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Abstract
This paper presents the optimization of a dry machining process where thermomechanical effects like shape deviations and
a time-dependent domain are major challenges. First, the simulation model to compute finite element approximations to a
general milling process is presented. The model includes a submodel (dexel model) for material removal and process forces
and heat flux introduced by the machining tool. In a second part, we present a multiobjective optimization algorithm based
on metamodels that serve as a tool to identify the process parameters that improve processes with different performance
measures that exhibit conflicting behavior. With this metamodel-based optimization method, we avoid the use of a large
number of high-fidelity computer simulations, which are commonly computationally expensive. The approach is tested on
two case studies for optimizing (a) workpiece deformation and equivalent stress after milling, and (b) shape error and tool
wear.

Keywords Milling · Multiobjective optimization · Thermomechanics · Adaptive FEM

1 Introduction

For manufacturing businesses to be successful in the
global market, they must strive to deliver high-quality
products at the lowest possible cost. One approach to
select the processing conditions to achieve these goals
is to run experiments on the manufacturing floor. Such
experimentation is usually costly and requires considerable
amount of time and effort, which may not be feasible
during production [6]. Alternatively, advanced computer
simulations can be used to represent the processes. Such
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computer simulations along side with optimization methods
are used to identify the values of the controllable processing
variables that optimize the relevant performance measures
(PMs). In this work, we present an integrated framework
to find optimal process parameters for a milling operation
using a combination of metaheuristic optimization models
and thermomechanical finite element (FEM) simulations.

Milling of metallic components is a machining operation
based on the removal of material using a multi-edged
rotating tool and a relative motion of the tool and the
component that generates the so-called feed of the milling
process, [19, 21]. Commonly, the feed and turning velocities
of the machining process are operated using a computer
numerical control (CNC) system on a NC machining
center. The resulting geometry of the milled component is
determined by the feed trajectory of the machining process
removing a chip of material in each pass of the cutting
insert, [3–5]. The left draw on Fig. 1 illustrates a milling
rotating tool and its main parameters.

It is well-known that the cutting of material chips and the
friction of the cutting tool with the workpiece produces heat.
The right side of Fig. 1 illustrates the thermomechanical
deformation effect of a milled part. In some cases, the
reached temperatures may lead to non-controlled material
deformation and results in undesired shape deviations of the
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Fig. 1 Left: milling rotating tool
and its main parameters
illustrated over the original
geometry of the component.
Right: illustration of
thermomechanical effects on the
component resulting in thermal
expansion and stress

machined product. Hence, there is big interest on generating
simulation tools to better understand the thermal effects
arising during the milling process, as well as to identify the
process parameters that minimize such effects.

In this sense, a thermomechanical simulation in which
the temperature generated is used as input to simulate
the thermal expansion and the corresponding mechanical
deformation of the workpiece is needed [3]. In this work,
we consider adaptive FEM simulations implemented in
ALBERTA [17] that share the coupled thermomechanical
spirit of previous works on heat treatment [20], laser
welding [11], and forming [12].

Joining simulation and optimization for defining the best
possible process parameters is an actual need in current
engineering practice [23, 25, 26]. This often comes together
with the issue of evaluating an optimization functional at
many candidate solutions which request to run a complete
simulation that is computationally expensive [8]. As for
many other real processes, a milling simulation can require
a large amount of computation and, in dependence of the
process complexity, a single simulation evaluation can take
minutes to even days.

For these type of problems, optimization methodologies
are typically based on surrogate models (or metamodels)
which are mathematical models that try to mimic the
behavior of the simulation model based on a limited number
of observations [1, 10, 25]. Metamodels help reduce the
computational effort required to evaluate the performance
measures at different process conditions, as they are faster
to evaluate than the simulation model. Surrogate models
are also convenient for cases when it is only possible
to use experimental data and a single process evaluation
is expensive and time-consuming. Therefore, by utilizing
surrogate models, it is possible to use an optimization
technique that requires the evaluation of the process at a
high number of processing conditions.

Among the most commonly used surrogate models, we
can find are response surface, kriging, radial basis functions
(RBF), and artificial neural networks. Reviews of surrogate
models used in optimization via simulation can be found in
[1, 10, 18, 25].

Li et. al [9] constructed empirical models to estimate the
relationship between tool life, residual stress, and surface

roughness with different milling parameters for titanium
alloys. Later, the empirical models were used to optimize
multiple performance measures using genetic algorithms
(GA). Qu et al. [14] used experimental data to construct
regression models to estimate cutting force and surface
roughness of thin-wall machined plates. Then, they used
the statistical models with a multiobjective GA to identify
the machining parameters that optimize the performance
measures. An extensive literature review of different models
and optimization methods that have been used to improve
milling processes is presented in [15].

In the following sections, the milling process and its
thermomechanical simulation (Section 2), the metamodel-
based optimization method (Section 3), and two case studies
where simulation and optimization are merged to obtain
the set of optimal PMs (Section 4) are presented. Finally,
we present some conclusive remarks and future work in
Section 5.

2 Numerical process simulation

In this work, we use an adaptive FEM simulation for
the milling process considering the combination of a
dexel model and the thermal and mechanical equations
as presented in [3]. The models consist of an extension
of a classical NC-simulation to emulate thermomechanical
effects, and it is subdivided into a model for the workpiece
and a process model (see Fig. 2).

The workpiece model describes the current state of the
workpiece in geometrical and thermomechanical aspects
(Fig. 2 left). A material removal simulation via a dexel
model allows to efficiently represent the change of the
geometrical representation during the process. A FE-model
calculates temperature and linear deformation to represent
the thermomechanical workpiece behavior.

The process model has several calculation steps (Fig. 2, right).
The cutting conditions are calculated from the geometrical
intersection of the tool and the workpiece. With this data,
the cutting force and heat flux are predicted and the
mechanical and thermal loads are calculated. This changes
the boundary shape and the thermal conditions of the
FE-model. The shape deviations generated by the material
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Fig. 2 Detailed information
flow of simulation system

cutting process are predicted based on the calculated tem-
perature and deformation behavior of the workpiece. For
detailed descriptions of these calculations, see [3–5, 13].

Next, we present the simulated milling process and
some FEM simulation results that serve to determine a
reduced geometry. The results on the reduced geometry
are later used to estimate the performance measures of the
workpiece, as will be explained in the optimization part, cf.
Section 3.

2.1 Reference process

The machining of a thin-walled part made of 1.1191 steel
has been chosen as reference process, and it was already
used in different research activities (shown in [4, 5, 13]).
The blank part is a rectangular workpiece with 40 mm
width, 40 mm depth, 195 mm length, and the percentage of
machined material is about 60% (see Fig. 3). The workpiece
is clamped at two sides, with one degree of freedom for

Fig. 3 Simulation of milling
(roughing) at different process
times. Left: temperature, [◦C].
Right: deformation, (mm), using
a scaling factor of 100

a b

c d
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torsion and translation. The component sides are fixed on
a dynamometer in order to measure the clamping effective
forces at every moment of the process.

The milling process is divided in two main parts, a
roughing and a finishing part. Roughing is the removal of
large portions of material out of the workpiece, while the
finishing step is a detailed material removal performed at
the end with only a small cutting width. The machining
strategy is z-level constant, the roughing process is divided
in different steps for every level, and a finishing step of the
thin wall is performed in one cut and with different number
of levels [5].

2.2 Simulation results

The mathematical model implemented for the simulation of
the thermomechanical behavior of the workpiece during the
machining process has been presented in [13]. This model
includes the description of the heat equation and the quasi-
stationary linear elasticity equation on a time-dependent
domain (due to material removal) with boundaries changing
in every time step.

The coupling between the thermal and the mechanical
parts of the system of equations is the thermal expansion
obtained due to the rising temperature values in regions
close to the time-dependent cutting area. This coupled
system is implemented using the adaptive finite element
toolbox ALBERTA [17].

Figures 3 and 4 show the simulation results for
temperature and mechanical deformation at some specific
times. The roughing stage is shown in Fig. 3 and the
finishing in Fig. 4a–b. Additionally, Fig. 4c–d show the
simulated workpiece at the end of the process.

The simulation results have shown to be in accordance
with experimental data for both temperature and deforma-
tion [5]. The thermomechanical implementation has also
been used to simulate more detailed milling processes with
thin-walled workpieces for lightweight structures.

For the process optimization, we will use a derived, but
further simplified model (see Section 4.1).

3Multiobjective optimizationmethod

Real manufacturing problems often involve different PMs that
exhibit conflicting behavior. For example, the processing
conditions that provide the best quality product may not
correspond to the lowest production cost. Such situations are
strongly present in the milling process that was presented
in Section 2. For this reason, we are interested in a
methodology to get improvements of a generalized form of
performance where several criteria can be studied together.

When multiple conflicting PMs are involved, optimizing
a single objective can result in solutions that perform poorly
for other objectives. Thus, it is not the best approach to
obtain a single solution but rather the set of solutions
corresponding to the best compromises. For this, we use the
following definition of Pareto solutions:

Definition 1 For the optimization problem of minimizing
(f1(x), f2(x), . . . , fm(x)), a feasible solution x1 is said to
dominate x2 if: fi(x1) ≤ fi(x2) f or i = 1, . . . , m, and
fi(x1) < fi(x2) for some i ∈ {1, . . . , m}. The non-
dominated solutions are known as Pareto solutions. The set
of Pareto solutions is known as Pareto set (Pset) and the
corresponding output values form the so-called Pareto front
(Pfront).

Given a problem with conflicting PMs, we can focus our
attention on finding the Pareto set, and then a decision-
maker on a particular moment of the process can select the
best solution. This allows for the decision-maker to give
different importance to the PMs at any time, once the set of
non-dominated solutions is known.

In this work, we use an adapted version of the
metamodel-based multiobjective simulation optimization

Fig. 4 Simulation of milling
during finishing and at the
process’ end. Left: temperature,
[◦C]. Right: deformation, (mm),
using a scaling factor of 100

a b

c d
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Fig. 5 Multiobjective optimization method flow diagram

method introduced in [22] to optimize two case studies for
a milling process.

The method is schematically shown in Fig. 5 and starts
by performing an experimental design to collect a set of
initial data points, and a simulation run is performed at
each point. Then, the set of best compromises between all
performance measures is found using definition 1, and it is
called incumbent Pareto front. Using this, the main iteration
steps are the following:

1. Use all available simulated data to fit a metamodel for
each PM.

2. Use the metamodels to estimate the value of the PMs
for a large uniform set of input combinations.

3. Identify the best compromises between all PMs. Call
the corresponding Pareto front, predicted Pareto front.

The corresponding controllable variables settings are
the predicted Pareto set (P̃set).

4. Evaluate the simulation code at predicted Pareto set.
5. Update the incumbent Pareto front (based only on

simulated data) using the newly simulated runs and the
previous incumbent Pareto front.

6. Evaluate stopping criteria.

It is important to mention that at step 4, if the number
of solutions on the predicted Pareto set results to be
larger than the remaining number of total simulation runs
allowed (N left

sim), or it is larger than the maximum number
of simulations allowed per iteration (Nmax

sim ), a subset of
min{N left

sim, Nmax
sim } solutions is selected based on a maximin

distance criterion using the predicted Pareto front.
At each iteration, a series of stopping criteria are

evaluated and if at least one is met, the method stops and
reports the incumbent Pareto solutions, otherwise, the newly
simulated points are added to the existing simulated set of
points and a new iteration begins. The stopping criteria we
used in this implementation are as follows:

– Stop if the total number of simulation (N total
sim ) allowed

is reached
– Stop if the coefficient of determination R2 of all models

is larger than 1 − ε

– Stop if no new Pareto solutions are found

Using these iterative steps, at each iteration each
metamodel is updated utilizing all available simulated data
and are used to approximate a new Pareto set. The updated
models are able to predict good approximations of the
output responses near the Pareto front.

In [22], it has been shown that this multiobjective
optimization method is able to approximate a set of Pareto
solutions without having to evaluate a large number of
simulations. 15q has been shown to be a good upper limit
for the total number of simulations (N total

sim ), where q =
max{m, n}, m number of PMs and n number of controllable
process variables. For the second stopping criterion we used
a value of ε = 0.01.

Jin et al. [7] compared several sequential sampling tech-
niques for metamodeling based single objective optimiza-
tion. They suggest to use a total number of runs of at least
12n (if n < 6) or 9n (if n ≥ 6). In this work, we used a
larger value, 15q, since the method is intended for multiob-
jective optimization and the same sampled points are used
to fit several independent models (one per PM). In [7], it is
also recommended to sample 4n (if n < 6) or 3n if n ≥ 6
points, at each iteration. Here, the number of points that are
sample at each iteration correspond to the number of solu-
tions on the predicted Pareto front (step 3 of main iteration).
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However, since this number is commonly large, we usually
restrict it to a value of 5q when q < 4 and 3q if q ≥ 4. This
value corresponds to Nmax

sim .
In [24], this method was used to solve two different

cases of an injection molding process. The results were
compared with an approach based on Gaussian process
metamodels, and it was shown that both methods perform
comparably.

4 Case studies for the optimization of milling
process

In machining operations, the produced heat results in
thermomechanical distortion of the workpiece and thereby
in incorrect material removal by the cutting tool. Especially,
in machining thin-walled parts for lightweight structures,
an additional finishing step is needed as post-process if
the resulting shape deviations are larger than a tolerance.
In this context, in many cases, the aim for mathematical
optimization of a milling process is to minimize the
resulting distortion in the produced workpiece, [16]. In
addition, tool wearing has a negative effect on surface
quality and will also bring additional costs and time for the
replacing or reconditioning of the cutting tool. Therefore,
minimizing tool wear is also important from the economic
standpoint and is why we consider it as one of our process’
PMs.

In this Section, we present two optimization case studies
of a milling process, each of them with two process’ PMs
simultaneously.

4.1 Simulation setting for optimization

In order to maintain affordable computational costs for the
numerical simulation, we reduced the analyzed workpiece
from Section 2.1 to a subdomain of the complete geometry
defined as a slice located in the longitudinal center of the
workpiece with length 5 mm, as illustrated in Fig. 6. The
slice starts being a full block of size 50 × 50 × 5 mm3

and ends as an L-shaped geometry after the milling process

is performed, with a bottom height of 5 mm and side
width of 3 mm. Within this small domain, we want to
find the optimal process parameters to obtain the smallest
deformation, stress, and tool wear.

An important part of the simulation process consists
on the generation of an adaptively constructed mesh to
represent the time-dependent domain of material. At the
beginning of the simulation, the mesh only needs to recreate
the blank and consists of only few elements, while during
the cutting process, the mesh elements are refined and
coarsened in dependence of the location of the cutting
line and a posteriori error indicators based on residuals
of the heat equation. This strategy has been numerically
implemented with a time-dependent discrete domain which
is based on the treatment of elements to be declared as
inactive when they represent material which has already
been removed during the milling.

All processes start using the same mesh with 242 degrees
of freedom (DOFs), 600 active tetrahedral elements inside
the computational domain and zero non-active elements
outside the workpiece. During the process, the number of
DOFs and elements increase by the adaptive approximation
of the geometry in average up to 22000 DOFs, with 95800
non-active elements outside, and 17800 active elements
inside the final workpiece.

The use of different milling parameters generate different
computational meshes. Additionally, the computational
costs vary due to the different number of time steps
to be computed (for slower or faster cuts). The process
simulations are running on a workstation with four CPUs
(Intel i7-3770, 3.4 GHz) by using one CPU for the finite
element simulation and one CPU for the material removal.
The typical runtime for a single simulation varies between
20 min and 2 h.

4.2 Case study 1: deformation and stress

The optimization on this case study has two PMs
and two process controllable variables. The considered
optimization goals are minimize deformation (u) and
minimize equivalent stress (σvM ). As process controllable

Fig. 6 Model process for
optimization, L-shaped domain
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Table 1 Fixed process parameter values for case study 1

Variable Value

Radial depth of cut ae = 20 [mm]

Number of teeth z = 4 [-]

Feed rate per tooth fz = 0.20 [mm/tooth]

Cutter diameter D = 40 [mm]

Average chip thickness hm = 0.20 [mm]

variables, we considered cutting velocity (vc) and axial
cutting depth (ap). The ranges used for the controllable
variables correspond to realistic process values and are
taken as (100 m/min, 300 m/min] and [5 mm, 30 mm] for vc

and ap, respectively.
The rest of the process variables are considered as

fixed according to the values in Table 1. Other typically
considered milling variables like spindle speed, feed speed,
and feed per revolution can be calculated using cutting
velocity vc and the values in Table 1.

Deformation, u, is measured as the average of the
Euclidean norm at three given points on the outer side of the
thin wall near the inner corner of the final workpiece and the
stress is measured as the volume averaged von Mises stress
σvM inside a cylinder with radius 1 mm around the inner
corner point of the final workpiece.

For the multiobjective optimization algorithm, we used
the following parameters: as suggested in [22], the
maximum number of evaluations allowed was set to
N total

sim = 15 × 2 = 30, the maximum number of runs per
iteration was set as Nmax

sim = 5 × 2 = 10, and the lower
bound for R2 was set at 99% (ε = 0.01).

The optimization procedure is as follows:
Initialization

1. Run initial experimental design
The first step of the method is to design and run an
experiment to get an initial sample of data points: as
suggested in [24], a central composite design is used.
The values of the controllable variables and correspond-
ing PMs are shown on Table 2. Figures 7 and 8 show in
black dots (1 to 9) the controllable variables and PMs
values, respectively.

2. Find incumbent Pareto front
After all data has been collected, the incumbent Pareto
front is identified. The incumbent Pareto solutions,
from the initial points, is solution 8 (see Fig. 8).

Main iteration, k = 1

1. Form a surrogate model per performance measure
A surrogate model is fitted for each PM using all
available experimental data. The fitted models used
here are multiple linear regression (MLR) models with
one degree of freedom, this is N − 1 (N , number of

Table 2 Case study 1: results of initial experimental design

Run vc (m/min) ap (mm) σvM (MPa) ‖u‖2 (mm) Proc. time (min)

1 100.00 17.50 477.29 0.07094 4.97

2 129.29 8.66 562.30 0.11016 7.13

3 129.29 26.34 346.23 0.03568 2.75

4 200.00 5.00 300.25 0.10849 6.73

5 200.00 17.50 296.99 0.03339 2.48

6 200.00 30.00 249.59 0.02521 1.80

7 270.71 8.66 353.52 0.04596 3.41

8 270.71 26.34 215.12 0.02280 1.32

9 300.00 17.50 219.31 0.02428 1.66

data points used to fit the model) regression coefficients
are estimated. The coefficients of determination R2 of
the surrogate models are R2

1 = 0.9395 (stress) and
R2

2 = 0.9974 (deformation).
2. Evaluate surrogate models at a uniform grid of input

combinations
The surrogate models were evaluated at a uniform grid
of 10,251 input combinations. The grid of points was
constructed as follows: 201 equally spaced levels for cutting
velocity (one at each m/min) and 51 levels for axial
depth (one at each half millimeter). These levels were
selected to acquire a practical difference between sim-
ulations. Figure 9 shows the evaluation of the models,
where f̂1 estimates (interpolates) stress and f̂2 defor-
mation. The optimization method is implemented in

Fig. 7 Case study 1: controllable process variables values of
initial experiment (dots, {1, 2, . . . , 9}) and iteration k = 1 (stars,
{10, 11, . . . , 19})
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Fig. 8 Case study 1: PMs values of initial experiment (dots,
{1, 2, . . . , 9}) and iteration k = 1 (stars, {10, 11, . . . , 19}). Note the
zoomed area on the plot shows all of the points for the iteration k = 1
as well as two initial points

Matlab and ran in a PC with a 3.6 GHz Intel Core i7
processor and 16 GB 1600 MHz DDR3 of memory.
Performing step 1 and 2 takes about 0.15 s, so if we
compared it with the time it will take to run 10251 sim-
ulations, metamodels are an efficient way to represent
simulation codes on simulation optimization algorithm.

3. Find approximated Pareto set and front
Now, the Pareto front of the predicted solutions is
found. The predicted Pareto front has 118 solutions.
However, since the maximum number of simulations
allowed per iteration Nmax

sim = 10, 10 solutions were
selected using a max-min distance criteria algorithm
with 1000 iterations. This is, 1000 subsets of 10 points
were randomly selected out of the 118 points and the
set which minimum distance between two points is the
maximal was selected. The solutions shown as red stars
on Fig. 9 are the 10 selected predicted Pareto solutions.

4. Evaluate selected predicted Pareto solutions
Table 3 shows the input and output values of the 10

Fig. 9 Case study 1: predictions of metamodels and selected predicted
Pareto aolutions (red stars)

new runs. Figures 7 and 8 show the same results as red
stars (labeled as points 10 to 19). The simulations were
carried out using the same fixed parameters as the initial
runs (see Table 1).

5. Update incumbent pareto front
The Incumbent pareto front is updated comparing the
initial incumbent Pareto front (solution 8) and the 10
new additional runs. The new Pareto solutions are 12,
14, 15, and 18.

6. Evaluate stopping criteria
Next, the stopping criteria are evaluated. The criteria
used here are (1) stop if the maximum number of
simulations allowed was reached (no, 19 < 30), (2)
stop if R2 of all models is larger than 1 − ε = 0.99
(no, R2

1 = 0.9395 and R2
2 = 0.9974), and (3) stop if

no new Pareto solutions were found (no, new solutions

Table 3 Case study 1: evaluation of selected predicted Pareto
solutions, iteration k = 1

Run vc (m/min) ap (mm) σvM (MPa) ‖u‖2 (mm)

10 281.00 23.50 207.35 0.02214
11 235.00 24.00 221.27 0.02363
12 264.00 24.00 212.13 0.02177
13 286.00 24.00 203.56 0.02233
14 293.00 24.50 199.60 0.02188
15 295.00 25.00 208.83 0.02186
16 298.00 26.00 201.57 0.02316
17 300.00 27.00 205.51 0.02271
18 300.00 28.00 203.35 0.02187
19 299.00 30.00 201.92 0.02362
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Table 4 Case study 1: final Pareto solutions

Run vc (m/min) ap (mm) σvM (MPa) ‖u‖2 (mm)

12 264.00 24.00 212.13 0.02177

14 293.00 24.50 199.60 0.02188

15 295.00 25.00 208.83 0.02186

18 300.00 28.00 203.35 0.02187

were found). Since none of the stopping criteria were
met, a new (main) iteration is needed.

Main iteration, k = 2
On the second iteration, new metamodels were fitted

using all available data (19 simulations). The R2 of the new
models are R2

1 = 0.9997 and R2
2 = 0.9999. Later, the

models were used to predict a new Pareto front which only
has one new solution, x20 = (100, 30). Then, a simulation
run was performed at x20 and the corresponding outputs are
f20 = (394.08, 0.04842). Afterwards, the incumbent Pareto
front was updated but did not change. Then, the stopping
criteria were evaluated and since the R2 of both models are
larger than 0.99 the method stopped and the final Pareto
solutions are reported.

Report final incumbent solutions The final Pareto solutions
are shown on Table 4. From this table, it can be noticed
that the solutions have similar axial depth as well as
deformation. However, solution 12 requires a slower cutting
velocity than the other 3 solutions. In a practical application,
extra information is given by the decision-maker and is in
this form that we are able to select one Pareto solution and
dismiss the others.

4.3 Case study 2: workpiece shape error and tool
wear

To further investigate the optimization of the milling
process, we now consider workpiece shape error (δx) and
tool wear as performance measures. In this case study, the
shape error and a tool wear indicator were calculated as
described in the forthcoming subsections.

4.3.1 Shape error

The stress and deformation of the workpiece during the
milling process, used in the first case study, are data

Table 5 Fixed process parameter values for case study 2

Variable Value

Radial depth of cut ae = 30 (mm)

Cutter diameter D = 50 (mm)

Fig. 10 Linear axis displacement and corresponding cutting edge for
a bended geometry

which give information about possible incorrect material
removal by the tool engagement and can be computed by
the thermomechanical FEM simulation. The actual shape
of the workpiece after the process is not directly given
via the FEM, but by the dexel model which computes
the engagement of the tool with the current workpiece
geometry. Thus, an analysis of the final dexel fields and
comparison with the desired dexel lengths for the correct
shape can be used as a direct measure of the shape error
(deformation).

In our simplified reference process, the main shape error
occurs at the vertical wall, which is fixed only at the bottom
and can deform freely otherwise. Thus, an examination
of the dexel field with horizontal dexels in x direction,
which gives the local thickness of the wall, is sufficient for
detection of the main shape error.

As we can assume the existence of a tolerance
for the maximal shape error to determine the validity
of a workpiece, we choose the maximal deviation of
dexel lengths ‖δx‖ as a measure to be minimized. Let
L(dij) denote the length of dexel dij, and Ld(i, j) the
corresponding desired length. Then, we define our shape
error measure by

‖δx‖ := max
i,j

|L(dij) − Ld(i, j)|. (1)

Table 6 Process controllable variables with experimental ranges for
case study 2

Variable Value range

Cutting velocity (vc) 100–300 (m/min)

Axial cutting depth (ap) 5–20 (mm)

Tool angle (α) −2 × 10−4 - 0 (-)

Tool displacement (β) 0–0.01 (mm)
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For the process considered here, the desired length for the
dexel dij in the L-shaped geometry illustrated in Fig. 6 at
position (yi, zj ) is given by

Ld(i, j) =
{

3 if zj > 5,

50 if zj ≤ 5.

4.3.2 Tool wear

In [2], Caldeirani-Filho and Diniz investigated the effect of
cutting conditions on tool life, tool wear, and surface quality.
Tool life (Lf ) was characterized by machined length in
feed direction until a flank wear of VBmax = 0.7 mm
was reached. The corresponding units for tool life are in
millimeters. They showed that tool life depends mainly on
the cutting speed and presented experimental results for the
processes they consider. The results (in [2], Figure 5) show
an inverse linear behavior of tool life versus cutting velocity
(vc) as

Lf ≈ 7 · 105

vc − 160
(mm).

Even without tool-life measurements available, Lf should
decreases when vc increases, as motivated in [2]. This
inspired us to consider a similar formula for our process,
namely

Lf = A

vc − B
, (2)

with B chosen such that it is well below the considered range
of cutting speeds.

For our process, we want to use a measure of tool-life
proportional to the maximal number of workpieces which
can be produced before the wear is above tolerance. Thus,
the lifetime in machined length is divided by the total cut
length for a single workpiece.

While the length of a single cut Lcut is given by the
workpiece geometry, the number of cuts ncuts per workpiece
needed to remove all material is given via the horizontal and
vertical feeds, ae and ap. For our reference geometry with
a removed pocket of width W and height H , the number
of cuts for roughing is given by �H/ap	 · �W/ae	 and
the number of finishing cuts is �H/ap	 + �W/ae	 − 1.

Table 7 Case study 2: results
of initial experimental design.
A star in the first column
indicates initial Pareto solutions

Run vc (m/min) ap (mm) α (-) β (mm) ‖δx‖ (mm) TWR (-)

1 150 8.75 − 1.5 × 10−4 2.5 × 10−3 0.01502 0.00342

2 150 8.75 − 1.5 × 10−4 7.5 × 10−3 0.01867 0.00342

3 150 8.75 − 5.0 × 10−5 2.5 × 10−3 0.01419 0.00342

4 150 8.75 − 5.0 × 10−5 7.5 × 10−3 0.01918 0.00342

5 150 16.25 − 1.5 × 10−4 2.5 × 10−3 0.00906 0.00180

6 150 16.25 − 1.5 × 10−4 7.5 × 10−3 0.01262 0.00180

7∗ 150 16.25 − 5.0 × 10−5 2.5 × 10−3 0.00816 0.00180

8 150 16.25 − 5.0 × 10−5 7.5 × 10−3 0.01328 0.00180

9 250 8.75 − 1.5 × 10−4 2.5 × 10−3 0.00992 0.00722

10 250 8.75 − 1.5 × 10−4 7.5 × 10−3 0.01864 0.00722

11 250 8.75 − 5.0 × 10−5 2.5 × 10−3 0.00895 0.00722

12 250 8.75 − 5.0 × 10−5 7.5 × 10−3 0.01393 0.00722

13 250 16.25 − 1.5 × 10−4 2.5 × 10−3 0.00787 0.00380

14 250 16.25 − 1.5 × 10−4 7.5 × 10−3 0.00673 0.00380

15∗ 250 16.25 −5.0 × 10−5 2.5 × 10−3 0.00527 0.00380

16 250 16.25 − 5.0 × 10−5 7.5 × 10−3 0.01027 0.00380

17∗ 100 12.50 − 1.0 × 10−4 5.0 × 10−3 0.01681 0.00104

18 300 12.50 − 1.0 × 10−4 5.0 × 10−3 0.00807 0.00624

19 200 5.00 − 1.0 × 10−4 5.0 × 10−3 0.01742 0.00784

20 200 20.00 − 1.0 × 10−4 5.0 × 10−3 0.00846 0.00280

21 200 12.50 − 2.0 × 10−4 5.0 × 10−3 0.00934 0.00364

22 200 12.50 0.0 × 100 5.0 × 10−3 0.01081 0.00364

23 200 12.50 − 1.0 × 10−4 0.0 × 100 0.00911 0.00364

24 200 12.50 − 1.0 × 10−4 10 × 10−3 0.01480 0.00364

25 200 12.50 − 1.0 × 10−4 5.0 × 10−3 0.00980 0.00364
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Fig. 11 Case study 2: 2D
projections of evaluated
controllable process variables.
Initial design (black dots) and
extra runs (red stars)

Thus, we choose a dimensionless measure for tool wear
rate per workpiece (TWR) as the inverse of the number of
producible workpieces,

TWR= ncutsLcut

Lf

= vc − B

Ã

(⌈
H

ap

⌉
·
(⌈

W

ae

⌉
+1

)
+

⌈
W

ae

⌉
−1

)
.

(3)

For the process considered here, we have

H = 45 (mm), W = 47 (mm)

and choose

Ã = 5 · 105 (m/min), B = 60 (m/min).

4.3.3 Process controllable variables

Four process controllable variables were considered in this
case: cutting velocity (vc), axial cutting depth (ap), tool
angle (α), and tool displacement (β). Fixed parameters
which differ from case study 1 are listed in Table 5, and the
rest are as in Table 1.

The thermomechanical deformation during the process
can be compensated by a variation of the tool path. For

a three dimensional workpiece, there are typically quite
complex tool paths and corresponding possibilities for path
variations. For our simplified reference workpiece, a simple
class of tool path variations is given by a linear displacement
ad(z) of the axis in x direction, which is used (only) for the

Fig. 12 Case study 2: performance measure values of evaluated runs.
Initial design (black dots) and extra runs (red stars)
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Table 8 Case study 2:
evaluation of selected predicted
Pareto solutions. Iterations are
divided by horizontal lines.
Iteration 1: solution 26,
Iteration 2: 27 to 32, iteration
3: 33 to 38, iteration 4: 39 to 44

Run vc (m/min) ap (mm) α (-) β (mm) ‖δx‖ (mm) TWR [-]

26 100 20.00 0.00 × 100 0.0 × 100 0.01167 0.00080

27 104 20.00 − 1.20 × 10−5 0.0 × 100 0.01139 0.00088

28 155 20.00 − 8.00 × 10−6 0.0 × 100 0.00838 0.00190

29 125 20.00 − 4.00 × 10−6 0.0 × 100 0.00995 0.00130

30 179 20.00 0.00 × 100 0.0 × 100 0.00753 0.00238

31 205 20.00 0.00 × 100 0.0 × 100 0.00642 0.00290

32 279 19.70 − 2.00 × 10−4 8.5 × 10−3 0.00983 0.00438

33 300 9.50 − 1.16 × 10−4 0.0 × 100 0.00915 0.00768

34 100 15.20 − 2.00 × 10−4 4.0 × 10−3 0.01294 0.00080

35 155 20.00 0.00 × 100 9.5 × 10−3 0.01521 0.00190

36 165 20.00 0.00 × 100 10 × 10−3 0.01549 0.00210

37 174 20.00 0.00 × 100 10 × 10−3 0.01461 0.00228

38 190 20.00 0.00 × 100 10 × 10−3 0.01462 0.00260

39 279 13.40 − 2.00 × 10−4 0.0 × 100 0.01296 0.00569

40 290 13.40 − 2.00 × 10−4 0.0 × 100 0.01303 0.00598

41 300 13.40 − 2.00 × 10−4 0.0 × 100 0.01289 0.00624

42 274 15.20 − 2.00 × 10−4 0.0 × 100 0.01343 0.00428

43 294 15.20 − 2.00 × 10−4 0.0 × 100 0.01367 0.00468

44 120 20.00 − 1.12 × 10−4 10 × 10−3 0.01693 0.00120

finishing cuts at the vertical wall. We consider here the same
variation for the whole finishing process at the wall,

ad(z) = αz + β,

which moves the originally vertical tool axis at x∗ to
a shifted and inclined axis at x∗ + ad(z). This results
in a corresponding displacement of the cutting edge, see
Fig. 10. This gives two scalar control variables, α (in
first approximation, for small values, this is the tool-axis
inclination angle) and β (the horizontal tool displacement).

Connecting both variables α and β, the slope of the
applied cutting tool is modified. Considering negative
values for α mean that the tool will consider the outward
tilting of the vertical wall and will compensate this.
Additionally, the tool might also be shifted towards or
outwards from the L-shaped geometry.

The process controllable variables and the experimental
ranges considered are given in Table 6. The rest of the
process variables are considered as fixed and the values
differing from Table 1 are listed in Table 5.

4.3.4 Optimization results

As in case study 1, the optimization was conducted following
the flow chart in Fig. 5. The optimization parameters used
here are: maximum number of simulations N total

sim = 60;
maximum number of simulations per iteration Nmax

sim = 6;
and the lower bound for R2 was set at 99% (ε = 0.01).

The initial design of experiments is a central composite
design with 25 runs. Table 7 shows the values of the CVs
and the corresponding PMs evaluations. The CVs and PMs
values are also shown graphically on Figs. 11 and 12 as black
dots. The initial Pareto solutions are solutions 7, 15, and 17.

Table 9 Case study 2: final
Pareto solutions Simulation vc (m/min) ap (mm) α (-) β (mm) ‖δx‖ (mm) TWR (-)

15 250 16.25 − 5.0 × 10−5 2.5 × 10−3 0.00527 0.00380

31 205 20.00 0.0 × 100 0.0 × 100 0.00642 0.00290

30 179 20.00 0.0 × 100 0.0 × 100 0.00753 0.00238

7 150 16.25 − 5.0 × 10−5 2.5 × 10−3 0.00816 0.00180

29 125 20.00 − 4.0 × 10−6 0.0 × 100 0.00995 0.00130

27 104 20.00 − 1.2 × 10−5 0.0 × 100 0.01139 0.00088

26 100 20.00 0.0 × 100 0.0 × 100 0.01167 0.00080
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Fig. 13 Case study 2: 2D
projections of final Pareto set

After the initial data is collected, a MLR model was fitted
to estimate workpiece shape error and tool wear rate was
calculated using Eq. 3.

The R2 of the metamodel for shape error is 0.9852.
Then, the performance measures values of 10,978,821
(201 × 51 × 51 × 21) solutions were estimated and the
predicted Pareto Front identified. The predicted Pareto front
at iteration k = 1 has 1 solution x26 = (100, 30, 0, 0). Then,
a simulation run was performed and the corresponding
outputs are f26 = (0.01167, 0.00080). The incumbent
Pareto front is then updated and the new Pareto solutions are
7, 15, and 26. Since, none of the stopping criteria are met a
new iteration began.

A total of 4 iterations and 44 simulation runs were
performed until the method stopped. Table 8 shows the
results of the 19 additional runs. Solution 26 is for iteration
1, 27 to 32 for iteration 2, 33 to 38 from iteration 3 and 39
to 44 for iteration 4. The methods stopped because the R2

of the metamodels were grater that the lower limit.
The final Pareto solutions are reported on Table 9. They

correspond to simulation run 7, 15, 26, 27, 29, 30, and 31.
The final Pareto set and front are shown graphically on
Figs. 13 and 14.

4.3.5 Optimization results interpretation

From the data in the Pareto set (Fig. 13), 4 clusters of
solutions can be observed:

– Cluster 1: simulations 26, 27, and 29, corresponds
to low values of tool wear rate, in which case it is
necessary to set the process at a low cutting velocity,
high axial depth, large tool angle, and none tool
displacement.

– Cluster 2: simulation 15, corresponds to a workpiece
with low shape error. In this case, it is recommended to
use a hight cutting velocity, low axial depth, large tool
angel, and low tool displacement.

– Cluster 3: simulation 7, consisting of a compromise
between both optimization goals, tending to sightly
prefer small shape error over low tool wear rate.

– Cluster 4: simulations 30 and 31, being also a
compromise but tending to give similar importance to
both optimization goals.

As mentioned before, the information described in the
clusters is intended to serve as guide for manufacturing
engineers in charge of setting the process parameters, and
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Fig. 14 Case study 2: final Pareto front

depending on the relevance of each performance measure at
a particular time in the production process they can select a
specific solution.

5 Conclusion

In summary, we presented the thermomechanic problem on
a milling process and used a sequential surrogate based
multiobjective simulation optimization method to solve
two case studies of a machining process on 1.1191 steel.
The goal was to find the controllable process variables
that optimize two performance measures simultaneously. In
general, the method was able to approximate a Pareto front
in a modest number of evaluations, which is critical for the
cases of interest where a single simulation or experimental
run can be costly and time-consuming.

Especially, for the second case study, we managed to
solve a fourth dimensional variable space with only 44
computational simulations and were able to find several
clusters of Pareto-optimal solutions from which a decision-
maker can pick the most suitable solution for the specific
needs at any production time.

The optimization of process parameters on the reduced
L-shaped workpiece geometry is meant and presented
as a case study for the applicability and potential use
of simulation-based optimization methods. For scenarios
where the results could be verified by a comparison with
experiments, more complex geometries (with more precise
boundary conditions) would have to be considered, which

typically need much larger computing resources for each
simulation. The accuracy of the simulation method was
already verified for the (still quite simple) workpiece
presented in Section 2.2, results of the simulation compare
very well with experimental data for sets of process
parameters considered in [5].

As future work, we aim to apply the optimization
method to thermomechanical case studies with more
than 2 PMs. Also, we will investigate how to asses
process variability either by using simulation models
and/or physical experimentation and we will introduce a
multiobjective optimization method based on stochastic
surrogate models. In addition, possible improvements of
the simulated model like models considering non-linear
elasticity or plastic effects using temperature dependent
material properties will be explored. Furthermore, more
complex sets of parameters will be consider in the optimize.
For example, tool axis displacements could be considered
not only in one position but along the whole tool path.
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