software
was used to find the optimal solutions that would lead
to the minimum value of surface roughness.

iv. DE optimization solution was evaluated by comparing the
optimal process parameters that gave the minimum surface
roughness values generated from DE with those obtained
from the experiments, the regression model, and RSM.

3 Experimental details

The experimental study conducted by Asiltürk, Neşeli, and İnce
[1] in measuring the surface roughness values in the CNC lathe
machining was referred to in this study. A set of experiments
were conducted onCNC lathemachine in determining the effects
of machining parameters of rotational speed (n), feed rate ( f ),
depth of cut (a), and tool tip radius (r) on the output response of
surface roughness (Ra). The work-piece used was an annealed
medical material, Co28Cr6MoASTMF 1537 steel having hard-
ness of 40 HRC with dimensions of Ø50 × 500 mm. The whole
experiment was conducted under drymachining conditions and a
new cutting bit was used for every test. Three types of cutting bits
produced by Taegutec Company were used in the work-piece
longitudinal machining which was TNMG 160404 MT,
TNMG 160408 MT, and TNMG 160412 MT form and cladded
with TiCN by the PVD method and at the quality of TT 8020
while MTJNR-L 2525M16 was used as a tool holder.
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According to the design of the experiment, the CNC lathe
machining process parameters of Co28Cr6Mo ASTM F 1537
steel recommended by the manufacturer and three levels of the
parameters selected is shown in Table 1. The combinations of
experimental parameters used in the experimental study are
presented in Table 2.

TC25-L type Sogotec CNC lathe machine and SJ-201
Mitutoyo device at 2.5-mm cut-off value were used to carry
out the turning process andmeasure the surface roughness values
of the machine work-piece as shown in Fig. 2 and Fig. 3 respec-
tively. The average surface roughness values were recorded on

three sections of the cylindrical surface along the work-piece at
the end of every turning operation’s feed rate. The surface rough-
ness of the work-piece was measured by using SJ-201 Mitutoyo
measuring device at 2.5-mm cut-off value.

4 Response surface methodology

RSM is the useful collection of mathematical modeling and
statistical techniques for optimization and problem analysis of
the cutting system’s input process parameters which response
to the dependent variables. The relationship of the input pa-
rameters and their respective responses can be predicted by
using RSM. The desired response modeling of several process
parameters can be found by using the design of experiments
(DOE) and applying regression analysis.

RSM generally takes place in three stages. The first stage is
the physical experiments carried out by forming an experi-
mental parameter combination in obtaining the reactive
values. Only a few and efficient experiments are needed

Table 1 Machining parameters and their levels [1]

Symbol Parameter Unit Level 1 Level 2 Level 3

n Rotational speed rpm 318 477 636

f Feed rate mm/rev 0.1 0.15 0.25

a Depth of cut mm 0.5 0.7 0.9

r Tool tip radius mm 0.4 0.8 1.2

Experimental Data Assessment

Operation : CNC Lathe

Workpiece Material : Co28Cr6Mo ASTM F 1537 Steel

Process Parameters : Rotational Speed, Feed Rate, Depth of

Cut, Tool Tip Radius

DE Algorithm Optimization of Process Parameters

Formulation of the optimization solution

Find the combination of the optimal process parameters

Find the minimum Ra value

Regression Modelling Development

Develop Regression model and Ra predicted for each

process parameters

ANOVA test : Determination of the predicted Ra equation to
be the DE fitness function

Validation and Evaluation of DE Results

Compare the minimum Ra value of DE with the experimental

sample data, Regression modelling and Response Surface

Methodology (RSM) technique.

Fig. 1 Process parameter
optimization flow chart
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compared to the number of experiments required by the con-
ventional methods and therefore there would be a reduction in
the costs involved. In addition, the mathematical model that
has been developed enables the prediction of unknown inter-
mediate reaction values in a short time based on the outcome

of the analysis. The input process parameters obtained and
their relationships are defined as a second-degree polynomial
or exponential function in the second stage. For the final stage,
surface graphics and ANOVA are used in predicting the opti-
mum points of the input parameters. RSM quadratic model is

Table 2 Experimental parameters
and recorded average surface
roughness values [1]

Number of test Parameter Roughness

n (rpm) f (mm/rev) a (mm) r (mm) Ra(exp) (μm)

1 318 0.10 0.50 0.40 1.660

2 318 0.10 0.70 0.80 0.810

3 318 0.10 0.90 1.20 1.070

4 318 0.15 0.50 0.80 1.593

5 318 0.15 0.70 1.20 1.137

6 318 0.15 0.90 0.40 2.920

7 318 0.25 0.50 1.20 2.750

8 318 0.25 0.70 0.40 7.110

9 318 0.25 0.90 0.80 4.923

10 477 0.10 0.50 0.80 1.590

11 477 0.10 0.90 1.20 0.987

12 477 0.10 0.90 0.40 1.690

13 477 0.15 0.50 1.20 0.857

14 477 0.15 0.70 0.40 4.410

15 477 0.15 0.90 0.80 2.647

16 477 0.25 0.50 0.40 8.207

17 477 0.25 0.70 0.80 3.037

18 477 0.25 0.90 1.20 1.950

19 636 0.10 0.50 1.20 1.690

20 636 0.10 0.70 0.40 4.017

21 636 0.10 0.90 0.80 1.720

22 636 0.15 0.50 0.40 3.567

23 636 0.15 0.70 0.80 1.417

24 636 0.15 0.90 1.20 2.547

25 636 0.25 0.50 0.80 3.243

26 636 0.25 0.70 1.20 2.193

27 636 0.25 0.90 0.40 4.787

Ra(minimum) 0.810

Fig. 2 TC25-L type Sogotec
CNC lathe machine [1]
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formulated and expressed based on the relationship between
the input process parameters and the reaction following a
second-degree polynomial function of Eq. (1).

Y ¼ α0 þ ∑k
i¼1αiX i þ ∑k

i¼1αiiX i
2 þ ∑ j∑

k
i αijX iX j þ e ð1Þ

Here, Y is the predicted response (Ra),α0 is a constant where
αi, αii, and αij are the first- and second-degree input process
parameters and the parameter interactions, respectively. Xi is the
value of the ith input process parameter while the residual e is
the experimental error measurement of the observations.

5 Experimental design

The experimental design and results are discussed by referring to
the previous experimental study conducted by Asiltürk, Neşeli,
and İnce [1]. In order to get clear and accurate experimental
observation conclusions, DO was used. Normally, to investigate
a three-stage 13-factor (313) combination effects, the L27 orthog-
onal array is used. In this study, there was a total of 27 physical
experiments executed inmaintaining consistency by applying the
Taguchi standard orthogonal experimental design with the use of
three parameters and three-level array, L27 (3

13). The design ar-
rangement suitable for this study, i.e., 34 with the corresponding
reaction is given in Table 2. Three different cutting bits were used
in machining to obtain the data shown. Referring to Table 2, the
first column of the table shows the rotational speed (n), followed
by feed rate ( f ), depth of cut (a), tool tip radius (r), and surface
roughness values (Ra).

6 Regression modeling development
for surface roughness

In the present study, a second-degree equation (quadratic
model) for the output responses of surface roughness (Ra) in
terms of input machining parameters of rotational speed (n),

feed rate ( f ), depth of cut (a) and tool tip radius (r) in coded
and actual factors were developed by using RSM. The exper-
imental results obtained were used tomodel the surface rough-
ness using RSM. The developed regression model was further
used for optimizing the CNC lathe machining process. Due to
the lower predictability of the first-order model to represent
the present problem, the quadratic model was developed for
the output response of surface roughness.

The second-degree equation which considers the two-
factor interactions is given below as Eq. (2) [29]:

Y ¼ β0 þ β1nþ β2 f þ β3aþ β4r þ β11n
2 þ β22 f

2

þ β33a
2 þ β44r

2 þ β12nf þ β13naþ β14nr þ β23fa

þ β24fr þ β34ar ð2Þ

where Y is the predicted surface roughness and β is the
constant.

The statistical analysis software, Design-Expert, was used in
analyzing the experimental data obtained from the previous
study and in determining the regression coefficients of the de-
veloped model. Analysis of variance (ANOVA) was employed
in testing the significance of the machining parameters in CNC
lathe machining. The predicted model was established in terms
of actual factors and used to show the reaction formed by using
the codes of the input parameters. The coefficient of determi-
nation (R2) was computed in order to check the fitness of the
regression model to the experimental data.

The regression equation and coefficient of the quadratic
model was obtained from the experimental data for the re-
sponse characteristics as a function of the four input process
parameters which are rotational speed, feed rate, depth of cut,
and tool tip radius by using Design-Expert software. The re-
gression equation was obtained together with the coefficient
of determination (R2). R2 is defined as a measure of the good-
ness of fit. In other words, the more R2 approaches unity, the
better the response model fits the actual data. Equation (3)
states the prediction model for the surface roughness
measurement.

Ra ¼ −3:574þ 0:013nþ 66:380 f

þ 2:891a−9:710r−1:828e−6n2

þ 34:213 f 2−3:180a2

þ 3:891r2−0:066fn−2:142e−3an

þ 1:546e−3nr−12:941af −25:641fr þ 5:353ar ð3Þ

Based on Design-Expert software, the coefficient of deter-
mination (R2) of the surface roughness quadratic model was
found to be 0.9200. This shows that this model is able to
explain the variation in Ra to the extent of 92%. It can be said

Fig. 3 SJ-201 Mitutoyo device [1]
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that the model is adequate in representing the machining pro-
cess based on the high value of R2.

After that, Eq. (3) is applied in predicting the surface
roughness values and the results are summarized in Table 3.
The minimum predicted surface roughness values was then
compared with the minimum experimental surface roughness
values together with their corresponding value of process
parameters.

Referring to Table 3, the lowest predicted value of experi-
mental surface roughness, Ra(exp) and predicted surface rough-
ness, Ra(predicted) is 0.810 and 0.538 μm respectively in this
study of medical material in CNC lathe machining operation.
It was found that in achieving the lowest value of both Ra(exp)
and Ra(predicted), the combination of the process parameters are
rotational speed, n of 318 rpm; feed rate, f of 0.1 mm/rev;
depth of cut, a of 0.7 mm; and tool tip radius, r of 0.8 mm.
Thus, the predicted results are better than the experimental
results in terms of surface roughness.

7 Differential evolution optimization

Differential evolution (DE) algorithm is a simple and fast
and population-based stochastic function that was first de-
veloped by Rainer Storn and Kenneth Price [19]. DE is a
non-conventional optimization technique and also one of
the best genetic-type algorithms for complex nonlinear
problems and has been successfully used in several areas
[30]. There are few advantages when using the DE optimi-
zation method which are its simple structure, ease of use,
speed, and robustness.

Based on Fig. 4, there are three important operations
used by DE which are mutation, crossover, and selection.
The randomly generated initial population is evolved to
final individual solution by using the three operators of
DE. The trial vectors generated by mutation, crossover,
and selection are then used in determining whether the
target vector or the trial vector can survive to the next

Table 3 Ra experimental and
predicted values of regression
modeling

Number of Test Parameter Roughness

n (rpm) f (mm/rev) a (mm) r (mm) Ra(exp) (μm) Ra(predicted) (μm)

1 318 0.10 0.50 0.40 1.660 2.036

2 318 0.10 0.70 0.80 0.810 0.538

3 318 0.10 0.90 1.20 1.070 0.887

4 318 0.15 0.50 0.80 1.593 1.609

5 318 0.15 0.70 1.20 1.137 1.142

6 318 0.15 0.90 0.40 2.920 3.080

7 318 0.25 0.50 1.20 2.750 2.750

8 318 0.25 0.70 0.40 7.110 7.591

9 318 0.25 0.90 0.80 4.923 4.340

10 477 0.10 0.50 0.80 1.590 1.142

11 477 0.10 0.90 1.20 0.987 1.730

12 477 0.10 0.90 0.40 1.690 2.125

13 477 0.15 0.50 1.20 0.857 1.021

14 477 0.15 0.70 0.40 4.410 3.805

15 477 0.15 0.90 0.80 2.647 1.869

16 477 0.25 0.50 0.40 8.207 7.340

17 477 0.25 0.70 0.80 3.037 3.945

18 477 0.25 0.90 1.20 1.950 2.397

19 636 0.10 0.50 1.20 1.690 1.598

20 636 0.10 0.70 0.40 4.017 3.221

21 636 0.10 0.90 0.80 1.720 1.957

22 636 0.15 0.50 0.40 3.567 4.320

23 636 0.15 0.70 0.80 1.417 2.240

24 636 0.15 0.90 1.20 2.547 2.007

25 636 0.25 0.50 0.80 3.243 3.339

26 636 0.25 0.70 1.20 2.193 1.648

27 636 0.25 0.90 0.40 4.787 4.849

Ra(minimum) 0.810 0.538
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generation. The procedure of DE is explained as follows:

i. Step 1: Initialization

An initial population of new solutions called vectors is first
generated at the beginning of the DE optimization procedure.
The initial population is generated randomly within the feasi-
ble variable ranges at current generation, t, with j as the di-
mensions. The initial population for each control variable is
generated by using the Eq. (4). The value of ith particle’s jth

variable is given by:

xi; j ¼ x jmin þ rand 0; 1ð Þ x jmax−x jmin
� � ð4Þ

where xj
max and xj

min are the upper and lower bounds of jth

variable respectively.

ii. Step 2: Mutation

A trial vector vi(t) is produced by the mutation operator
corresponding to each individual of the current population
by weighted differential target vector mutation and three dif-
ferent members xr1, xr2 and xr3,which do not coincide with the
current member, xi, are then chosen randomly. Thus, the jth

component of vi(t) can be stated as:

vi; j t þ 1ð Þ ¼ xr1 j tð Þ þ F xr2 j tð Þ−xr3 j tð Þ
� � ð5Þ

This equation creates the trial vector vi(t) and the typical
value of differentiation constant, F is in the range of 0.4 to 1.0.

iii. Step 3: Crossover

Crossover operator merges the trial vector, vi(t) and the par-
ent vector, xi(t) in order to produce more descendants to in-
crease the diversity of the population. The crossover performs
on all the variables on the randomly picked number which is
between 0 and 1 and within the crossover rate (CR) value.

ui; j tð Þ ¼ vi; j tð Þ if rand 0; 1ð Þ < CR
xi; j tð Þ else

�
ð6Þ

where ui,j(t) represents the descendant that will be compared
with the parent vector, xi,j(t).

iv. Step 4: Selection

The selection operator determines which individuals will
survive in the next generation, at time t = t + 1. If the vector,
ui(t), yields better fitness value, it will replace its parent in the
next generation; otherwise, the parent remains in the popula-
tion. The population will either get better in terms of the fit-
ness function or remains constant but never deteriorates. The
selection process can be expressed as:

xi t þ 1ð Þ ¼ ui tð Þ if f ui tð Þð Þ≤ f xi tð Þð Þ
xi tð Þ if f xi tð Þð Þ < f ui tð Þð Þ

�
ð7Þ

where function f () is the function to be minimized.
After the installation of the new population, the mutation,

crossover, and selection procedure will be repeated until the
maximum number of generations is reached.

7.1 Problem formulation and optimization solution

In this study, the target of the optimization process is to deter-
mine the optimal set values of process parameters that contrib-
ute to the minimum surface roughness, Ra value. To optimize
the surface roughness, it is important to determine the machin-
ing problem which consists of rotational speed (n), feed rate
( f ), depth of cut (a) and tool tip radius (r). The options selected
for the problem formulation are tabulated in Table 4.

Generation of Initial Population

Evaluation

Mutation

Crossover

Selection

Print Best of Current Population

Stopping Criterion

Satisfied?

Yes

No

Fig. 4 Differential evolution algorithm flow chart

Table 4 Problem
formulation options Option Justification

Number of variables 4

Population type Double vector

Population size 40
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The main fitness function for this problem is surface rough-
ness. The surface roughness regression model proposed by
Eq. (8) below was selected as the fitness function to formulate
the optimization problem for CNC lathe machining:

Y ¼ β0 þ β1nþ β2 f þ β3aþ β4r þ β11n
2 þ β22 f

2

þ β33a
2 þ β44r

2 þ β12nf þ β13naþ β14nr þ β23fa

þ β24fr þ β34ar ð8Þ

The minimization of the fitness function value of Eq. (8) is
subjected to the boundaries of the machining parameters. The
range of experimental process parameter values given in
Table 1 was selected in presenting the limitations of the opti-
mization solution and is tabulated in Table 5.

Once the optimization problem was formulated, it was then
solved using differential evolution algorithm (DE) by develop-
ing and running the program with Matlab programming soft-
ware. In order to get the best optimal results, there are some
criteria that need to be set properly which includes the initial
population size, the differentiation constant, the crossover rate
and the selection function type. In this study, the best combina-
tion of the process parameter set values will lead to the mini-
mum surface roughness. The recommended parameter setting
for these criteria from the previous researchers was first follow-
ed in obtaining the most optimal result that is to be expected
from this study. After that, a few combinations for the parameter
settings were tested by using Matlab programming software to
obtain the best optimal result for the surface roughness.

In this study, there are differences between the symbols
used in the RSM regression modeling and the equations of
DE. Each symbol in the DE algorithm is related with the
symbols in the RSM regression modeling in order to optimize

the CNC lathe machining operation process parameters in
obtaining the minimum surface roughness value. Table 6 sum-
marizes the relationship between the symbols in regression
modeling and in DE algorithm with their respective ranges.

In a nutshell, the parameter settings of the initial population
size, differentiation constant, the crossover rate and the num-
ber of generation was first decided within the range of number
in the DE optimization algorithm of this research study. DE
optimization algorithm for this study was done with the gen-
eration of new solutions’ population of 40 vectors in the first
step. After that, each vector with 4 dimensions which are the
process parameters in the population was evaluated for the
fitness value, Ra and then took turns to be a target vector. A
trial vector was formed by combining three randomly selected
vectors from the 40 vectors excluding the target vector by
using Eq. (5) with the differentiation constant, F within the
range of 0.4 to 1.0. The selection between the target vector and
the trial vector was done in order to keep only one winning
vector with better fitness value which is the lower Ra value for
the survival into the next round. The mutation, crossover and
the selection processes were repeated once the new generation
was installed until the stopping criterion of number of gener-
ations was satisfied. The simulation of the DE optimization
algorithm was repeated by changing the combination of the
parameter settings until the best fitness value which was the
minimum Ra value is obtained.

7.2 DE objective function and optimization execution

The execution process of DE optimization technique in optimiz-
ing the process parameters that affect the surface roughness, Ra
value of Co28Cr6Mo medical material CNC lathe machining
was divided into four main phases which are the initialization,

Table 5 Machining parameters
and their range Symbol Parameter Unit Lower boundary Upper boundary

n Rotational speed rpm 318 636

f Feed rate mm/rev 0.10 0.25

a Depth of cut mm 0.50 0.90

r Tool tip radius mm 0.40 1.20

Table 6 Relationship between
the symbols of regression
modeling and DE algorithm with
their range

Setting Regression modeling DE Range

Fitness function (objective function) Ra f –

Number of process parameters 4 × 1 matrix D 4

Minimum surface roughness Ra(minimum) fbest –

Rotational speed n X1 318–636 rpm

Feed rate f X2 0.10–0.25 mm/rev

Depth of cut a X3 0.50–0.90 mm

Tool tip radius r X4 0.40–1.20 mm
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mutation, crossover, and selection process. The DE programwas
developed and run by using Matlab programming software and
the input process parameters levels were fed to the DE program
in order to optimize the process parameters of the machining
process within the constraints given.

The regression equation was obtained from the experimen-
tal data of the response characteristics as a function of the four
input process parameters which are the rotational speed, feed
rate, depth of cut and tool tip radius by using Design-Expert
software. Equation (9) states the objective function that is used
for the process parameter optimization and surface roughness
minimization in Matlab programming software.

Ra ¼ −3:574þ 0:013X 1 þ 66:380X 2

þ 2:891X 3−9:710X 4−1:828e−6 X 1ð Þ2

þ 34:213 X 2ð Þ2−3:180 X 3ð Þ2

þ 3:891 X 4ð Þ2−0::66X 1X 2−2:142e−3X 1X 3

þ 1:546e−3X 1X 4−12:941X 2X 3−25:641X 2X 4

þ 5:353X 3X 4 ð9Þ

where X1 is the rotational speed (n) in rpm, X2 is the feed rate
( f ) in mm/rev, X3 is the depth of cut (a) in mm and X4 is the
tool tip radius (r) in mm.

In order to obtain the optimal process parameters and the
minimum surface roughness, Ra value, there is a range of
technical specifications of the machining process parameters
that need to be considered. The process parameters in this
study were referred to the boundary values for the lower and
upper parameters which were based on the previous experi-
ment aforementioned. The boundary values of the process
parameters influenced the DE results and the number of

iteration to be processed. The lower and upper boundary value
used for Co28Cr6Mo medical material CNC lathe machining
in the experiments are as follows:

318 rpm≤X 1≤636 rpm ð10aÞ
0:1 mm=rev≤X 2≤0:25 mm=rev ð10bÞ
0:5 mm≤X 3≤0:9 mm ð10cÞ
0:4 mm≤X 4≤1:2 mm ð10dÞ

7.3 Surface roughness optimization

In this study, several combinations of initial population size
(NP), the differentiation constant (F), the crossover rate (CR)
and the number of generation (GEN) have been tested by
using Matlab programming software in order to achieve the
optimal results of the surface roughness, Ra value as the min-
imum Ra value of CNC lathe machining is achieved with the
best combination of the four process parameter values.

Population sizes of 10, 20, 40, 60 and 80 have been tested
in this program and for each population size, the algorithm has
been executed 10 times. Based on the experiments, the mini-
mum and constant Ra value of 0.1502 μm was obtained by
using the population size of 40, which is 10 times the value of
the process parameters. When the population size was in-
creased to 60 and 80, there was no changes to the values of
Ra achieved which was 0.1502 μm.

In addition, it was found that the number of generation of
100 produced the minimum and constant result of Ra value. If
the number of iteration was increased, the DE results did not
produce any significant differences. Meanwhile, for the differ-
entiation constant, F used in the DE algorithm during the
mutation stage, the lower the value of F, which was within
the range of 0.4 to 1.0, the more constant and minimal the
results became. It can be seen that there was not much changes
in the minimum Ra value for the fitness function even though
the crossover rate was varied between the values of 0.1 to 0.9
based on the experiments. As a result, the best combination of
the settings applied that lead to the minimum Ra value is given
in Table 7 after several trials of parameter setting conducted.

The DE result was generated by using the objective function
in Eq. (9) and the boundary of the process parameters formu-
lated by Eq. 10a–d. Table 8 shows the minimum values of Ra

Table 7 Optimal solution of DE parameter settings combination

Parameter Setting value

Population size, NP 40

Differentiation constant, F 0.4

Crossover rate, CR 0.9

Number of generation, GEN 100

Table 8 Output values of DE
with respect to input process
parameters

Condition Unit Result

Optimal process parameter Rotational speed, n rpm 331.9852

Feed rate, f mm/rev 0.1073

Depth of cut, a mm 0.5555

Tool tip radius, r mm 1.0851

Minimum fitness function Surface roughness, Ra(min) μm 0.1502
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with respect to the input process parameters of Co28Cr6Mo
medical material CNC lathe machining in DE. Figure 5 and
Fig. 6 show the performances of each process parameter and
the plot function diagram of the DE algorithm respectively.
Thus, based on the DE optimization results, it can be concluded
that there is a possibility to select a combination of rotational
speed, feed rate, depth of cut and tool tip radius which would
lead to the best surface finish.

Based on Table 8, it can be observed that the minimum
surface roughness, Ra value is 0.1502 μm. The set values of
process parameters that lead to the minimum surface rough-
ness value are rotational speed of 331.9852 rpm, feed rate of
0.1073mm/rev, depth of cut of 0.5555mm, and tool tip radius
of 1.0851mm. The convergence profile in Fig. 6 indicates that
the minimum surface roughness value is 0.15015 μm. Besides
that, the optimal solution obtained for the minimum surface

Fig. 5 Performance of each
machining parameters

Fig. 6 DE convergence profile
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roughness is at the 56th generation (iteration) of the DE algo-
rithm as indicated on Fig. 6.

7.4 Evaluation and validation of the DE result

After the minimum surface roughness value was estimated
based on the DE optimization algorithm, the results was vali-
dated and evaluated. The minimum surface roughness value
estimated by DE optimization is expected to be of a lower
amount than the surface roughness values obtained experimen-
tally, by regression modeling and by Response Surface
Methodology (RSM). The optimal process parameters which
lead to the best fitness function in CNC lathe machining oper-
ations which was achieved at the last iteration of DE is expected
to be in the same boundaries of values as those with the exper-
imental process parameters which are given in the Table 5.
Those values will give the minimum surface roughness value.

In order to evaluate the DE result, there are three main
issues that need to be concerned with in this research study.
The first issue is the surface roughness,Ra value obtained from
the DE optimization which is expected to be lower than the
minimum Ra value of the experimental and regression model-
ing. Besides that, the mean Ra value from DE optimization is
expected to be lower than that of the experimental and regres-
sion modeling and the values of optimal process parameters
which lead to the minimum Ra of the machining process is
expected to be in the same range as the experimental design.

In the real CNC lathe machining experiment, the minimum
Ra value is 0.810 μmwhereas for the regression modeling, the
minimum Ra value is 0.538 μm as indicated in Table 3. Based
on Table 8, the best-predicted Ra value obtained from the DE
optimization is 0.150 μm. Hence, it can be assumed that the
DE optimization has given the minimum result of Ra value
compared to the experimental and regression modeling.

Besides that, the mean Ra value obtained from the experi-
ments, regression modeling and DE technique are 2.760,
2.760, and 0.200μm respectively. Hence, the DE optimization
technique has given the minimum predicted mean Ra value
compared to the experimental and regression modeling.
Moreover, the optimal values of the process parameters pre-
dicted by using the DE optimization technique can be applied
in the real machining experiment in order to obtain the mini-
mum surface roughness of 0.150 μm as the values obtained
are within the constraints of the actual settings of the cutting
conditions in the CNC lathe machining operation.

The best results of the process parameters of Co28Cr6Mo
medical material CNC lathe machining which lead to the min-
imum Ra value using DE optimization technique are rotational
speed of 331.9852 rpm, feed rate of 0.1073 mm/rev, depth of
cut of 0.5555 mm, and tool tip radius of 1.0851 mm.
Theoretically, the optimal values of the process parameters will
be transferred into the regression model of Eq. (9), which is the
objective function of the DE optimization technique, in order
to validate the result obtained by the DE algorithm. The values
of the optimal solution set of the rotational speed, X1; feed rate,

Table 9 Summary of the DE results

Variables Consideration factors Issue 1: best
fitness, Ra(min)

(μm)

Issue 2: mean
fitness, Ra(mean)

(μm)

Issue 3: optimal
process parameter
of DE

Remarks

Ra Experimental result 0.81 2.76 – DE optimization technique gives
better minimum and mean Ra
value compared to experimental
and regression modeling

Regression modeling 0.538 2.76

DE result 0.15 0.2

Rotational speed, n Required range 318–636 rpm – – 331.9852 Optimal solution set of the process
parameters from DE
optimization technique are
within the constraints
of the required values

Feed rate, f Required range 0.1–0.25 mm/rev 0.1073

Depth of cut, a Required range 0.5–0.9 mm 0.5555

Tool tip radius, r Required range 0.4–1.2 mm 1.0851

Table 10 Process parameters
scaling classifications for optimal
result comparison

Process parameters Unit Process parameters scaling classifications

Lowest Lower Medium Higher Highest

Rotational speed, n rpm 318 400 477 560 636

Feed rate, f mm/rev 0.1 0.12 0.15 0.2 0.25

Depth of cut, a mm 0.5 0.6 0.7 0.8 0.9

Tool tip radius, r mm 0.4 0.6 0.8 1 1.2
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X2; depth of cut, X3; and tool tip radius, X4 were substituted
into the Eq. (9) and the solution is obtained as follows:

Ra ¼ −3:574þ 0:013 331:9852ð Þ þ 66:380 0:1073ð Þ
þ 2:891 0:5555ð Þ−9:710 1:0851ð Þ−1:828e−6 331:9852ð Þ2

þ 34:213 0:1073ð Þ2−3:180 0:5555ð Þ2 þ 3:891 1:0851ð Þ2

− 0:066 331:9852ð Þ 0:1073ð Þ
−2:142e−3 331:9852ð Þ 0:5555ð Þ þ 1:546e−3 331:9852ð Þ 1:0851ð Þ
−12:941 0:1073ð Þ 0:5555ð Þ
−25:641 0:1073ð Þ 1:0851ð Þ þ 5:353 0:5555ð Þ 1:0851ð Þ

Ra ¼ 0:1497

ð11Þ

The predicted Ra value obtained by the DE is 0.1497 μm as
shown in Eq. (11) when the optimal values of the process
parameters obtained from DE are transferred into the Eq.
(9). The minimum Ra value of the DE technique is
0.1502 μm based on Table 9 and this result is close to the
results of the transformation process. Thus, it can be said that
the Ra value of 0.1502 μm might be obtained in the real
Co28Cr6Mo medical material CNC lathe machining process
when the optimal solution set of process parameters predicted
by DE technique is used.

8 Discussion

The most important element in any machining process of
the work-piece is the determination of the optimal machin-
ing parameters. In this research study, DE optimization
technique is employed in order to predict the optimal solu-
tions of process parameters which lead to the minimum
surface roughness value of the machining process. Based
on the literature review, it was found that there is no study
taken so far by the researchers in applying DE algorithm for
Co28Cr6Mo medical material CNC lathe machining sur-
face roughness optimization problems. Thus, the study of
DE in medical material can be taken as a new contribution
in any domain of machining area.

The experimental study conducted by Asiltürk, Neşeli,
and İnce [1] in measuring the surface roughness values in
the CNC lathe machining was referred to in this study. The

statistical analysis such as ANOVA was done before the
DE optimization technique was performed. Analysis using
ANOVAwas performed to find the optimum level and per-
centage of contribution of each process parameter on the
surface roughness. A regression model was developed
using the Design-Expert software and the analysis of the
model was conducted. The objective function which was
used in the DE optimization solution is the regression mod-
el developed by using the Design-Expert software. The
results of the DE technique from Matlab programming
software were discussed in the evaluation and validation
of the DE results and summarized in Table 9. The process
parameters scaling classification of the lowest, lower, me-
dium, higher and highest scale for comparing the optimal
results is shown in Table 10.

9 Conclusion

Based on Table 9 until Table 11, it can be concluded that the
DE optimization technique can be considered an effective
technique in obtaining a better result of minimum surface
roughness value and mean surface roughness value of CNC
lathe machining process compared to the experimental and
response surface methodology, RSM. The optimal solution
set of the process parameters recommended by the DE opti-
mization technique which lead to the minimum Ra value is
also within the constraints of the cutting conditions applied
in the real CNC lathe machining experiment.

Moreover, based on the best fitness value from Table 11,
the DE optimization technique outperforms the RSM tech-
nique by 0.065 μm. The minimum Ra value obtained from
RSM is 0.215 μm with the lowest range of rotational speed,
the lowest feed rate, the smaller depth of cut, and the highest
range of tool tip radius of the scaling of the machining param-
eters with the consideration of the conditions given in
Table 10. However, the DE optimization technique predicts
a lower value of Ra of 0.150 μm compared to the RSM opti-
mization technique with the lowest rotational speed, the low-
est feed rate, the smallest depth of cut, and the larger tool tip
radius of the scaling.

As mentioned before, the objective of the DE optimization
process in this research study is to determine the optimal so-
lution set of the process parameters of the CNC lathe

Table 11 DE and RSM optimal process parameters result comparison

Technique Rotational speed, n (rpm) Feed rate, f (mm/rev) Depth of cut, a (mm) Tool tip radius, r (mm) Best fitness,
Ra(min) (μm)

Optimal Level Optimal Level Optimal Level Optimal Level

DE 331.99 Lowest 0.11 Lowest 0.56 Lowest 1.09 Higher 0.15

RSM 341.31 Lowest 0.1 Lowest 0.59 Lower 1.2 Highest 0.215
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machining whichwould lead to the finest surface roughness of
the Co28Cr6Mo medical material. In a nutshell, it has been
found that the DE optimization technique reduces the surface
roughness value of the Co28Cr6Mo medical material in the
CNC lathe machining by 81, 72, and 30% respectively when
comparing with the minimum surface roughness value of the
experimental data (0.810 μm), the regression modeling
(0.538 μm), and the RSM desirability analysis (0.215 μm).
The performance of DE is superior when compared to the
experimental, regression modeling, RSM, in terms of CNC
lathe machining parameter optimization.

In a nutshell, this study provides a new idea on the imple-
mentation of modern approach for solving CNC lathe machin-
ing optimization parameters. This new optimization strategy is
presented with systematic guidelines to improve the quality of
the machining output. Regardless of its purpose for CNC lathe
machining of Co28Cr6Mo medical material, DE algorithms
can be adopted for broader range of parameter optimization,
which means the factor of material could be eliminated in
order to gain an optimization algorithm for any kind of mate-
rials. Furthermore, DE algorithm has unique capability to en-
hance the prediction of surface where it does not need to
calculate the gradient descent that required by conventional
method such as RSM which tend to trap at local minima;
hence, it can be applied to various kinds of objective functions
in machining process. The contributions of the study are
highlighted as follows:

1. Details implementation of DE algorithm and formulation
for process parameters optimization.

2. Provide new optimization approaches for CNC lathe ma-
chining using DE algorithm and comparative study with
conventional method (RSM).

This study can be further work on any manufacturing pro-
cess optimization as users know how to formulate their objec-
tive function and the range of process parameters. Finally,
investigating the performance of DE algorithm of other
manufacturing fields would be interesting for future research.
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