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Abstract
An improved full-discretization method (IFDM) based on the golden search is presented in this brief paper to predict stability
lobe diagram (SLD). To begin with, the mathematical model of milling dynamics considering the regenerative chatter is
expressed as a state space form. With the time delay being separated equally into a limited amount of elements, the time series
expression is obtained by interpolating the integral nonhomogeneous term using linear approximation. Then, 2N order algorithm
is adopted to resolve the exponential term into a real matrix, which avoids the exponential matrix that has to be calculated each
time in scanning the plane comprised of axial cutting depth and spindle speed. Lastly, the golden search instead of traditional
sequential search is applied to seek the crucial axial cutting depths corresponding to different spindle speeds, which can improve
computational efficiency remarkably. The verifications with two classic benchmark examples demonstrate that the proposed
method has higher computational efficiency.
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1 Introduction

The milling chatter caused by improper selection of spindle
speed and cutting depth has a seriously negative effect on
machined efficiency, so it is of significance to make an accu-
rate prediction of chatter stability prior to processing. Since
Sridhar [1] proposed a simulation way to research on chatter
stability diagram (SLD) of machine tool system in 1980s,
many works have been done to promote the development of
prediction technique.

At present, the existing approach for chatter stability fore-
cast can be classified into two categories: one is analytic meth-
od and the other is numerical method. Altintas et al. [2] devel-
oped a zero-order analytical (ZOA) method using mean value
of Fourier series of dynamic milling forces, and opened the
first step of analytic algorithm. ZOA is fast and effective, but it
can be not applicable for low radial immersion milling [13].
Later, Merdol et al. [3] presented a multi-frequency solution
via bringing more harmonic frequencies of cutting forces into
dynamic model. In order to enhance prediction accuracy, an

improved multi-frequency is proposed in [4]. Ozturk [5] and
Sun [6] achieved chatter free for the five axis ball end milling
using the analytical method. Li Z et al. [7] extended ZOA into
cutting stable region forecast of helical milling operation.

With the rapid growth of computational mathematics, quite
a few numerical algorithms of constructing the high accuracy
SLD have been developed, especially in recent years.
Balachandran et al. [8] presented a unified mechanics-based
dynamic model and studied the impact of nonlinear properties
on the stability of the milling process. Li H et al. [9] put
forward a new time domain criterion for the chatter stability
analysis of the dynamic milling process. Insperger et al. [10]
proposed the semi-discretization method (SDM) by approxi-
mating delay term of delayed differential equation (DDE), the
discretization error of which comes up to O(h2). Zhou et al.
developed a high order full-discretization method for predic-
tion of milling stability in [11]. Long and his co-authors [12]
analyzed the influence of the loss-of-contact effect and the
tool and time delay effect on the stability region. Ding et al.
[13] interpolated the time delay term and time periodic part of
DDE and proposed a full-discretizationmethod (FDM), which
demonstrates higher arithmetic speed in comparison with
SDM. Subsequently, Insperger et al. evaluated relations of
SDM and FDM in [14], and pointed out that FDM is an im-
proved SDM method since not every element in dynamic
equation was discretized. Balachandran et al. [15] investigated
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the effect of variable spindle speed on stability in up- and
down-milling processes. Zhang et al. [16] utilized a numerical
differentiation method to predict chatter stability for high
speed milling. Tang et al. [17] studied on SLD using an up-
dated full-discretization method. Dai et al. [18] applied precise
integration method for the chatter stability prediction of five
axis ball-end milling. Li M et al. [19] brought forward a com-
plete discretization scheme with discretizing all parts of the
response of the system, including delay term, time domain
term, parameter matrices using Euler’s method (CDSEM),
which is more efficient compared with FDM and SDM, while
the discretization error run up to O(h2). Li Z et al. [20] adopted
the classical fourth-order Runge-Kutta method to approximate
the terms of the DDE and promoted a Runge-Kutta-based
complete discretization method (RKCDM), whose
discretization error attains to O(h5).

According to combing stability prediction methods, the
following agreements can be reached:

& Firstly, the prediction accuracy of numerical solution is
popular than ZOA method because the nonlinear factors
in the milling process can be considered into the mathe-
matics model [13].

& Secondly, FDM can achieve the prediction of chatter sta-
bility without any discretization error loss [13], while as
pointed in [14, 19], the exponential term must be calculat-
ed every time in sweeping the range of spindle spend,
which limits the calculation efficiency of FDM.

& Lastly, by interpolating the exponential term in the solu-
tion using the differential method, CDSEM exhibits
higher calculation efficiency than FDM, but there is
discretization error presented in CDSEM, which affects
the prediction accuracy of stability [20].

Confronted with the conditions described above, it is ur-
gent to seek a new method to strike a balance between FDM
and CDSEM. In this paper, an improved full-discretization
method (IFDM) is proposed to predict the chatter stability
for the milling process, which can give consideration to cal-
culation accuracy and efficiency at the same time. Hence, the
rest of this paper is organized as follows. Section 2 shows the
algorithm of IFDM. Section 3 makes the verification of IFDM
in computational efficiency, convergence rate and prediction
accuracy using one and two DOF milling benchmark exam-
ples. Some conclusions are drawn in Section 4.

2 Algorithm of the improved
full-discretization method

Similar as FDM, the delay dynamic equation established from
the milling process is expressed as state space form:

v˙ tð Þ ¼ A0v tð Þ þ A tð Þv tð Þ−A tð Þv t−Tð Þ ð1Þ
where A0 is a constant matrix consisting of the model param-
eters of the cutter system; A(t) and B(t) are periodic coefficient
matrices.

Using f(t) to represent A(t)v(t) − A(t)v(t − T), the general
solution for Eq. (1) can be obtained as

v tð Þ ¼ eA0⋅ t−tpð Þv tpþ1

� �þ ∫
t

tp
eA0⋅ t−δð Þ⋅ f δð Þdδ ð2Þ

Afterwards, dividing the period T into m parts equally,
namely T =m ⋅ τ, the integral nonhomogeneous term f(t) in
the interval of [tp, tp + 1] can be approximated as

f tð Þ ¼ r0 þ r1 t−tpþ1

� � ð3Þ

where r0 = A(tp + 1)v(tp + 1) − A(tp + 1)v(tp + 1 −m ⋅ τ)

r1 ¼ 1

τ
A tpþ1

� �
v tpþ1

� �
−A tpþ1

� �
v tpþ1−m⋅τ
� �

−A tp
� �

v tp
� �þ A tp

� �
v tp−m⋅τ
� �� �

In order to make the expression concise, r0 and r1 are fur-
ther exhibited as

r0 ¼ Apþ1vpþ1−Apþ1vpþ1−m r1

¼ 1

τ
Apþ1vpþ1−Apþ1vpþ1−m−Apvp þ Apvp−m
� �

Substituting Eq. (3) into Eq. (2), v(tp + 1) can be written as

v tpþ1

� � ¼ T1 v tp
� �þ A0

−1r0−A−1τr1 þ A0
−2r1

� �
−A0

−1 r0 þ A0
−1r1

� � ð4Þ

where T1 equals to eA0⋅τ . Differing from exponential matrix
existing directly in iteration formula of FDM, the next will
utilize 2N algorithm to decompose the exponential term into
a real matrix.

Firstly, dividing τ into Λ = 220 parts equally, T1 can be
converted into:

T1 ¼ eA0⋅τ ¼ eA0⋅ τΛ
� �Λ ¼ eA0⋅Δt� �Λ ð5Þ

SinceΔt ¼ τ
Λ is an extremely small time interval, eA0⋅Δt can

be expanded with the truncated Taylor expansion:

eA0⋅Δt≈I þ A0Δt þ A0Δtð Þ2=2!þ A0Δtð Þ3=3!
þ A0Δtð Þ4=4!
¼ I þ Ta ð6Þ

Combining Eq. (5) and Eq. (6), the following can be get

T1 ¼ I þ Tað Þ2N ¼ I þ Tað Þ2
h i2N−1

ð7Þ
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Then, by multiplying N times, T1 can be represented as the
sum of identity matrix and the non-identity matrix.

For i ¼ 1; i≤N ; iþþð Þ Ta ¼ 2Ta þ Ta � Ta;T 1 ¼ I þ Ta; ð8Þ

Setting f0 = T1A0
−1 − A0

−1, f1 = (T1A0
−2 − T1A

−1τ − A0
−2)/τ,

f2 = f0 + f1, Eq. (4) can be displayed as

vpþ1 ¼ T 1− f 1Ap
� �

vp þ f 2Apþ1vpþ1− f 2Apþ1vpþ1−m

þ f 1Apvp−m ð9Þ

If (I − f2Ap + 1) is reversible, Eq. (9) can be presented as

vpþ1 ¼ f 3 T 1− f 1Ap
� �

vp− f 3 f 2Apþ1vpþ1−m

þ f 3 f 1Apvp−m ð10Þ

where f3 = (I − f2Ap + 1)
−1

Since no index matrix factor is included in iteration formu-
la, Eq. (10) is much streamlined and simplified than FDM. To
acquire state transition matrix, a n(m + 1) dimensional vector
vp is defined as

yp ¼ col vp; vp−1⋯vpþ1−m; vp−m
� �

The discrete map is illustrated as

ypþ1 ¼ Cpyp ð11Þ

where the coefficient matrix Cp can be constructed as follows:

Cp ¼

PK 0 0 ⋯ 0 RK1 RK2
1 0 0 ⋯ 0 0 0
0 1 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ 0 0 0
0 0 0 ⋯ 1 0 0
0 0 0 ⋯ 0 1 0

2
666666664

3
777777775

ð12Þ

where PK, RK1, and RK2 equals to f3(T1 − f1Ap), −f3f2Ap + 1,
and f3f1Ap, respectively.Cp is determined by coupling Eq. (12)
from i = 0 to k − 1 one by one.

vp ¼ Φv0 ð13Þ

Lastly, the same as FDM and CDSEM, Floquet theory is
also applied to judge the eigenvalues of the transition matrix
Φ. However, instead of sequential search used in [13, 19], the
golden search is carried out to seek the crucial cutting depths
at different spindles via using the data including the modal
parameters of cutter system, specific cutting forces

coefficients, and cutter geometry. The detailed flow chart is
revealed in Fig. 1.

Remark The most important differences between the proposed
method and famous FDM, CDSEM are enumerated in two
points. For one thing, FDM shows higher calculation accuracy
without any discretization error loss in contrast to some algo-
rithms such as SDM, CDSEM [13], but the exponential ma-
trixes existing in parameters termsΦ0,Φ1,Φ2, andΦ3 must be
calculated every times while sweeping axial cut depths and
spindle speeds, which are very complicated and time-costing.
To solve this problem, CDSEM applied Euler’s method to
discrete the exponential term, which improves the calculation
efficiency, but makes the discretization error reach O(h2) [20].
In the proposed method, the time series expression is attained
by interpolating the integral rather than partial nonhomoge-
neous term. A real matrix is acquired by 2N algorithm to re-
place the exponential term in iteration formula, which really
discretizes all parts in contrast to FDM. For another, the gold-
en search is utilized to seek the crucial axial depth of cut at
different spindle speeds, which overcomes the shortcoming of
sequential search used in classic methods that every point in
the plane composed of spindle spend and axial cutting depth
must be scanned. These are the primary reasons that the pro-
posed method has far higher calculation efficiency than FDM
and CDSEM, which will be demonstrated in next section
using two classic examples.

3 Verification and comparison

One and two degrees of freedom (DOF) milling dynamic
models will be used as benchmarks to verify the characteris-
tics of IFDM, where all the parameters are coming from FDM
in [13]. Besides, the programs in this paper run in a personal
computer [Intel Core (TM) i5-4460, 3.2GHz, 3.2GB].

3.1 One DOF milling dynamic system

The dynamic equation for a single DOF milling system can be
represented as

€x tð Þ þ 2ξωnx
˙ tð Þ þ ωn

2x tð Þ ¼ −
wh tð Þ
mt

x tð Þ−x t−Tð Þð Þ ð14Þ

where ξ is the relative damping, ωn is the angular natural
frequency, w is axial depth of cut, and mt is the modal mass.
T is the time delay, which equals to the tooth passing period,
namely T = 60/(Nfn); Nf is the number of teeth and n is the
spindle speed (r/min); h(t) is the cutting force coefficient:

h tð Þ ¼ ∑
N

j¼1
g ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� � ð15Þ
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whereKt andKn are the tangential and the normal cutting force
coefficients, respectively, and ϕj(t) is the angular position of
the jth tooth:

ϕ j tð Þ ¼ 2π⋅n=60ð Þ⋅t þ j−1ð Þ⋅2π=N f ð16Þ

The function g(ϕj(t)) is used to determine whether tooth j is
in cutting or not, which is defined as

g ϕ j

� � ¼ 1 ϕin < ϕ j < ϕout

0 otherwise

�
ð17Þ

where ϕin and ϕout is the start and exit angles of the jth tooth,
separately. For up-milling, ϕin and ϕout equal to 0 and arcos(1-
2ae/D), separately; for down-milling, ϕin and ϕout equal to
arcos(1-2ae/D) and π, separately, where ae is the radial depth
of cut, and D is the diameter of the cutter.

Eq. (14) can be converted into a state space form as

v˙ tð Þ ¼ A0v tð Þ þ A tð Þv tð Þ−A tð Þv t−Tð Þ ð18Þ

where A0, A(t) and v(t) are illustrated as

A0 ¼ −ξωn
1

mt

mt ξωnð Þ2−mtωn
2 −ξωn

2
4

3
5 A tð Þ

¼ 0 0
−wh tð Þ 0

� �
v tð Þ ¼ x tð Þ;mtx˙ tð Þ þ mtξωnx tð Þ� �T

The parameters for the prediction of stability are given in
Table 1, which are the same as [13]. Under the condition that
the plane consisting of spindle speed and cutting depth is split
into 400 × 200 sized grids, the simulation results and compu-
tational times with radial immersion ratios ae/D = 1, 0.1 and
0.05 are displayed in Table 2. Because there is no need to
calculate the exponential matrix in the cycle of sweeping ev-
ery point in the range of cutting depth, the time-consuming
sinks nearly 72 and 62% in comparison with FDM and
CDSEM, respectively; moreover, the prediction results of
IFDM are almost identical to those of FDM, and CDSEM,
expect subtle differences.

Fig. 1 Flow chart for obtaining
SLD of the milling process using
IFDM
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3.2 Two DOF milling dynamic system

The dynamic equation for two DOF milling system can be
shown in Eq. (19).

mt 0
0 mt

� �
€x tð Þ
€y tð Þ

� �
þ 2mtξωn 0

0 2mtξωn

� �
x˙ tð Þ
y˙ tð Þ

� �

þ mtωn
2 0

0 mtωn
2

� �
x tð Þ
y tð Þ

� �
¼ whxx tð Þ whxy tð Þ

whyx tð Þ whyy tð Þ
� �

−x tð Þ þ x t−Tð Þ
−y tð Þ þ y t−Tð Þ

� �

ð19Þ
wheremt is the modal mass, ξ is the relative damping,ωn is the
angular natural frequency, w is the depth of cut, and T is the

time delay, which equals to the tooth passing period, namely
T = 60/(Nfn), where Nf is the number of teeth and n is the
spindle speed (r/min). hxx(t), hxy(t), hyx(t), and hyy(t) are de-
fined as

hxx ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �

hxy ¼ ∑
j¼1

N f

g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

Ktcos ϕ j tð Þ
� �þ Knsin ϕ j tð Þ

� �� �

hyx ¼ ∑
j¼1

N f

−g ϕ j tð Þ
� �

sin ϕ j tð Þ
� �

Ktsin ϕ j tð Þ
� �

−Kncos ϕ j tð Þ
� �� �

hyy ¼ ∑
j¼1

N f

−g ϕ j tð Þ
� �

cos ϕ j tð Þ
� �

Ktsin ϕ j tð Þ
� �

−Kncos ϕ j tð Þ
� �� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð20Þ

Eq. (20) can be transformed into a state space form:

v˙ tð Þ ¼ A0v tð Þ þ A tð Þv tð Þ−A tð Þv t−Tð Þ ð21Þ

Table 2 Comparison of SLDs from different methods for single DOF milling model
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Table 1 Parameters for stability lobe diagram

fn(Hz) ξ mt(Kg) Kt(N/m
2) Kn(N/m

2) Nf Direction m

922 0.011 0.03993 6 × 108 2 × 108 2 down-milling 40
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Table 3 Comparison of SLDs from different methods for two DOF milling model

m=40 FDM CDSEM The proposed IFDM
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where A0, A(t), and v(t) are exhibited as follows:

A0 ¼
−ξωn 0 1=mt 0
0 −ξωn 0 1=mt

mtωn
2 ξ2−1
� �

0 −ξωn 0
0 mtωn

2 ξ2−1
� �

0 −ξωn

2
664

3
775 A tð Þ ¼

0 0 0 0
0 0 0 0

−whxx tð Þ −whxy tð Þ 0 0
−whyx tð Þ −whyy tð Þ 0 0

2
664

3
775

v tð Þ ¼ x tð Þ; y tð Þ;mtẋ tð Þ þ mtξωnx tð Þ;mtẏ tð Þ þ mtξωny tð Þ½ �T

With all parameters for prediction of stability here
coming from one DOF milling dynamic system, SLDs
attained by IFDM, FDM, and CDSEM at radial immer-
sion ratios ae/D = 0.1 and 0.05 are exposed in Table 3.
There is no doubt that the simulation results from IFDM
are almost same as those from FDM, and CDSEM except
slight differences.

In order to compare the convergence rate of IFDM with
FDM, CDSEM, enable the radial cutting depth ae equal to
the diameter of the cutter D to avoid intermittent milling
process. Besides, set the spindle speed as n= 1 × 104 rpm,
and the axial depths of cut w are chosen as 1 and 0.5 mm,
respectively. Supposing |u| to represent the crucial eigen-
values of the transition matrix Φ, the |u0| from FDM at the
discrete number equal to 500 (m = 500) is regarded as the
exact value. Figure 2 reveals the relation of |u|, |u0|
− |u|and discrete number m. It is no denying that no matter
what radial immersion ratio is, the convergence rate of
IFDM is almost the same as FDM and higher than
CDSEM.

For the sake of estimating the computational efficiency
of 2N algorithm, IFDM with sequential search is named as
C-IFDM. The detailed comparisons in simulation time
among the proposed IFDM, C-IFDM, FDM, and
CDSEM are given in Fig. 3. It is quite clear that under
the same conditions, the computational efficiency of
IFDM is apparently higher than that of FDM and
CDSEM. Taking the discrete number m equal to 40 for
an instance, IFDM can be dropped about 64% computa-
tion time than CDSEM; 70% than FDM in which 2N al-
gorithm contributes nearly 10%. Further investigation on
the computational efficiency of IFDM and C-IFDM indi-
cates that golden search decreases by about 60% calcula-
tion time than sequential search used in FDM.

4 Conclusions

An improved full-discretization method (IFDM) is pre-
sented in this paper to make a chatter stability prediction
for the milling process. So as to avoid the discretization
error caused by numerical difference, the direct integra-
tion scheme is applied to acquire the response of the sys-
tem from the delay dynamic equation at first. In each
small time interval, the integral nonhomogeneous term is
approximated by means of linear interpolation. After uti-
lizing 2N algorithm to dissolving exponential term into a

real matrix, an iteration formula with the complete dis-
crete form is derived. The crucial axial cutting depths in
the range of spindle speeds are sought out by the golden
search rather than tradit ional sequential search.
Comparisons with FDM [13] and complete discretization
scheme with Euler’s method (CDSEM) [19] have been
conducted using two classic benchmark examples. The
simulation results indicate the proposed method can re-
duce about 60–70% computational time.
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