
ORIGINAL ARTICLE

Multi-responses optimization in dry turning of a stainless steel as a key
factor in minimum energy

Salem Abdullah Bagaber1,2 & Ahmad Razlan Yusoff1

Received: 5 October 2017 /Accepted: 23 January 2018 /Published online: 6 February 2018
# Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
The machining of stainless steel is of interest because of its corrosion resistance and high strength. Usually, this process involves the
application of cutting fluids, which negatively affect the environment, ecologic, and health impacts. Therefore, dry machining is the
optimum solution, when applicable. Moreover, due to the high cost of cubic boron nitride (CBN) cutting edge, the improved
performance is important for hard finish turning. Reducing energy consumption under dry condition should consider for sustainable
machining. This study aims to optimize machining parameters (i.e. power consumption and surface roughness) of stainless steel 316
with CBN tool under dry conditions. A multi-responses based on response surface methodology with Box-Behnken design (BBD)
was employed to optimize machining parameters. A compound desirability function was applied to determine optimum levels and
contribution of parameters. A validation test was conducted to confirm results. This combination of parameters resulted in the
minimum power consumption of 6.78% and decreased surface roughness by 13.89%. This method also effectively reduces the
environmental effects in terms of noncutting fluid use and less energy required which is affected in sustainable of machining.

Keywords Turningmachine . CBN .Multi-responses . Power consumption . Surface roughness

1 Introduction

The cutting process must be attention to sustainable of opera-
tion and product through developing approaches to eliminating
or lowest environmental impact possible by using different
techniques. Sustainable manufacturing is concerned about en-
vironmental, cost aspects, energy, and worker health.
Machining fluid is one of the most factors influencing environ-
mental and worker health. A common practice in machining
process is using fluids, but lubrication-based oil is considered
the unsustainable factor of cutting processes [1]. Moreover, the
maintenance of lubrication system, power consumption, and
waste/disposal of cutting fluids, which lead to growing environ-
mental issues and increasing cost [2]. For sustainability in

manufacturing, cryogenic is one of the solution [3]; it assists
manufacturing processes to become environmentally toxic-free
[4], and have better surface finish [5], but the installing and
maintenance of the cooling system, for energy consumption,
leads to an increase in manufacturing cost. Dry machining is
the optimum solution, when applicable [6]. Therefore, environ-
mentally friendly manufacturing always preferred using dry
cutting strategies. Dixit et al. [6] concluded that the dry machin-
ing is an eco-friendly technique due to no air and water pollu-
tion. Schultheiss et al. [7] stated that the dry machining is a
process which can be carried out without cutting fluid and thus
is a more sustainable method and easier to collect the chips for
waste recycling purpose. Nur et al. [8] investigated the effects
of cutting parameters in turning of stainless steel machinability
evaluation. Their results show that the optimum cutting param-
eter combination is at the feed of 0.19mm/rev and cutting speed
of 125 m/min. But, a study on the stainless steel machinability
is of interest. This study also toward sustainable on stainless
steel machining, the responses for this study include the energy
consumption, along with surface roughness. The novelty here
lies in establishing a sustainable model for selecting optimum
cutting conditions for machining based on minimum energy
requirements and high quality simultaneously under environ-
ment cutting conditions.
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Besides cutting fluids, machining energy has a negative
impact on the environment. It is a very important part of
manufacturing sustainability. Therefore, improvement of en-
ergy efficiency is one of the most interests on the world [9]. In
2010, the consumption of energy globally was 524 quadril-
lions Btu and is expected to increase to 630 quadrillion Btu in
the next 5 years [10]. The average released emission from fuel
combustion was 9084.6 million metric tons of CO2 in China
in 2015, and in the USA, 4997.5 million metric tons of CO2

was released with by 27.4% of industry sector contribution
[11]. Moreover, increase in the price of fuels and electricity
increases production cost. Reducing machine energy is the
concern of the industrial processes, but very limited research
has been performed considering energy consumption.
Usually, the energy consumption is not included in machine
responses [8]. The stainless steel is extensively used in many
applications [8, 12] such as automotive components (e.g. ex-
haust manifolds, mufflers and tailpipes, brake tubing, well
covers), aerospace (e.g. bolts, nuts, screws), a component of
construction, chemical production (e.g. chemical and pulp-
handling photographic equipment, brandy vats, fertilizer
parts, yeast tube), power plants such as jet engine part, food
processing and recently in medical industry, particularly in
medical instruments and medical implants, including pins,
screws, and orthopedic implants like total hip and knee re-
placements. The machinability of stainless steel has attracted
considerable interest because of its high strength and corro-
sion resistance. On the other hand, the steel material is con-
sidered as difficult to machine due to a high tool wear, work
hardening, poor surface quality, low productivity, and high
machining costs [13]. In machine performance, cutting tool
should be considered in terms of quality, production rate, and
cost. Cubic boron nitride (CBN) inserts are usually used on
hard steel machining to achieve high accuracy of the surface.
CBN tools are advanced cutting tools when machining heat-
resistant alloys [14], chemical stability at high temperatures,
hardness, and toughness. The cutting tool cost is around 4% of
the total manufacturing cost [12]. Due to the high cost of CBN
cutting edge, the performance of significant is important for
hard finish turning. Some works have been done in the hard
material to investigate the machine performance of CBN in-
sert under different cutting conditions [15–17].

The optimization of cutting parameters helped toward de-
creasing the energy consumption and enhancement of
sustainablility [18, 19]. Therefore, the selection of optimum
machining parameters contributed to reducing the machining
energy [20], ensuring the quality [18], and increasing the tool
life and production rate. A single-parameter optimization is
limited to fixing optimum cutting parameter value, and it just
determined the values of a controllable parameter that pro-
duces the highest value of a particular response, such as sur-
face finish quality. Consequently, the multi-response optimi-
zation proposed in this study is necessary to consider the

trade-off for a balance of process efficiency and environmen-
tal issues, it makes optimization literature similar to a real-
world design and practice, which not only one but a few ob-
jectives that must be considered simultaneously. There are
several empirical multi-response optimization techniques
studied, such as the Taguchi method, response surface meth-
odology (RSM), and other statistical designs. Among them,
RSM is a widely accepted multi-optimization method because
it is very effective in identifying overall trends, easily appli-
cable, and saving time and cost by reducing a number of runs.
Box and collaborators developed RSM method [21]. Rao in
2014 [22] concluded in an optimization review that the RSM
techniques and Taguchi methods are mostly used in optimiza-
tion machining processes. One of the multi-objective ap-
proaches is desirability function which is related to the larger
value the better. This approach aims to find the optimum set-
tings of input parameters that lead to achieving the objective
function of the cutting process.

Many previous studies reported the effects of cutting pa-
rameters on traditional objective optimization (i.e. surface
roughness, cutting force, material removal rate, and tool
wear). And, most of that research optimized based on single-
objective. Usually, single-objective approaches are used to
determine the optimal value of a particular response and lim-
ited to fixing optimum cutting parameters value. Additionally,
steel material often machined under lubrication condition.
Moreover, due to the excessive cost of CBN cutting edge,
the improved performance is important for hard finish turning
by selecting the desired parameter conditions. A few studies
have investigated power consumption combined with other
responses to machining of stainless steel material under dry
condition. Therefore, due to the prohibitive cost of using cut-
ting fluid, CBN cutting edge, and machine energy and their
human/environment impacts, this study contributes to energy
saving, an important consideration in sustainable multi-re-
sponses. It reports the effects of sustainable factors on sustain-
able cutting conditions (i.e. dry cutting). It aims to optimize
machining parameters (i.e. power consumption and surface
roughness) of stainless steel 316 and improve the performance
of CBN tool under dry conditions. This work makes an im-
portant contribution to manufacturing for the reduction of en-
ergy and machining costs, consequently improving cutting
process sustainability. This study proposes to evaluate the
contribution of cutting parameters during machining turning
of AISI 316 steel on the energy consumption and surface
roughness under dry condition. Three cutting parameters
namely cutting speed, depth of cut, and feed rate were opti-
mized to reduce energy consumption and surface roughness
during the turning of AISI316 under environment cutting con-
ditions using multi-response optimization based on response
surface methodology with Box-Behnken design (BBD).
Desirability function was performed to determine the opti-
mum values of cutting parameters to minimize power
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consumption and surface roughness. This study attempts to
present a sustainable model for selecting optimum cutting
conditions for machining on the basis of minimum energy
requirements and high quality.

2 Experimental details

2.1 Work piece materials

The workpiece material used in this investigation is a cylin-
drical of stainless steel 316 with the axial length of 100 mm,
the diameter of 50 mm, and the machining length of 20 mm
(Fig. 1). The composition of the stainless steel 316 is tabulated
in Table 1. The CBN cutting tool used for this study (Fig. 1)
was designated as ISO CNMG 120408, with 80° diamond
sharp and 0° relief angle. A fresh insert was used for each
experiment in order to improve the reliability and ensure the
accuracy of results. The tool holder details and other cutting
condition are also shown in Table 1. The turning process was
performed in the environment condition without cutting fluid
used.

2.2 Method

The turning experiments were performed using CNC lathe
ROM 240 with (100 to 4000 rpm) a spindle speed range.
Power Meter KEW6300 was used to measure the power con-
sumed at the main power, the spindle drive, and axis drive.
The total machining energy can be calculated by the following
components: energy of setup, energy of spindle rotation with-
out cut, energy of cutting stage, and energy consumed during
tool change. In practice, the energy consumption of setup,
spindle rotation without cut, and tool change do not heavily
depend on cutting parameters. For simplification, the above
three energy consumption components are assumed to be con-
stant for all runs. Therefore, the energy optimization objective
which this paper focuses on is the energy during cutting; it
evaluates from the energy consumed for material removal.
Three voltage wires are connected from the three phases in
turning machine to voltage input terminal and clamped with
correct direction of clamps sensor to electric wires tidily.
Then, the power consumption was recorded when the auto-
matic cutting button was switched on until finished

automatically. After connecting all wires properly and ensur-
ing safety, the instrument turns on and the function switch on
the instrument was turned in to value measurement with (Whr)
unit. The value start recorded with machining start, simulta-
neously. Each data point was stored and transferred to a PC.
Surface roughness was measured with a portable surface
roughness tester (Mitutoyo Surftest SJ-301). Specifically,
measuring a range of X-axis for roughness tester is 12.5 mm,
measuring force (90o) is 4 mN, and measuring speed in ranges
0.25–0.5 mm/s, which are enough to indicate the surface
roughness value for that cutting length. Figure 2 shows the
set of experiments and analysis.

The experiments were conducted according to the Box-
Behnken design (BBD) matrix and responses as shown in
Table 3. BBD and central composite design (CCD) are the
most popular RSM.BBD is slightlymore efficient thanCCD
but much more efficient than the full factorial designs. The
number of trials required for the development of BBD is
defined asN = 2k(k − 1) + C0, whereas for CCD, the number
of experiments for a central composite design is N = 2k +
2 k + C0, (where k is a number of factors andC0 is the number
of central points). BBD is a class of rotatable or closely ro-
tatable second-order designs based on three-level incom-
plete factorial designs. It is very flexible and efficient in
different experimental regions and provides considerable
experimental information; i t is a simple scale for
transforming original variable value measurements. Three
levels for all variables are studied in BBD. Each of these
values is represented as a code (− 1, 0, + 1), and it is com-
posed of two parts: the central point and the middle points of
the edges. This is classified of design points called space
type. Therefore, the high value of the original variable is
represented by (+ 1) and the low value is represented by (−
1). The (0) value represents the average of these two values.
The design ofBBDand optimization by desirability function
approach was performed with Design Expert V.10 to opti-
mize the cutting parameters. In this trials, three influence
cutting parameterswhich are cutting speed (vc)with the three
levels of (110-140-170 m/min), feed rate (fr) at (0.1-0.15-
0.2 mm/rev), and depth of cut (dc) at (0.8-1.25-1.4 mm), the
independent variables and their related levels and output
variables are presented in Table 2. The parameter ranges
were selected from the Korloy handbook [23] and based on
initial experiment. Previous hard machining works [8, 24]

Fig. 1 a Tool holder. b CBN
insert. c Workpiece
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have used similar parameter ranges to investigate similar
responses. In the present research, multi-objective based
on response surface methodology (RSM) with Box-
Behnken design was selected. A series of 17 experiments
includes five center points which were formulated to carry
out experimentalwork. The responses determined during the
experiments were the power consumed during cutting pro-
cess PW (Whr) and the average surface roughness Ra (μm).
The trials were repeated three times and the average value
was used in the evaluation. For measurement, the average
value of surface roughness was used in the evaluation and
every data recorded by powermeter was repeated three times
during the cutting stage to obtain accurate power measure-
ment. To ensure the accuracy and repeatability of the data,
two different methods used to verify the results, which are a
standard error (SE) calculated based on predicted test and the

initial value based on the optimumpoints. Figure 3 shows the
procedure of this study.

3 Result and discussion

3.1 Evaluation of parameters effect

Experimental design and results by BBDmatrix are presented
in Table 3. The main and interaction effect plots for power
consumption (PW, Whr) and surface roughness average (Ra,
μm) with respect to all cutting parameters: Cutting speed (vc,
m/min), feed rate (fr, mm/rev), and depth of cut (dc, mm) are
presented in this section.

As shown in Fig. 4, the residual versus run number plot
exhibits a consistency and small variance across each

Table 1 Workpiece and cutting tool characteristics

Workpiece AISI316 steel Material Wt.%
C 0.078
Si 0.337
Mn 5.81
Ni 3.68

axial length Diameter machining length S 0.29
Cr 18.28

100 mm 50 mm 20 mm Mo 0.049

Cutting tools CBN, 92.4 + 1 HRA Young’s modulus Tool geometry

47 (103kgf/mm2) CNMG 120408, 80° diamond sharp and 0° relief angle

Tool holder BCLNR2525M12

Fig. 2 Experimental and analysis setting
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treatment. There is no evidence to show the process being
drifted. It is useful to determine the reliability of result and
the skillfulness of an experimenter in conducting the exper-
iments. The plot shows a random scatter residuals confined
between specified domains and not exceeded it, which in-
dicates the model accepted for validation. The residuals are
randomly positioned on the up and downside of straight
center line. The residuals approximately normally lie be-
tween − 2 and 2 for responses. Therefore, the errors are
normally distributed.

To confirm and check for normality assumption, a normal
probability plot of the residual can be plotted. In the analysis
of variance, it is usually more effective to do this with resid-
uals. If the underlying error distribution is normal, this plot
will resemble a straight line. As indicated in Fig. 5, the largest
residuals are not quite large as expected. No outliers are found
and deviations from the linear are very minor so that the ex-
periment provides a desirable value which can satisfy the nor-
mality assumption.

3.2 Analysis of variance (ANOVA)

Checking the normality is important in the ANOVA analysis.
If the data is not normally distributed, the cause for non-
normality should be determined and appropriate remedial ac-
tions should be taken. Data transformation also is known as
Box-Cox power transformation, one of these remedial actions
that may help to make data normal. It involves a procedure to
identify an appropriate exponent (Lambda = 1) to use to trans-
form data into a normal shape. In Fig. 6, the Lambda value
indicates the power to which all data should be raised. The
Box-Cox power transformation searches from Lambda − 3 to
Lambda 3 until the best value if found. The lower and upper
confidence levels show that the best results for normality were
reached with Lambda value between − 2.6 and 2.76 for energy
consumption and − 1.1 and 1.72 for surface roughness. The
current value is 1 which lies between the confidence levels.
Therefore, there is none recommended transformation needed
which indicate that it is normally distributed. Here, the design

Table 2 Design of input and
output parameters No. Factors Unit Symbol Type Low level Mid-level High level

Input parameters

1 Cutting speed (min/m) A Numerical 110 140 170

2 Feed rate (mm/min) B Numerical 0.10 0.15 0.20

3 Depth of cut (mm) C Numerical 0.80 1.25 1.70

Output parameters

1 Power consumption (Whr)

2 Surface roughness (μm)

Cutting condition Dry cutting

Fig. 3 Flow chart of experiments and analysis
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expert showing the best lambda are − 0.01 and 0.25 for energy
and roughness, respectively.

Table 4 presents the ANOVA data on energy consumption
and surface roughness. For energy, the F-value model indi-
cates that the model is significant. The ANOVA table indicat-
ed that the v, f, and dc factors were significant on the basis of
their P values. The interaction between feed and depth of cut

and square of feed rate is also considered as significant. The
statistical result also showed 90% of R-Square which has high
significance and reliability in the estimation of energy con-
sumption efficiency. Additionally, the difference between
Pred R-Squared and Adj R-Squared was less than 0.2 that
indicated that the models are satisfactory. Other important
tests to check the adequacy of the models is lack of fit or

Table 3 Results of the
experiment by Box-Behnken
design matrix

Std. order Input variable Output variable

A:vc (m/min) B:fr (mm/rev) C:dc (mm) PW (Whr) Ra (μm)

1 110 0.1 1.25 32.6 0.478

2 170 0.1 1.25 35.51 0.965

3 110 0.2 1.25 25.65 0.64

4 170 0.2 1.25 30.28 1.331

5 110 0.15 0.8 34.11 0.491

6 170 0.15 0.8 37.8 0.924

7 110 0.15 1.7 23.5 1.37

8 170 0.15 1.7 22.81 1.104

9 140 0.1 0.8 36.2 0.845

10 140 0.2 0.8 35.72 1.245

11 140 0.1 1.7 32.8 1.53

12 140 0.2 1.7 23.9 1.6

13 140 0.15 1.25 27.8 0.72

14 140 0.15 1.25 29.81 0.714

15 140 0.15 1.25 26.5 0.741

16 140 0.15 1.25 28.18 0.724

17 140 0.15 1.25 26.9 0.701
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Fig. 4 Residuals vs run plot for a energy consumption and b surface roughness
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model noise. Non-significant lack of fit indicates that the mod-
el is fit and the possibility of noise is less. For power consump-
tion (Table 4), the lack of fit P value of 0.2042 > 0.05 indicat-
ed that the lack of fit was not significant. The lack of fit for
surface roughness, F-value of 3.15, implies that the lack of fit
is not significant. Based on the model, only < 0.0002% chance

existed that this extremely high F-value occurred because of
noise. The feed rate and depth of cut and their square were
significant parameters on surface roughness. A liner effect of
cutting speed and its interaction with depth of cut was consid-
ered. A high R-Squared coefficient of 0.896 ensures a satis-
factory agreement between the calculated and observed data.

Fig. 5 Normal probability plot of residuals for a energy consumption and b surface roughness
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Based onANOVA data presented in Table 4, the mathematical
functions of energy and surface roughness were developed.

Figure 7 discusses the effect of cutting parameters on the
power consumption using CBN insert. The perturbation plots
one of the most plots recently used that helps understand the
relationships among factors and compare the effects of all the
factors at a particular point in the design space. To read this plot,
the greater main effect is depicted by a line with a steeper slope
for long-range change. In this plot, the main effects on energy
consumption were cutting speed, feed rate, and depth of cut
with a different contribution. The plot for energy consumption
against feed rate and depth of cut shows a negatively significant
effect from high to low level, whereas the plots of cutting speed
show a positively significant effect. Nevertheless, the plot of
cutting speed has a lower slope compared to depth of cut and
feed rate. This plot indicated that the depth of cut is highly
significant among parameters. Therefore, the value of energy
decreased from when depth of cut and feed change from low to
high level, whereas cutting speed with low level. To explain
that, the higher spindle speed value needed higher power by
the motor to rotate the spindle. On the other side, high percent-
age contribution and parametric analysis revealed that the com-
bination of the high feed rate and cutting depth minimized pow-
er consumption. When the values of feed and cutting depth are
higher during the cutting pass, the time required to machine the
workpiece decreases and the amount of removed materials in-
crease. Therefore, a smaller quantity of energy is consumed to
complete the operation. Similar researches [19, 25] concluded
the low energy value consumed by low cutting speed value and
high value of feed rate.

Figure 8 shows contour and 3D plots of power consumption
for dry condition. Based on the perturbation plot, feed rate and
depth of cut are most significant on power. Figure 8a shows the
3D square interaction plot of feed rate versus depth of cut, and the
speed value is kept in middle level 140 m/min. Figure 8b shows
interaction counter plot of feed rate versus depth of cut, and Fig.
8c presents relation between energy and interaction speed and
feed, whereas Fig. 8d shows cutting speed versus depth of cut.
From this illustration, the minimum power consumption can be
reached in the region of 0.16 to 0.2 mm/rev feed rate and depth
of cut at 1.6 to 1.7 mm for dry cutting, whereas from 0120 to
110 m/min for cutting speed (Fig. 8c). The liner contour plot of
depth of cut versus cutting speed shows the interaction effect of
the depth of cut and cutting speed on the power consumption as
shown in Fig. 8d. It is seen that minimum speed value and high
level of depth facilitate to reach lowest power. Therefore, the de-
sired region to reach minimum power consumption is higher level
of feed rate and depth of cut with a lower value of cutting speed.

Figure 9 shows the combined influence of cutting parame-
ters on surface roughness; it shows that the main parameters v, f,
and dcwere positively significant on surface roughness. A steep
curvature shows that the surface roughness is most sensitive to
depth of cut, followed by feed rate and cutting speed. SimilarTa

bl
e
4

A
N
O
V
A
an
al
ys
is
da
ta
an
d
re
gr
es
si
on

m
od
el

R
es
po
ns
es

A
N
O
V
A
va
lu
e

Fa
ct
or
s
an
d
th
ei
r
in
te
ra
ct
io
n

L
ac
k
of

fi
t

m
od
el

v
f

dc
v
×
dc

f×
dc

f2
dc

2

E
ne
rg
y
co
ns
um

pt
io
n

F
va
lu
e

19
.9
4

3.
76

17
.2
9

61
.7
9

–
5.
62

11
.2

–
2.
43

P
va
lu
e

<
0.
00
01

0.
00
01

0.
00
01

0.
00
01

–
0.
00
3

0.
00
01

–
0.
20
42

Su
rf
ac
e
ro
ug
hn
es
s

F
va
lu
e

14
.4
2

14
.5
0

5.
98

24
.7
4

6.
80

–
9.
28

23
.4
9

3.
15

P
va
lu
e

<
0.
00
02

0.
00
14

0.
02
45

0.
00
06

0.
01
62

–
0.
00
2

0.
00
07

0.
06
2

R
eg
re
ss
io
n
m
od
el

R
-S
qu
ar
e

A
d-
R
-S
qu
ar
e

P
r-
R
-S
qu
ar
e

E
ne
rg
y
co
ns
um

pt
io
n

Sq
rt
(E
ne
rg
y)
=
7.
63
5
+
3.
84
8E

-0
03

×
v
−
26
.7
05

×
f+

0.
29
1
×
dc

−
8.
87
04

×
f×

dc
+
10
9.
48

×
f2

0.
90
06

0.
85
54

0.
67
57

Su
rf
ac
e
ro
ug
hn
es
s

Sq
rt
(R

a)
=
0.
89
1
+
0.
01
2
×
v
−
11
.7
14

×
f−

0.
85
3
×

dc
−
7.
04
24
E
-0
03

×
v
×
dc

+
43
.2
52

×
f2
+
0.
84
9
×
dc

2
0.
89
64

0.
83
43

0.
62
40

1116 Int J Adv Manuf Technol (2018) 96:1109–1122



results were reported by Hanafi et al. [26]. The concluded work
of Bagaber and Yusoff [20] showed that minimum roughness
can be achieved when feed rate is the lowest.

Figure 10 shows 3D and contour plots of surface rough-
ness. It is clearly the high quality of finish surface that can be
reached when the input factors are in their lower level.
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Figure 10a, b shows 3D and counter plot of square interaction
effect of the depth of cut and spindle speed on the surface
roughness. Figure 10a shows the 3d plot of cutting speed

versus depth of cut, Fig. 10b shows correlation between pow-
er consumption and speed versus depth of cut, and fig. 10c
presents interaction plot of speed and feed, whereas fig. 10d
shows counter plot of feed versus cutting depth. It shows the
depth of cut as the most contribution factor on the response. It
is seen that low level of depth of cut and cutting speed
achieved lower roughness. The best rangwith smallest surface
roughness are 0.12 to 0.14 mm/rev of feed rate and cutting
speed less than 120 m/min (Fig. 10c), whereas for interaction
effect of the depth of cut and feed rate, the values are (0.8–
1.2 mm) depth of cut and (0.12–0.16 mm/rev) feed rate
(Fig. 10d).

3.3 Multi-optimization of parameters

Multi-responses based on RSMwere conducted to identify the
optimum cutting parameters. One of the multi-objective ap-
proaches is desirability function which is related to the larger
value the better. This approach aims to find the optimum set-
tings of input parameters that lead to reduce the energy and
improve quality of steel cutting process. Desirability analysis
was performed on the calculated power consumption and sur-
face roughness with desirability function. Table 5 presents the
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criteria and constraints for multi-responses optimization. The
cutting condition of input parameters was select in the range.
Moreover, the objective setting was reduced power consump-
tion and surface roughness. Table 5 shows also individual
desirability value of each response.

Figure 11 shows the desirability ramp function graph for an
optimum solution. The factor setting is shown in the first three
straight line, and the optimal expected response values are
shown in the slop down line. The desirability graph provides
a graphical view of the change responses (i.e. power con-
sumption, surface roughness) based on optimum parameter
change. It shows the optimum condition of parameters that
were (v = 110 m/min, f = 0.159 mm/rev, and dc = 1.33 mm)
to reach power consumption at 25.9 Whr and 0.627 μm of
surface roughness.

Table 6 shows the results of the desirability analysis. The
solutions with desirability values close to 1 are the best op-
tions. Five closer results were selected of 15 total desirable
values. Therefore, any of solutions 1, 2, 3, 4, or 5 can be
selected. Solution 1 was selected for levels of the cutting pa-
rameters, which were 0.845 because of the high desirability
value and predicted the lowest possible combined values of
power consumption and surface roughness.

4 Discussion

Confirmation testing was employed to verify the obtained
optimum point of parameters. Two different methods used to
verify the results, which are [3] standard error (SE) calculated
based on predicted test and the initial value based on the per-
formance of CBN tool.

In order to verify the model developed by multi-objective
RSM, the equation below has been employed to estimate the
optimum predicted response values as follows:

Ypredicted ¼ Ymean þ ∑
n

i¼1
Y i−Ymeanð Þ

where Ymean is the overall mean value and Yi is the average
response at the optimum design variable level. Table 7 shows
the obtained verification results, it clearly notices the good
agreement between the predicted and experimental optimum
results.

In the second confirmation method, the average value of
center point was selected for the initial setting. The initial
cutting parameters were as follows: cutting speed 140 m/
min, feed rate 1.15 mm/rev, and depth of cut 1.1 mm. The
responses were obtained from this average value compared
with the response values obtained using the optimal parameter
settings identified by the multi-responses based on RSM ap-
proach. The experimental results were provided to confirm the
effectiveness of this technique. The confirmation results were
obtained with the optimum parameter setting for power con-
sumption, and surface roughness shows better than the results
from the initial parameter set as shown in Table 8.

According to the analysis above, it is found that energy
proportionately increases with an increase in spindle speed
and decrease with an increase in both feed and depth of cut.
Increases in the depth of cut and feed rate achieved minimum
energy required, which is leading to decrease the time required
to complete the operation machine and increases the amount
of removed materials from workpiece. Moreover, the interac-
tion analysis graphs suggested that employing lower cutting
speed with a high depth of cut and feed rate can reduce power

Table 5 Optimum condition for response optimization

Responses Goal Optimum setting Lower Satisfy response value Upper Individual desirability

v (m/min) fr (mm/rev) dc (mm)

PW (Whr) Minimum 110 0.159 1.33 22.81 25.91 37.8 82.9%

Ra (μm) Minimum 0.478 0.62 1.6 86.6%

Fig. 11 Desirability ramp
function graph of parameters
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consumption. For surface roughness evaluation, surface
roughness almost increases as cutting parameter increasing.
It shows that there is positive relationship between surface
roughness and the cutting parameters. Higher feed rate values
lead to high temperature at the tool-chip interface which
causes adhesion, and abrasion of tool defect and a high tem-
perature occurs rapidly at workpiece which causes the high
value of roughness. Due to this damage of tools, the surface
roughness was influenced accordingly. For the same reasons,
high depth of cut leads to high roughness which is related to
continuous chip formed that affected to increase of tempera-
ture in the workpiece and tool interface which is increase
friction. Moreover, surface roughness increase ranges from
0.8 to 1.2 μm when increase of speed to 170 m/min means
no more effect on surface roughness compared to others pa-
rameters. The interaction relation of feed rate and depth of cut
shows direct proportion high change of roughness value.
Therefore, the performance of CBN cutting tool shows better
with lowest value of feed and depth of cut. The similar results
were reported by [26, 27]. A single-parameter optimization is
limited to fixing optimum cutting parameters value, and it just
determines the values of a controllable parameter that pro-
duces the highest value of a particular response, such as surface
finish quality. Therefore, the multi-responses optimization

proposed in this study is necessary to consider the trade-off for
a balance of process efficiency and environmental issues.
Accordingly, the optimum cutting condition for this study was
found at 110m/min cutting speed, feed rate at 0.159mm/rev, and
1.33mmof depth of cut with power consumption 25.91Whr and
less value of the surface roughness (0.62 μm) for dry condition.
Considering both responses, it can be concluded that the perfor-
mance of CBN insert under dry cutting condition can minimize
the power consumption with acceptable quality. It is a good
technique of environmental machining without fluid impact.
The optimum parameters selected help to reduce the effect of
issues associated with the dry machining such as tool life, cutting
temperatures, and thermal damage to the workpiece.

Some previous literature’s approaches have been discussed
to support the significance of this study as benchmarks.
Negrete [25] investigated on AISI 6061; his study aims to
minimize power consumption and roughness, and he used
the S/N ratio to analyze an optimum range of the cutting pa-
rameters. But, energy and surface roughness objectives were
evaluated separately. In our research, the RSM with BBD
design allowed to optimize the two responses (energy con-
sumption and surface roughness) simultaneously. Khamel
[28] investigated the effects of cutting parameters on perfor-
mance of CBN tool by multi-response considerations during

Table 6 Solution of optimum
cutting parameters by desirability
value

Solution v fr dc PW fit Ra fit Composite desirability

1 110.000 0.159 1.330 25.910 0.627 0.845

2 110.000 0.160 1.331 25.943 0.630 0.845

3 110.000 0.161 1.354 25.599 0.659 0.844

4 110.000 0.157 1.299 26.389 0.591 0.844

5 110.000 0.164 1.317 25.946 0.632 0.843

Table 7 Verification results based
predicted test Machining response Experimental value Predicted value Error Accuracy %

Power consumption (Whr) 28.4579 28.4296 0.0283 99.8%

Surface roughness (μm) 0.688211 0.682892 0.005319 99.2%

Table 8 Results of validation of responses

Parameters Initial value Optimum value Power consumption (Whr) Surface roughness (μm)

Obtained from
initial value

Obtained from RSM analysis
(confirmation experiment)

Obtained from
initial value

Obtained from RSM analysis
(confirmation experiment)

Cutting speed (v) 140 110 27.8 25.913 0.72 0.620
Feed rate ( f ) 0.15 0.159

Depth of cut (dc) 1.1 1.33

Error 1.88 0.1

% Improvement 6.78 13.89
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machining of AISI. The results show that cutting speed and
feed strongly effect surface roughness. In their study, the con-
firmation test was based on predicted test. In the current study,
two confirmation tests were applied initial condition approach
and standard error test; the multi-response result showed an
improvement of 13.89% for surface roughness. The research
[29] aims to minimize surface roughness and power consump-
tion using multi-objective grey analysis. Their results show an
improvement of 2.65% in surface roughness and 6.59% in
energy, whereas for the current study, an improvement of
13.89 and 6.78% in surface roughness and power consump-
tion, respectively. The significant factors contributing are sim-
ilar for both studies. In the previous research [8], power con-
sumption in machining SS 316 L was evaluated by studying
the effects of feed and speed, while the depth of cut was
constant. The optimum combination result is at feed of
0.19 mm/rev and cutting speed of 125 m/min, but no verifi-
cation test has been done. In the present study, the most sig-
nificant factor in power consumption is the depth of cut.

5 Conclusions

The performance of CBN inserts study under dry cutting stain-
less steel on the minimum value of energy and surface rough-
ness was evaluated. The results indicated that stainless still can
be machined under a dry condition with low power consump-
tion and roughness. The plot graphs clearly show that the min-
imum value of energy consumption of the cutting process was
obtained at the lowest cutting speed value and at the high values
of feed rate and depth of cut. The factor with the most signifi-
cant influence on surface roughness was feed rate. Results of
multi-responses based on RSM approach showed an improve-
ment of power consumption under dry condition with 6.78%,
whereas for surface roughness showed better with 13.89%. The
CBN tools under dry cutting can be used to reduce the environ-
mental impacts in terms of no cutting fluid use and less energy
required which is affected in machining productivity and profit.
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