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Abstract
The purpose of this research is to develop a computer-driven decision support system (DSS) to select optimal additive
manufacturing (AM) machines for metal powder bed fusion (PBF) applications. The tool permits to evaluate productivity factors
(i.e., cost and production time) for any given geometry. At the same time, the trade-off between feature resolution and produc-
tivity analysis is visualized and a sensitivity analysis is performed to evaluate future cost developments. This research encom-
passes a decision support system that includes a data structure and an algorithm which is coded in “MathWorks Matlab,”
considering cost structures for metal-based AM (i.e., machine cost, material cost, and labor cost). Results of this research
demonstrate that feature resolution has a crucial effect on the total cost per part, but displays decreasing impacts for higher build
volume rates. Based on assumptions of business consultancies, productivity can be increased, resulting in a potential decline of
cost per part of up to 55% until 2025. Using this DSS tool, it is possible to evaluate the most optimal AM production systems by
selecting between several input parameters. The algorithm allows industry practitioners to retrieve information and assist in
decision-making processes, including cost per part, total cost comparison, and build time evaluations for typical commercial
metal PBF systems.

Keywords Additive manufacturing . Powder bed fusion . Metals, decision support system . Feature resolution . Future cost
evaluations

1 Introduction

Additive manufacturing (AM) and metal powder bed fusion
(PBF) have become a serious competitor to conventional
manufacturing processes [1]. Currently, the growth of this
technology segment is supported by the fact that key original
equipment manufacturers in the aerospace, automotive, and
medical industries are integrating metal AM systems based
on PBF technology to their manufacturing processes [2].
The technology offers many advantages, especially as it en-
ables the manufacture of geometrically complex components
in low- to mid-volume production [3]. Factors such as elimi-
nation of tooling reduce the up-front cost compared to

conventional manufacturing methods [4]. To some extent,
AM technologies have become enablers towards the digitized
manufacturing as the technology is able to solve the “scale-
scope dilemma.” Hence, product variety and, therefore, mass
customization can become feasible without cost penalties [5].

However, the implementation of AM into industry is chal-
lenged by cost and production speed parameters [6]. In prac-
tice, companies today have two options when evaluating AM
for production applications. On the one hand, they aim at
replacement or repair of components for their legacy systems.
On the other hand, companies also want to benefit from newly
designedAMparts for improved functional performance (e.g.,
part consolidation, topology optimization, decreased weight,
etc.) [7]. Both applications encounter challenges with technol-
ogy transfer decisions as the transition to AM has to be eco-
nomically and technically substantiated.

Lately, attempts have been made to develop a DSS to sup-
port AM technology adaption. Literature has provided a ho-
listic tool that can be used to select from multiple AM pro-
cesses, machines, materials, and its final application type (e.g.,
rapid prototyping, rapid manufacturing, and rapid tooling) [8].
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Other studies have focused on developing web-based AM
platforms, which allow to evaluate several technologies, col-
laborative manufacturers, and queuing of AM batches.
However, the research on DSS for AM is highly fragmented
with a need to link the existing body of knowledge to real and
concrete industrial applications [9, 10].

In addition, metal PBF processes need to be validated to
provide precise key performance indicators for technology
transfer. The existing DSS designed for AM focuses on spe-
cialized plastic-based evaluation models [11], while metal-
based PBF processes are rarely included. Due to the rapid
development of PBF machines and the steps towards final
industrial applications (e.g., four lasers up to 700 W, each
operating simultaneously [12]), research needs to be conduct-
ed on productivity issues to assist their decision-making. The
development of such DSS will be beneficial especially for
companies that are considering to invest in metal-based AM
machines.

Based on literature, the productivity of PBF has not been
examined by implementing a quantitative model on a de-
signed DSS focusing exclusively on metal PBF applications
[13]. Therefore, this work can elucidate how companies and
decision-makers can evaluate final production applications
utilizing modern metal-based PBF machines from economical
and technical perspectives. It presents the most relevant per-
formance indicators to support the evaluation of PBF ma-
chines. Moreover, the existing trade-off between part quality
and build volume rates and a predictive view on future events
is outlined by investigating the impact of cost reductions for
materials and machines.

2 Materials and methods

2.1 Classification scheme

The development of a DSS for metal-based AM components
requires a classification scheme to describe the inner function-
al structure as well as interaction with the user. By applying
the numerical computing software Matlab (version R2016b,
Mathworks Natick, Massachusetts), a classification scheme is
established which demands input parameters from the user.
Figure 1 shows a schematic view of the DSS data structure.
The first step is to upload the geometrical data of the part to be
produced. For this reason, a STL (Standard Tessellation
Language) file (i.e., an industry de facto standard file format
for 3D representation which is native to most commercial AM
systems) needs to be uploaded.

In the proposed system, the user can select or input relevant
information. For predefined input values, the user is able to
select from a series of common commercial machines and
materials in a drop-down menu. In addition to this, different
accuracy levels, production volumes, and densities of support

structures can be selected. The DSS also accepts manual user
parameters which allow more flexible evaluations and the
possibility to forecast events such as a decrease in machine
and material cost or an increase in production speed.
Subsequently, the selected input parameters are examined in
terms of feasibility regarding part dimensions and build sizes
of selected AM machines. If the feasibility analysis is passed
successfully, the algorithm proceeds to evaluate the PBF pro-
cess economically and technically in terms of costs per part,
cost type (divided into machine cost, material cost, and labor
cost), production time (i.e., total production time function),
number per batch, and ratio of support material.

2.2 Scheme for the input parameters

Figure 2 shows the graphical user interface of the DSS. As
presented in the classification scheme, the user can either se-
lect predefined machines, materials, and accuracy levels (cen-
ter left) or input the data manually (center right).
Subsequently, the user can upload the part geometry by press-
ing the button STL file import. Imported data are then used to
analyze part dimensions (i.e., x, y, and z dimensions of its
bounding box) to calculate the number of parts fitting onto a
specific build platform. The part volume is used to calculate
process time and material cost, and the surface to improve
build volume rate estimations. If the input data do not fulfill
the machine criteria (e.g., part volume is too big for the select-
ed machine), a failure code requests a change in the input data
to start the simulation.

As an output, the DSS describes four process parameters
(cost per part [€], the part process time [min], the number per
batch [−], and the percentage of support [%]) and four figures
(cost per part function, cost type, total time function, and a
preview of the component). The current machine database
supports the comparison between nine commercial AM ma-
chines. Out of these, eight are based on laser beam technology
(Concept Laser “M2 cusing,” Concept Laser “X LINE 1000
R,” EOS “EOSINT M 280,” EOS “EOSINT M 400,” SLM
Solutions “280 HL,” SLM Solutions “500 HL,” 3D System
“ProX DMP 100,” and the 3D System “ProX DMP 300”) and
one on electron beam technology (Arcam “Q10”). Each ma-
chine comprises specific maximum beam power levels (rang-
ing from 50 to 3000 W), a wide machine price range between
226.000 € and 1.500.000 €, a varying number of processed
materials, and inherent build volumes ranging from 800 cm3

for the smallest and up to 120.000 cm3 for the largest machine
[14]. Regarding the material options, the DSS supports the
selection of maraging steel, aluminum alloy, and titanium al-
loys (maraging steel DIN 1.2709, AlSi10Mg, and TiAl6V4
respectively). The implemented material prices amount to 89
€ per kilogram for maraging steel DIN 1.2709 (density of
7.7 g/cm3), 107 € per kg for aluminum alloys AlSi10Mg (den-
sity of 2.68 g/cm3), and 400 € per kilogram for titanium alloys
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TiAl6V4 (density of 4.45 g/cm3), which are the underlying
average values of the investigated price ranges [1, 15].
Furthermore, the material and machine databases can be
reconfigured using the manual input to make projections for
variables such as modified material costs, machine costs as
well as build volume rates for each material.

The user can also select between three accuracy levels (i.e.,
normal, high, and skin-core) which have a direct impact on
productivity. The normal accuracy mode enables higher build
volume rates with a trade-off on part quality and geometrical

features such as lower surface quality, feature resolution, and
dimensional accuracy. In the normal accuracy mode, the DSS
simulates the manufacturing process with beam powers oper-
ating at machines’ full capacity. Therefore, by selecting this
option, the user can maximize build volume rates at the cost of
part quality and the benefit of lower production cost as well as
high density levels of approximately 99.5%.

Conversely, high part quality has a negative impact on cost
and build volume rates. In the high-accuracy mode, the DSS
simulates the manufacturing process with a beam power
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Fig. 1 AM classification scheme
for predefined machines.
Describes the workflow of the
calculation tool including
additional data to support the
evaluations, from the input of a
STL file to the output values and
figure

Fig. 2 Graphical user interface. The graphical user interface of the cost
calculation tool consists of a predefined machine, material, and accuracy
level selection (center left) as well as manual input parameters (center
right). Additionally, information about the amount of support, the batch

size, and the STL file needs to be provided by the user. This figure
comprises all input fields the user is able to see before starting the
calculations
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operating at the lowest capacity of the machine (i.e., smaller
beam diameters around 100 μm and layer thicknesses be-
tween 30 and 50 μm, depending on the selected machine
technology). These sets of parameters are typically used to
produce geometries with small geometrical features, resulting
in an increase in part quality in terms of surface quality and
feature resolution. In this study, all build volume rates are
lowered by 40% taking the normal accuracy mode as a refer-
ence, when the high part quality mode is selected.

The third quality level is the skin-core methodology, which
enables higher build volume rates and high surface quality
characteristics at the same time. This method implies that the
inner core area of parts is built with larger beam diameters,
thicker layers, and higher beam powers (i.e., normal-quality
characteristics) and the outer surface with high-quality char-
acteristics. However, the skin-core technology requires over-
laps between the skin and the core area, with a layer thickness
ratio between inner and outer areas which cannot exceed 1:4.
This means that by applying a skin layer thickness of 50 μm,
the core layer thickness is limited to 200 μm. Suitable porosity
levels only occur when providing an overlap area between
inner and outer layer thicknesses. For a skin-core ratio of
1:2, the overlap area is typically 0.5 mm, whereas an overlap
of 0.75 mm is necessary for a skin-core ratio of 1:4.
Furthermore, the width of the skin area can be expected to
amount to approximately 1 mm [16]. Out of the nine ma-
chines, this specific mode can only be selected for the machine
EOSINT M 280 [17], for all other machines this mode is
blocked.

2.3 Theory and calculations

2.3.1 Build volume rates and productivity—criteria for part
quality

Build volume rates V̇ mm3

s

h i
are described by the material vol-

ume being created from the metal powder over time. They
represent the main productivity factor and have a major im-
pact on lowering the AM production cost by means of time
savings. Equation (1) describes the theoretical build volume
that can be calculated by multiplying the layer thickness DS

(μm), the scan speed vscan [mms ] and the scan line spacing
(distance between parallel laser tracks) Δys (μm).

V˙ ¼ DS*vscan*Δys ð1Þ

Moreover, in many cases, the scan line spacing can be
formulated as [18]:

Δys ¼ 0:7*ds ð2Þ
where ds denotes the focus diameter (mm) of the energy
source (i.e., laser or electron beam in PBF systems) and the

constant factor of 0.7 denotes the side shift of the laser in the
melt pool. However, the scan line spacing parameter can vary
significantly dependent on machine equipment, material,
power levels, layer thicknesses, etc. [19]. The vscan parameter
is dependent on the intensity I [ W

mm2 ] and the required layer

thickness DS. If intensity is high and the required layer thick-
ness is low, higher scan speed can be achieved, whereas low
intensities and large layer thicknesses lead to lower scan
speeds. Furthermore, intensity represents the quotient of laser
power P [W] and area A [mm2]. The affected area in the
powder bed can be calculated by means of Eq. (3):

A ¼ 1

4
*d2s *π ð3Þ

Predefined laser power directly affects scanning
speeds as well as beam diameters ds (mm), whereas part
quality varies by changing scan speeds and laser power.
A main parameter when estimating AM system produc-
tivity is the machine build volume rate. This value is
the result of the interactions between several physical
and machine process parameters, such as beam power,
hatch size, scanning speed, scan line spacing, layer
thickness, and material properties. An estimation of
build volume rates from literature was executed [16,
20–26], necessary for the implementation into the DSS.

Figure 3 shows that TiAl6V4 reaches the highest
build volume rates including a coefficient of determina-
tion (COD) of 63%, followed by AlSi10Mg (COD
93%), and maraging steel DIN 1.2709 (COD 81%).
Parameters such as the degree of absorption, particle
size, and distribution, as well as materials’ melting
points, have an effect on deviating build volume rates.
However, this figure outlines results for porosity levels
below 2% only, which displays fully melted parts,
guaranteeing sufficient mechanical properties for most
engineering applications.

Feature resolution is one of the main characteristics
in the production of metal-based AM parts. In this re-
gard, the smaller the beam diameter and layer thickness,
the higher the feature resolution of the part being pro-
duced. To ensure suitable quality, parts with high-feature
resolution need to be processed with lower laser beam
powers and scan line spacing [27]. Consequently, the
build volume rate, which was described in Eq. (1), de-
creases and causes rising costs due to a higher
manufacturing time per part.

2.3.2 Underlying algorithm

Referring to cost models for plastic-based laser sintering
[28] and metal-based powder bed fusion [29], this ap-
proach can be seen as an adaptation and practical
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application to already existing models. Figure 4 displays
the developed algorithm structured into three different
cost types: machine costs ceom, labor costs ceow, and ma-
terial costs cmat. Each arrow transfers the output of one
formula as an input to the consecutive one, each dashed
line describes a connection between two different kinds of
cost types. Adding up calculated cost types leads to the
cost of the build cob [€] and finally to the cost of the part
cop [€] by dividing the number of the total cost of the
build through the part number pn [−]. All symbols in the
algorithm are described in Table 1.

2.3.3 Machine costs

The surface area ratio r is described by the outer volume Vs,
which is evaluated by multiplying the surface area S and the
width of the skin area st. To calculate the ratio between
skin and core areas, the outer volume has to be divided
by the part volume pv. This ratio is based on the select-
ed accuracy level and has an effect on the average build
volume rate vm, influencing the build time significantly.
High accuracy is described by a ratio r = 1, normal ac-
curacy by a ratio r = 0. Skin-core accuracy has a range

Fig. 4 Underlying DSS algorithm. This figure shows the most important formulas, their connection to each other, and to which category they belong to
regarding the DSS algorithm
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of 0 < r < 1, which is dependent on the extent of surface
area of the part.

If r = 0, it means that the value v1 will not influence the
average speed vm. However, high accuracy with a ratio of 1
leads to an average speed, exclusively containing v1.

vm ¼ r � v1 þ 1−rð Þ � v2 ð4Þ
where v1 represents the high-quality build volume rate and v2
the normal-quality build volume rate.

The build time bt is derived from [7], it consists of the
summation of three major time factors, which are represented
by the scan time TS, the recoating time Tr, and the delay time
Te. When transferring this formula to the cost model presented
in Fig. 4, the delay time amounts to 5% and is added to the
scan time. This additional factor is added due to process in-
equalities.

bt ¼ pbt � 1:05� pn þ tr � bn ð5Þ
where bt represents the build time, pbt represents the part build
time, pn represents the part number, tr represents the recoating
time, and bn represents the number of batches.

Recoating time is calculated over the number of layers nol,
which slices the part height hp (dependent on the part orienta-
tion) into constant layer thicknesses x1. The layer thickness
parameter is set at 50 μm for all parts and is not dependent on
the accuracy level. Moreover, the recoating time includes a
constant recoating time factor of 4.5 s per layer.
Consequently, the recoating time factor has to be multiplied
with the number of layers.

Expenses on machine ceom are described by the following
mathematical relationship: the total time tt is calculated by
taking the build time bt and adding extra times per batch tatpb
multiplied with the batch number bn. These additional time
factors per batch are assumed to stay on a constant level for all
printing processes (for each batch) in this study. According to
[29], a preparation time of Tprep = 0.25 h, build job time of
TBuildjob = 0.25 h, setup time of TSetup = 0.75 h, removal time
of TRemoval = 0.5 h, and post-processing time of TPostp = 0.1 h
are taken into account. This results in a potential total labor
time for each batch of tatpb = 1.85 h/batch, which represents a
rather low additional time factor per batch. In this study, tatpb
amounts 3 h/batch, including heating and cooling times as
well as longer removal times of 35 min [30].

To estimate expenses on machine ceom, the total time tt is
multiplied with the parameter machine cost per hour cmcph.

Machine costs per hour cmcph are calculated by assuming
that the laser beam and electron beam based machines in this
study total 120 h/week in use. This represents a 24-h usage
during the 5 working days of a week. Furthermore, a maxi-
mum machine usage of 51 weeks per year totals 6120 h/year
of possible machine utilization. Considering that 1 year con-
sists of 8736 h, the outlinedmachine utilization of 6120 h/year

tmh results in an utilization rate of 70%, which is assuming that
the production is also running during nights and delays for
reparations are obsolete. However, leading manufacturing
companies produce their goods on weekends as well; hence,
a utilization rate of 70% seems to be appropriate for series
production of AM components.

Table 1 List of symbols referring to the DSS algorithm. It depicts the
symbols, units, and meanings applied in the DSS algorithm in Fig. 4

Symbol Unit Meaning

ab mm Length of the part

bb mm Width of the part

bn – Batch number

bt s Build time

hp mm Height of the part

VB m3 Volume of the build

VS mm3 Outer volume

chc € Hardware cost

ceom € Expenses on machine

ceow € Expenses on worker

cmat € Material costs

cmc € Maintenance cost

cmcph € Machine cost per hour

cop € Cost of part

cpc € Purchase depreciation

cplph € Production labor cost per hour

csc € Software cost

lopb mm Length of the powder bed

mu mm3 Material used

nol – Number of layers

pbt s Part build time

pn – Part number

pnb – Part number per batch

pv mm3 Part volume

tatpb s Additional time per batch

tmh h Machine utilization

tr s Total recoating time

tor s Recoating time per layer

tt s Total time

twtp h Workers time paid

v1 mm3

s High-quality build volume rate

v2 mm3

s Normal-quality build volume rate

vm mm3

s Average build volume rate

wf – Waste factor

wopb mm Width of the powder bed

r – Skin-core ratio

S mm2 Surface area

st mm Accurate surface thickness

w mm3 Waste material

ρ kg
m3 Density
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Purchase depreciation cpc is calculated using 8 years
for production machines and 5 years for software.
Hence, the purchase price has to be divided by 8 and
the software purchase price by 5. This depreciation varies
from machine to machine and contains a significant im-
pact on the total cost per part value. Maintenance, soft-
ware, and hardware costs were transferred from a previous
study [31] and are expected to be of constant value.
Therefore, according to a depreciation time of 5 years
for each of them, 21,750 € has to be spent on maintenance
each year cmc, 1450 €/year for software csc, and 870
€/year for hardware chc. To estimate machine costs per
hour, the following formula is implemented into the cal-
culation tool.

cmcph ¼ cpc þ cmc þ csc þ chctmh ð6Þ

where cmcph denotes the machine cost per hour, cpc de-
notes the purchase depreciation, cmc denotes the mainte-
nance cost per year, csc denotes the software cost per year,
chc denotes the hardware cost per year, and tmh denotes
the amount of machine hours.

2.3.4 Material costs

Batch sizes describe the number of products being
manufactured during one set, varying for each bounding box
of a machine. Depending on the planned approach to place
parts into the powder bed, a specific number of parts pnb can
be calculated through [7]:

pnb ¼ lopb þ 15−20ab þ 15
� �

� wopb þ 15−20bb þ 15
� � ð7Þ

in which lopb represents the horizontal direction of the powder
bed and wopb represents the vertical direction of the powder
bed. Fifteen millimeters is used for the gaps between the
bounding boxes in x and y—direction and part length are
described by ab, and the width of the part is described by bb.

The filled powder bed volume pbv depends on the height of
parts hp which is multiplied by the length of the powder bed
lopb and the width of the powder bed wopb. Consequently, a
filled-up build chamber is calculated without inserted parts.

Unused powder (waste material w) of the filled pow-
der bed can be recycled with an efficiency between 95
and 98% [32]. This factor is called waste factor wf in
this study. Therefore, the volume of the filled powder
bed is calculated by assuming a hexagonal closest par-
ticle packing ratio of 0.74 (74%). This ratio is multi-
plied with the length and height of the specific powder
bed and its fill-up height depends on the part height.
Subsequently, the number of produced parts multiplied
by the volume of each part is deducted from the

theoretical filled powder bed. By including a waste fac-
tor of 0.02, the calculations finally lead to the wasted
material w.

w ¼ wf � 0:74� pbv−pbn � pvð Þ ð8Þ

where wf denotes the waste factor, pbv denotes the filled
powder bed volume, pbn denotes the batch size estima-
tor, and pv denotes the part volume.

The build volume bv and the number of batches bn are
calculated by multiplying the part number pn and the part
volume pv. To evaluate bn, the part number pn is divided by
the number of parts in each bed pnb, which is defined by the
batch size estimator.

The total volume (material used mu), consisting of build
volume bv and waste w, is evaluated over the density of each
material. The build volume as well as the additional support
value are calculated by an approximation of the STL file.

mB ¼ d � pv ð9Þ
where mB outlines the part mass, d outlines the density, and pv
outlines the volume. Support structures have to be established
for structural stability during the printing process. This issue is
addressed by adding a constant factor of 10% (α) extra to the
part volume in the case of manual data input (STL file not
available). To estimate the amount of support more accurately
(STL file available), uploaded models are oriented into vary-
ing poses of 5° increments for each coordinate axis. For each
orientation, all triangles with downwards-pointing normal
vectors (i.e., 3D angle deviating less than the threshold angle
of 45° from the downward vector) are located. Consequently,
the irregular prism volumes are calculated from each triangle
to the build platform and by summing up these subvolumes,
the total amount of support is evaluated. The orientation,
which produces the smallest support volume, is returned as
the value for the “solid” support strategy. To approximate
more common rod-type supports, users also have an option
to choose between “normal” and “dense” support strategies;
by selecting one of these, the returned support volume value is
scaled by 0.2 and 0.5, respectively.

The estimated material mu being used has to be multiplied
with the cost per each kilogram cmcpk, which differs signifi-
cantly depending on the type of material being used.
Maraging steel DIN 1.2709, AlSi10Mg, and TiAl6V4 can
be selected as input material in the AM tool. As a result, the
user receives the material cost value cmat.

2.3.5 Labor costs

For the workers’ paid time twtp, the employee is not expected
to work full time for the manufacture of AM parts. In detail,
the employee is paid for the setup time, the reprocessing time
of each batch, and a monitoring time of 10% during the
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printing process. This factor has to be multiplied with the
build time bt. Moreover, the additional time per batch tatpb
depending on the number of batches is added. The expenses
on worker ceow are calculated as the product of the workers’
paid time twtp and the production labor cost per hour cplph. It
varies depending on the country (Western European salary
assumed in this study) and the required qualifications of the
employee. In summary, expenses on worker ceow, expenses on
machine ceom, and material cost lead to the total cost of the
build cob.

2.4 Experimental analysis assisted by the DSS

An example geometry is adopted to run experiments with the
DSS. A timing pulley with inner structures as represented in
Fig. 5 is selected to model and examine different manufactur-
ing scenarios. Distances between each timing pulley are de-
termined by the batch size estimator and do not change ac-
cording to the size of the part after its orientation.

As input parameters, the geometry is scaled from 7.5
to 135 mm in height, assuming 10 different part heights
(part 1 to part 10). Moreover, a constant production
volume of 300 parts is tested. The implemented ma-
chine during the test is an EOSINT M 400 with a base
price of 1,250,000 € [33] and a build platform of 400 ×
400 × 400 mm. The investigated materials comprise
maraging steel DIN 1.2709 (material price 89 €/kg),
aluminum alloy AlSi10Mg (material price 107 €/kg),
and titanium alloy TiAl6V4 (material price 400 €/kg);
the selected support structure is “dense.” Table 2 de-
scribes a list of parts with scaled heights (z), resulting
in higher x and y dimensions as well as in volume
increases.

Cost estimations including all 10 parts for different mate-
rials and accuracy levels are conducted. Additionally, price
quotes for the same components, materials (except for
maraging steel DIN 1.2709, not selectable), and production
volume are presented to discuss results.

To analyze the influence of the build volume rate on pro-
duction costs, part 5 with a height of 60 mm is selected and
evaluated for varying build volume rates and materials for the
“normal” accuracy level.

Finally, to conduct a sensitivity analysis of the DSS
and to evaluate future implications for material and ma-
chine cost reduction, this study refers to the projections of
a business consultancy [1]. According to their projections,
cost reductions for materials as well as machines are ex-
pected to decline significantly in the coming years, rang-
ing from 25 to 45%. To test possible future scenarios and
the impact of these estimations, material and machine
costs are lowered by 20, 40, and 60% for projections until
2025. The material maraging steel DIN 1.2709, “normal”
accuracy, and “dense” support structures are selected.

3 Results and discussion

To assist in the decision-making process, the DSS delivers
four key performance indicators and three different functions
(Fig. 6), which are crucial when evaluating AM application
suitability. This set of outputs comprises a cost function,
which is dependent on the number of parts, a cost type anal-
ysis, a preview of the part consisting of the orientations and
the support structure (side and front view, vertical thick lines
represent the support structure) and a total time function.

As key performance indicators, a cost per part value for the
selected production volume (€), the part process time (min), the
producible number per batch (−), and a support value (%) are
illustrated in Fig. 6. These values and graphs allow economic and
AM specific conclusions for any metal component to be pro-
duced using AM technologies.

Table 3 shows cost estimations for the mentioned input
parameters. When the parts are scaled proportionally (z-height
as the reference axis), a lower amount of parts fits into one
production batch, leading to a drop from 288 for part 1 to 5 for
part 10. The support value varies between 8.07 and 12.66%
and costs increase significantly for evaluated components,
ranging from 1.23 € for part 1 produced out of AlSi10Mg to
11,414 € for part 10 selecting TiAl6V4 as the manufacturing

Fig. 5 Scaled timing pulley. This example geometry is scaled
proportionally in height (z-axis) to analyze the DSS algorithm

Table 2 Parameters of the scaled timing pulley. The component is
scaled up from 7.5 to 135 mm in height, showing modified dimensions
and volumes

Part no. x (mm) y (mm) z (mm) V (cm3)

1 6.73 6.72 7.5 0.15

5 53.81 53.8 60 78.71

10 121.06 121.04 135 896.52
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material. Estimated costs represent in most cases lower
values than the online price quotes, especially for the
smaller parts 1–5. For larger components (parts 8–10),

the differences between estimated costs and price quotes
from the AM service provider decrease, in the case of
TiAl6V4, costs exceed the prices.

Fig. 6 Graphical interface of DSS outputs including key performance indicators and figures (timing pulley part 5). Several functions and a screenshot of
the part are shown at the top of this figure, whereas four key performance indicators are displayed below them

Table 3 Cost estimations for the scaled timing pulley using the normal-accuracy (NA) and the high-accuracy (HA) mode, price quotes [34] applying
same input data as well as batch sizes and support values for 300 parts being printed and dense support structures being selected

Part
no.

z
(mm)

Batch size
(−)

Support value
(%)

AlSi10Mg Maraging steel DIN
1.2709

SS316L TiAl6V4

Cost NA
(€)

Cost HA
(€)

Price quote
(€)

Cost NA
(€)

Cost HA
(€)

Price quote
(€)

Cost NA
(€)

Cost HA
(€)

Price quote
(€)

1 7.5 288 9.39 1.23 1.30 n.d. 1.37 1.47 n.d. 1.59 1.66 n.d.

2 15 157 9.38 2.42 2.93 24.9 3.39 4.17 37.36 4.86 5.37 48.56

3 30 68 9.29 14.02 18.13 74.52 21.20 27.47 111.78 34.22 38.33 145.32

4 45 37 9.29 46.61 60.47 185.67 69.82 90.96 278.5 124.62 138.49 362.05

5 60 24 9.38 117.59 150.43 384.58 170.14 220.26 576.87 332.96 365.85 749.93

6 75 16 8.07 244.43 308.57 696.76 343.67 441.56 1045.1 715.39 779.63 1358.7

7 90 12 11.64 549.61 660.43 1151.6 698.07 867.22 1727.4 1722.9 1833.9 2245.6

8 105 9 11.57 1011.9 1187.9 1775.9 1223.4 1420.0 2663.9 3264.3 3440.6 3463.1

9 120 7 9.38 1542.2 1804.9 2589.5 1851.3 2252.3 3884.2 5210.1 5266.2 5049.5

10 135 5 12.66 3343.1 3717.2 3626.6 3594.2 4165.1 5439.8 11,414 11,789 7071.8
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Presented price quotes cannot be compared directly with
the calculated costs from the DSS, but represent a benchmark

if profits and additional parameters such as energy consump-
tion and rental costs would be included in the DSS.

Fig. 7 Cost development for increased build volume rates of part 5. The
effect of increased build volume rates on production costs is demonstrated
for a timing pulley, which is produced additively out of three different

materials. Each circle describes the cost structure regarding a specific
build volume rate for the usage of maraging steel DIN 1.2709
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Fig. 8 Future cost estimations for
part 5 for maraging steel DIN
1.2709. This figure provides
future cost estimations regarding
several scenarios, which arise
from a decline in material and/or
machine costs. Each vertical
arrow shows the total cost
decrease for three selected
scenarios
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Additionally, the lack of knowledge regarding company-
specific aspects such as their pricing strategy, existent AM
PBF machines, material procurement prices, and special build
strategies to optimize the production workflow does not allow
direct quantitative comparisons. Considering mentioned as-
pects, cost results appear meaningful, while errors in the
DSS can arise from several factors such as standardized addi-
tional batch time parameters, non-machine type-related build
volume rates (generalized approach according to their beam
power), and unrealistic literature-based material as well as
machine prices.

Figure 7 analyzes quantitatively the economical trade-off
between part quality and build volume rates, taking part 5 as a
reference. The trade-off can be described as a non-linear de-
velopment of increased build volume rates ranging from 0 to
100 mm3/s. The results indicate that significant cost decreases
can be achieved between 0 and 10 mm3/s, moderate cost de-
creases between 10 and 20 mm3/s, and insignificant cost de-
creases between 20 and 100 mm3/s for all the selected mate-
rials. Using a maximum build volume rate of 100 mm3/s leads
to cost values of 50 €/part for AlSi10Mg, 80 €/part for
maraging steel DIN 1.2709, and 180 €/part for TiAl6V4.

After a build volume rate of 40 mm3/s is achieved, the
effect on the reduction of production cost is decreased drasti-
cally. In this regard, intrinsic machine parameters, such as the
recoating time and the machine set up time, are independent
from the other variables such as laser power, scan spacing, and
layer thickness. Hence, a reduction of production cost derived
from the increase in build volume rate in PBF machines is
unsustainable. In fact, titanium alloys have the lowest saving
potential for build volume rates from 20 to 100 mm3/s due to
highmaterial prices. The pie chart allows amore detailed view
at the evolution of cost structures as a function of the build
volume rate. Using maraging steel DIN 1.2709 as the input
material, the machine costs decrease for increased build vol-
ume rates of 5, 30, to 90 mm3/s, whereas the percentages of
material and labor costs increase permanently. Cost differ-
ences between materials can be traced back to varying mate-
rial prices and densities of parts but not to deviating labor and
machine costs, which stay constant for each material. The
most critical factor for AM adaption is material cost and the
effect of increasing build volume rates which have no strong
impact on the production cost.

Figure 8 shows the impact of future cost development in
time (x-axis) for metal-based AM parts in relation to the ex-
ample geometry and its production cost per part (y-axis).
When material and machine costs are decreased by 60% each,
the total costs per part can be lowered by 55%, while a 30%
decrease in total costs is observed when material cost is de-
creased by 60%.

Due to an already significant and growing number of metal
powder providers and amore severe competition among them,
prices are expected to decline [1]. However, similar

competitive circumstances are absent in the market segment
for high-end metal-based PBF machines with powers over
1000 W. On the one hand, there are two different processes
(laser beam and electron beam based) that fit for different
purposes. On the other hand, only few companies are able to
produce high-end AM metal machines for high-quality com-
ponent production. Assuming that the material costs will de-
crease by 60%, the machine cost will stay on the same level.
Further improvements in the production speeds can be
achieved, resulting in a cost-saving potential of 40 to 45%
by 2025 for AM metal part production in total.

The sensitivity analysis indicates that a drop in material
prices has a more significant impact on modern metal-based
AM machines than changes in the machine prices. The future
price developments outlined can be understood as generic
trends, because the cost of production per voxel (mm3) ap-
pears constant for a particular material.

4 Conclusion

Based on the gained experimental results, we can conclude
that to achieve competitiveness of metal PBF machines in
production environments, the machine build volume rate has
to exceed 20 mm3/s for this specific machine. When reaching
or exceeding this value, potential cost savings are mostly de-
pendent on the material cost.

In addition, the part size has no direct effect on the
cost-saving potential. All parts (1 to 10) show a potential
cost-saving factor of approximately 90% depending on
build volume rates varying from 1 to 100 mm3/s. These
results were obtained by examining costs for all parts (1–
10). In this regard, feature resolution becomes a substan-
tial cost driver in metal-based AM (especially for normal
build volume rates, 1 to 5 mm3/s in this case), which
should be avoided whenever it is possible to make PBF
production applications viable.

To decrease future total part costs, material prices need to
decrease and a higher degree of automation should be
achieved. The purchasing costs of AM machines constitute
no decisive factor in modern series AM production, if high
utilization rates can be achieved. For high-cost materials (e.g.,
TiAl6V4), the importance of decreasing material prices is
even more significant, while for low-cost materials (e.g.,
AlSi10Mg), the influence of machine prices dominates.
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