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Abstract
The main objective of this study is to investigate uncoated tungsten carbide tool wear mechanisms for high-pressure water-
jet machining of the Ti555-3 titanium alloy. A comparative study has been undertaken (i.e. conventional versus assisted
machining) based on numerous experimental tests. These tests have been accompanied by the measurement of the cutting
forces and flank wear. It is concluded that the high-pressure water-jet assistance can greatly increase tool life compared to
conventional machining, for all cutting conditions. The gain in tool life depends on the severity of the cutting condition.
The analyses performed for each test (i.e. SEM, EDS and 3D profilometer) made it possible to monitor the tool wear
and to investigate the main wear mechanisms. Based on these analyses, adhesion wear appears to be the most influential
mechanism and it is accelerated by an increase in water-jet pressure. Monitoring of the wear profile made it possible to study
the evolution of crater wear and material chipping during machining.
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1 Introduction

The machining of titanium alloys is often challenging due
to their excellent mechanical properties and their high
chemical reactivity with most cutting tool materials [1].
The past decades have seen the development of new near-
beta alloys that have better mechanical properties, improved
fracture toughness and good hardenability [2, 3]. However,
these alloys such as Ti-10V-2Fe-3Al and Ti-5Al-5V-5Mo-
3Cr raise significant machinability problems [4], leading to
severely reduced cutting conditions. This in turn leads to
lower productivity [5].

The machinabilty of these alloys has already been the
subject of some research. A comparative study concerning
the machining of Ti555-3 (near beta) and Ti-6Al-4V (α+β)
titanium alloys has been carried out by Arrazola et al. [6].
This study showed that the machinability of the Ti555-3
alloy is reduced by about 44% compared to the Ti-6Al-
4V (the reference material). Moreover, the specific feed
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force and the specific cutting force are 35 and 20% higher,
respectively. Also, for a wear criterion of V B = 0.3 mm,
with a cutting speed ranging from 40 to 90 m/min and
a machining time of 15 min, the optimum cutting speed
was determined to be 45 m/min for the Ti555-3 alloy and
80 m/min for the Ti-6Al-4V alloy. A similar study has
been conducted by Nouari et al. [7] based on orthogonal
cutting tests. This research showed that Ti-6Al-4V alloy
is more sensitive to thermal softening; however, Ti555-3
alloy is more sensitive to strain rate hardening. The authors
demonstrated that the main tool wear modes are adhesion
and diffusion. Moreover, the cutting forces are 20 to 40%
higher for the Ti555-3 (depending on the tool rake angle).
According to Bai et al. [5], adhesion, diffusion and abrasion
are the main tool wear mechanisms when machining the Ti-
10V-2Fe-3Al titanium alloy. This lower machinablility has
been explained by [8] as the result of higher mechanical
properties, cutting temperatures, adhesion tendency and
chip segmentation frequency.

In order to meet this challenge, various solutions
have been proposed. Among them is the development of
new tool coatings and more efficient lubricants. Good
performance has been obtained using self-lubricating T iB2

PVD coatings [9]. This improves tool life by approximately
60% compared to uncoated and 70% compared to T iAlN
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coated tools. This is mainly due to the formation of a B2O3

phase that acts as a lubricant. The impact of the lubricant
type on tool wear when machining the Ti-6Al-4V alloy has
been studied by Moura et al. [10]. This study demonstrated
that the use of a solid lubricant, notably MoS2, results
in an increase in tool life, reduces cutting forces and
minimizes frictional effects. This is due to the ability of
the solid lubricant to penetrate the cutting zone. However,
in order to achieve better results, other strategies must be
employed. At present, the most interesting and promising
approach consists of adding assistance to machining such
as cryogenic assistance, laser assistance and high-pressure
water-jet assistance.

Laser-assisted machining has been employed to enhance
the machinablity of titanium alloys such as Ti-10V-2Fe-
3Al, Ti-6Cr-5Mo-5V-4Al and Ti-6Al-4V [11–13]. This
technique has been shown to reduce cutting forces up to
60%. However, the influence of the assistance on tool wear
remains debatable. As opposed to this technique, cryogenic-
assisted machining consists of cooling the tool/chip
interface with a liquefied gas such as liquid nitrogen and
CO2. The use of this technique has been effective in limiting
adhesive wear, improving surface roughness and increasing
tool life [14–16]. Recent studies [17, 18] showed a great
improvement in surface integrity when machining Ti-6Al-
4V titanium alloy.

Under certain cutting conditions, the best results in terms
of tool life and productivity have been obtained using
high-pressure water-jet assistance (HPWJA). This technique
consists of spraying a high-pressure water jet between the
tool rake face and the chip. On the one hand, the mechanical
action of the jet breaks the chips and on the other hand it
cools the tool and the workpiece.

In this context, several studies have been conducted
especially for refractory alloys. Due to the high-pressure
lubricant jet, the temperature drops drastically and con-
sequently slows down certain tool wear mechanisms [19,
20]. Machado et al. [21] reported that the machining of
the Ti6Al4V alloy using high-pressure lubrication improves
carbide tool life by up to 300% and ensures chip fragmen-
tation. This achievement is the result of the reduction in
diffusion wear due to the drop in cutting temperature. Sim-
ilarly to carbide tools, the tool life of PCD tools can be
enhanced by approximately 21 times (depending on cutting
the conditions) [22]. The main tool wear mechanisms iden-
tified by the authors are adhesion and attrition. As HPWJA
provides efficient lubrication of the tool/chip interface, the
cutting temperature is drastically reduced. This effects sur-
face integrity by inducing a softening effect of the machined
surface [23, 24]. A comparative study carried out by Da
Silva et al. [25] has shown that neither the use of a CBN tool
nor the use of a ceramic tool gives satisfactory results when
machining Ti-6Al4V using HPWJA. The main tool wear

mechanisms in this case are chipping, notching and cutting
edge fracture. The best results have been obtained using
carbide and PCD tools. As stated by Ayed et al. [26, 27],
tool life can be increased up to nine times when machining
Ti17 titanium alloy using HPWJA. Under these conditions,
and in order to boost productivity, the cutting speed could
be increased by about 30%. In addition, this study demon-
strated the existence of an optimum fluid pressure (100
bar) resulting in the best performance in terms of tool wear
and productivity. EDS and SEM analyses of uncoated car-
bide tools have shown that adhesion is the main tool wear
mechanism for all of the tested cutting conditions.

This study aims to investigate the impact of high-pressure
water-jet-assisted machining and the cutting parameters on
the machinability of the difficult-to-cut Ti555-3 (Ti-5Al-
5V-5Mo-3Cr) titanium alloy. To this end, instrumented
experimental tests accompanied by different analyses have
been carried out.

2 Experimental setup

The Ti555-3 near-beta titanium alloy was selected for this
study. It has improved mechanical properties compared to
the Ti-10V-2Fe-3Al alloy and is mainly intended for landing
gear and other aeronautical structural components. It also
has high hardenability, high fracture toughness and a good
strength to weight ratio [28, 29]. The microstructure of the
as-delivered material, etched with Kroll’s reagent, is shown
in Fig. 1. It displays a two-phase microstructure: lamellar
and globular α phase within the β matrix.

Longitudinal turning tests have been carried out on Lead-
well LTC25iL CNC turning lathe supplying a maximum
power of 24 kW. Based on the recommendations from pre-
vious studies [5] and due to the high chemical reactivity of
titanium alloys, uncoated tungsten carbide inserts (ISO des-
ignation CNMG 12 04 12-23 H13A) have been used. An
emulsion-based cutting fluid (5% concentration) has been
used for the conventional lubrication tests and HPWJA tests
at 100 bar (15 l/min) and 250 bar (26 l/min). Instrumented
experiments have been carried out to track and to analyse
tool wear evolution. A Kistler dynamometer (9257B) has
been used to measure the evolution of the cutting forces.
Flank wear has been measured using a stereo microscope on
the basis of the standard ISO3685. The tool wear rejection
criterion used is VB = 0.3 mm (VB represents the aver-
age flank wear). For a more comprehensive investigation
of the tool wear mechanisms, a SEM and a 3D profilome-
ter have been used. Figure 2 illustrates the experimental
procedure.

On the basis of previous research concerning the
machining of titanium alloys [6, 27], the cutting conditions,
summarized in Table 1, have been selected.
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Fig. 1 Microstructure of the Ti555-3 alloy

3 Cutting speed influence

First of all, in order to highlight the impact of the water-
jet assistance on tool life, the cutting conditions were fixed
(Vc = 60 m/min, ap = 1.5 mm and f = 0.1 mm/rev).
Two tests were carried out under conventional and HPWJA
conditions (P = 100 bar). As showed by Fig. 3, the
contribution of HPWJA can be clearly observed with an
increase in tool life of up to a factor of 8 (from 4 to
34 min). Based on these results, a significant gain in terms
of productivity could be obtained by improving the cutting
conditions. To this end, a slight increase in the cutting speed

has been tested (Vc = 68 m/min, Vc = 75 m/min, Vc =
80 m/min).

Figure 3 demonstrates that the cutting speed could
be further increased to 75 m/min while maintaining an
acceptable tool life of up to 11 min. Beyond this speed,
HPWJA is no longer efficient. The acceleration of wear
as a consequence of an increase in cutting speed is
mainly related to the activation of different tool wear
mechanisms. During the cutting process, heat is generated
in the cutting zone due to plastic deformation and friction.
The amount of heat generated is increased by an increase
in the cutting speed. As reported by Moura et al. [10],

Fig. 2 Experimental setup
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Table 1 Cutting conditions

The cutting conditions

Cutting parameters Cutting speed Vc (m/min) 60, 68, 75, 80

Feed rate f (mm/rev) 0.1, 0.2, 0.25, 0.3

Depth of cut ap (mm) 1.5, 2, 2.5

Tool geometry Nose radius rε (mm) 1.2

Cutting edge angle (κr ) 95

Rake angle γ (◦) 7

Clearance angle α (◦) 6

at the cutting edge, the temperature may reach 1000 ◦C.
Hence, the high temperature levels accelerate diffusion
and adhesion (plucking mechanism) [10]. In the case of
HPWJA, the lubricant jet insures good cooling of the cutting
zone, thereby slowing tool wear evolution. However, the
progressive increase of the cutting speed leads to a rapid
temperature increase that the lubricant jet cannot evacuate
quickly. This finally leads to a reduction of the HPWJA
efficiency (80 m/min).

This part of the study has been achieved by a comparative
analysis of the impact of the lubricant-jet pressure on
tool life. Figure 4 illustrates the evolution of the tool
wear curves. It shows that a pressure increase causes a
considerable decrease in tool life.

For both cases, observations of the tool using a stereo
microscope revealed the formation of a crater at the cutting
face. To get more information about tool wear evolution and
mechanisms, cutting tools have been analysed using a 3D
profilometer and a SEM. Figures 5 and 6 show different
stages of crater formation.

For a pressure of 100 bar, tool wear evolves gradually
and crater wear takes place only after 15 min of machining.
However, for a pressure of 250 bar, excessive tool wear

Fig. 3 Influence of the cutting speed and the high-pressure water-jet
assistance on tool life (ap = 1.5 mm, f = 0.1 mm/rev)

Fig. 4 Influence of the cutting speed and coolant pressure on tool life
(ap = 1.5 mm, f = 0.1 mm/rev)

is seen, notably at the level of the tool rake face. The
crater becomes larger and deeper as shows by Fig. 7. The
progressive formation of the crater weakens the cutting tool.
Hence, machining up to 10 min has caused the cutting edge
to break and substantial material chipping.

The SEM observations, illustrated in Fig. 8, show the
existence of adherent layers on the tool rake and flank
faces. The parallel scratches on the tool flank face are a
sign of abrasion wear. Micro-cracks have also been detected
and they are mainly due the combination of tool stiffness
degradation and high cutting forces.

An EDS examination of the adherent layers has
confirmed the activation of an adhesion mechanism by the
detection of titanium on the tool rake face as illustrated by
Fig. 9. For the case of conventional machining, titanium
deposits are uniformly distributed along the contact area.
However, for the case of high-pressure water-jet assistance,
the amount of these deposits has been greatly reduced which
is mainly due to the reduction of the tool/chip contact
length.

Under these cutting conditions, crater wear becomes
more pronounced with the increase of the lubricant-jet
pressure. Generally, the crater formation mechanism is
often related to the activation and the acceleration of
diffusion at high cutting temperatures [10, 30]. Optimum
cutting conditions and an effective lubrication must avoid
overheating of the cutting zone and thus slowdown crater
formation. However, this hypothesis is inconsistent with
the results found. Hence, it could be concluded that the
formation of crater wear in HPWJA must be due to
another mechanism. Similar results have been obtained
when machining the Ti17 titanium alloy under the same
lubrication conditions [26, 27]. It seems that crater
formation in this case is due to an adhesion/plucking
mechanism. Indeed, during machining, adherent layers are
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Fig. 5 Tool wear evolution (P = 100 bar)

formed and stick to the surface of the tool under the action of
the high contact pressure and temperature. The mechanical
action of the water jet causes the tearing off and plucking of
these adherent layers. The increase of the water-jet pressure
intensifies this phenomenon; the tool/chip contact length is
more and more reduced.

The evolution of the mean arithmetic (average value)
cutting force and the axial force (Fc, Fa) during machining
is presented in Fig. 10. It can be seen that for 100 bar,
the cutting force evolves gradually. However, for 250 bar,
a sharp and rapid evolution can be observed. This could be
linked to flank wear, crater wear and material chipping at
the cutting edge which causes a local change of the tool
geometry, cutting angles and contact length.

4 Feed rate impact

Feed rate variation is often related to notch wear, the
question now arises about the impact of high-pressure
water-jet assistance on tool wear, notably at high feed rates.

At a cutting speed of 60 m/min and a pressure of 100 bar,
the feed rate has been varied from 0.1 to 0.3 mm/rev. The
experimental results are plotted in Fig. 11. It shows a sharp
decrease in tool life (at least 50%); tool life does not exceed
4 min at 0.3 mm/rev. Also, for high feed rates, a large notch
occurs and weakens the tool insert. In this context, it is
necessary to point out that under these conditions and with
conventional lubrication, machining of the Ti555-3 alloy is
almost impossible (only 5 min at 0.1 mm/rev). Machining
is accompanied by high temperature generation and smoke
that ends by the collapse of the cutting edge after a few
seconds.

Figure 12 emphasizes the influence of the water-jet
pressure at 100 bar and 250 bar. Tests have been stopped at
VB = 0.23 mm to preserve the highly damaged cutting edge
for further analysis. As well as the last tests, the increase of
pressure leads to a more degradation of the tool.

Monitoring of tool wear evolution using a stereo
microscope is illustrated in Fig. 13. It shows that after only
30 s, severe wear has taken place. A notch and a crater
have been formed; material chipping has been observed on

Fig. 6 Tool wear evolution (P = 250 bar)
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Fig. 7 Crater wear evolution (P = 250 bar)

Fig. 8 SEM observation of tool wear (P = 250 bar, T = 9 min)

Fig. 10 Evolution of the cutting forces

Fig. 11 Feed rate influence (ap = 1.5 mm, Vc = 60 m/min, P = 100
bar)

Fig. 9 SEM observation of tool wear: a Conventional lubrication, T = 4 min; b P = 250 bar, T = 9 min
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Fig. 12 Feed rate and pressure influence (ap = 1.5 mm, Vc =
60 m/min)

the cutting edge. Over time, tool wear evolves rapidly; the
notch becomes larger and reaches the crater. At this point,
the tool tip becomes very fragile and it could collapse under
the action of the increasing cutting forces, even if the flank
wear remains stable.

For a more exhaustive tool wear analysis, tool inserts
have been observed using a SEM and scanned using a 3D
profilometer. Figure 14 shows the scanned surfaces of the
cutting tools at the end of the tool life. Figures 15 and 16
show the SEM observations of the worn tools.

These analysis have permitted a closer view of the
damaged areas. Material deposits (adherent layers) and
material chipping are clearly distinguishable (f =
0.2 mm/rev and f = 0.3 mm/rev) on the flank face, the rake
face and the notch. For a feed rate of 0.3 mm/rev, the tool
seems to have undergone very severe thermo-mechanical
loads, given the significant deterioration of the cutting edge.
Indeed, a large notch of approximately 400 μm wide and
material chipping along the cutting edge have occurred in
only 4 min.

In order to explain the major notch wear mechanisms,
researchers proposed many assumptions. The combination
of very complex factors makes it a complicated task,
which explains the big differences between the proposed
hypotheses. However, experimental tests have shown that

Fig. 13 Observation of tool wear
evolution on the tool rake face
(ap = 1.5 mm, f = 0.3 mm/rev,
Vc = 60 m/min, P = 100 bar)

materials that have strong strain hardening behavior such as
titanium alloys and nickel-base alloys are more subjected
to notch wear; strain hardening, strain rate sensibility and
thermal softening seem to be key contributing factors [31].
Adhesion is the most likely activated mechanism. In fact,
material chipping is mainly caused by the cyclic formation
of adhesive contacts and their frequency [32, 33].

To explain the formation mechanisms of the notch, we
assume that it occurs with the combination of all cited
factors (mechanical and chemical affinity factors). For the
different wear tests carried out at this stage, the water-jet
assistance significantly improves tool life. The drop of the
cutting temperature ensured by the high-pressure lubrication
slows down some wear mechanisms (notably diffusion and
adhesion). However, with the increase of the axial force
(due to feed rate increase), the cutting edge is increasingly
loaded in particular at the level of the depth of cut (DOC).
This generates a significant stress concentration, heating,
material adhesion and chipping.

5 Depth of cut influence

A final series of tests have been carried out in order to
investigate the impact of the depth of cut on tool wear
using HPWJA. The depth of cut has been varied from 1.5 to
2.5 mm (f = 0.1 mm/rev, Vc = 60 m/min). The results of
these tests are presented in Fig. 17.

First of all, it could be noted that the Ti555-3
titanium alloy is almost not machinable under these cutting
conditions, using conventional lubrication; the tool life does
not exceed 2 min at ap = 2.0 mm. However, the use of
the high-pressure water-jet assistance significantly increases
tool life. Indeed, for ap = 1.5 mm, tool life has been
multiplied by a factor of 8 and for ap = 2 mm, it has been
multiplied by a factor of 10 (from 2 to 21 min).

As the cutting forces increase when the depth of cut
increases, it leads to a considerable increase in temperature
in the cutting zone. In this very confined zone, which is
subjected to very high cutting pressures, the evacuation of
heat by the lubricant fluid remains very difficult. Tool wear
mechanisms are then accelerated; the combined effect of
temperature and mechanical actions will eventually cause
plastic deformation of the cutting edge and subsequently its
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Fig. 14 Tool wear at the end of tool life (ap = 1.5 mm, Vc = 60 m/min, P = 100 bar)

Fig. 15 Tool wear f = 0.2 mm/rev (ap = 1.5 mm, Vc = 60 m/min, P = 100 bar)

Fig. 16 f = 0.3 mm/rev (ap = 1.5 mm, Vc = 60 m/min, P = 100 bar)
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Fig. 17 Depth of cut impact (f = 0.1 mm/rev, Vc = 60 m/min)

collapse [34]. This has been confirmed by analyses using
the SEM and the 3D profilometer. Figure 18 illustrates
the plastic deformation at the cutting edge (conventional
lubrication); the cutting edge has been deformed by
approximately 0.15 mm.

The evolution of the cutting forces is provided by Fig. 19.
Hence, it can be deduced that the initial specific cutting
force (Kc = F

apf
) is approximately 2800 MPa and it reaches

3520 MPa at the end of the tool life. This further explains the
plastic deformation phenomenon which has occurred. On
the bases of the work by Astakhov [34], to prevent thermal
softening of tungsten carbide, the temperature should not
exceed 800 ◦C for such a loading level. However, this
temperature is far exceeded during machining of titanium
alloys even for a lower cutting conditions [35]. In the case
of water-jet assistance, a large part of the generated heat is
evacuated.

The efficient lubrication provided by the high-pressure
water jet avoids the plastic deformation wear mechanism.
Figure 20 shows the rake face of the tool at the end of
the tool life (19 min). It shows the zones of material
adhesion and a large crater; it also shows micro-cracks on
the border between the crater and the cutting edge. The
gradual formation of the crater under the action of the
adhesion mechanism (accelerated by the water jet) weakens
the tool. Meanwhile, wear on rake and flank faces leads to
an increase in the cutting forces. At this time, micro-cracks
begin to forme; this will end by the rupture of the cutting
edge.

6 Discussion

For conventional machining in the different tested con-
figurations, tool life has not exceeded 5 min. Under these
conditions, the wear could be due to different mechanisms
occuring simultaneously, including adhesion, diffusion,
abrasion and plastic deformation. Moreover, the impact of
these mechanisms differs according to the cutting condi-
tions (roughing or finishing). During roughing machining
conditions (high depth of cut) with conventional lubrica-
tion, the tool is exposed to high cutting forces combined
with a high generation of heat due to plastic deformation
and friction. Thus, in the cutting zone, the temperature
becomes very high; the specific cutting force exceeds
2800 MPa which leads to the plastic deformation of the
cutting edge [34]. The excessive heat generation also
accelerates adhesion and diffusion mechanisms [10, 30].
Similarly, the increase of the cutting speed and feed rate
resulted in a very rapid degradation of tool life; the resulting
temperature rise plays a key role in accelerating tool wear.
Moreover, tool wear is accelerated due to the high chemical

Fig. 18 Plastic deformation of
the cutting edge (conventional
lubrication, ap = 2 mm, T =
2 min)
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Fig. 19 Cutting force evolution

reactivity of the Ti555-3 alloy, its low thermal conductivity
and its high sensitivity to strain rate. To cope with the
increase in cutting temperature, high-pressure water-jet
assistance has been used. Under these conditions, tool life
has been increased up to a factor of 8. The tool wear
analysis has revealed that the main tool wear mechanisms
are adhesion and abrasion. It has been noted that the
deposed material layers are pulled out by the lubricant jet,
thus accelerating adhesion wear. A crater is progressively
formed causing a considerable degradation in tool stiffness;
similar results have been obtained when machining the Ti17
titanium alloy [26]. A feed rate increase involves thermal
and mechanical effects (high stress and high strain rate);
HPWJA permits to slow down wear mechanisms due to
thermal effects. However, increasing mechanical effects
cause the acceleration of notch wear.

On the basis of the experimental results, the Taylor wear
model parameters (1) have been identified for a coolant

Fig. 20 Tool wear: ap = 2 mm, P = 100 bar, T = 19 min

pressure of 100 bar. With C = 1.36 1011, n = −6.31,
m = −1.87 and l = −1.42.

T = CVc
nf map

l (1)

7 Conclusion

The titanium alloy Ti555-3 is a difficult-to-cut material;
using emulsion lubrication and for a machining time of
15 min, the maximum cutting speed does not exceed
45 m/min [6]. In order to enhance productivity, HPWJA has
been used to asses an eventual productivity gain; a wide
range of cutting conditions have been tested (cutting speed,
feed rate and depth of cut). The results obtained are both
interesting and promising and can be summarized in the
following conclusions:

– The use of high-pressure water-jet assistance has sig-
nificantly increased tool life. Under certain conditions,
tool life increased by more than a factor of 8. It is shown
that very severe cutting conditions that are not possi-
ble in conventional machining become feasible using
HPWJA.

– Notch wear is strongly affected by feed rate due to the
high strain rate hardening sensibility of the material.

– Different experimental means have been used to
monitor tool wear and to determine the major wear
mechanisms. The use of 3D profilometer made it
possible to track the evolution of crater wear. The
analysis of SEM images and EDS analyses have been
useful for determining the nature of the deposits on the
tool.

– Plastic deformation, adhesion and abrasion are the
main wear mechanisms under conventional lubrication
conditions.
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– Adhesion remains the major wear mechanism when
using the high-pressure water-jet assistance. The
increase of lubricant-jet pressure lead to a tool
life decrease due to the acceleration of adhesion
mechanism.
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