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Abstract
Digital twin technology is considered as a key technology to realize cyber-physical systems (CPS). However, due to the
complexity of building a digital equivalent in virtual space to its physical counterpart, very little progress has been achieved in
digital twin application, especially in the complex product assembly shop-floor. In this paper, we propose a framework of digital
twin-based smart production management and control approach for complex product assembly shop-floors. Four core techniques
embodied in the framework are illustrated in detail as follows: (1) real-time acquisition, organization, and management of the
physical assembly shop-floor data, (2) construction of the assembly shop-floor digital twin, (3) digital twin and big data-driven
prediction of the assembly shop-floor, and (4) digital twin-based assembly shop-floor production management and control
service. To elaborate how to apply the proposed approach to reality, we present detailed implementation process of the proposed
digital twin-based smart production management and control approach in a satellite assembly shop-floor scenario. Meanwhile,
the future work to completely fulfill digital twin-based smart production management and control concept for complex product
assembly shop-floors are discussed.

Keywords Digital twin . Smart manufacturing . Production management and control . Big data . Complex product . Assembly
shop-floor

1 Introduction

Shop-floor is a convergence point with information flow, ma-
terial flow, and control flow. To date, the question of how to
achieve high production efficiency, low production cost, and
high product quality in the shop-floor with the appropriate
management and control methods has attracted wide attention.
Before the 1960s, shop-floor production management and
control were fulfilled mainly by hand. In this period, a series
of well-known events marked its development. For example,
in 1776, the British economist Adam Smith stressed the im-
portance of the labor division in his book “Wealth of Nations.”
In 1911, Taylor, known as the “father of scientific manage-
ment,” advocated that management was a kind of science. At
that time, many enterprises applied a pyramid-style organiza-
tional structure method to achieve the production target. In

1913, the Ford Motor Company established a T-car assembly
line and initiated the era of mass production. In the early
1960s, shop-floor production management and control
stepped into a computer-aided era with the wide use of com-
puter applications. Afterwards, the shop-floor production
management and control approach evolved from single point
management to integrated management, collaborative man-
agement, and smart/intelligent management, as is shown in
Fig. 1.

Single-point production management and control stage
using single functional systems (from the 1960s to the early
1990s) In this period, many shop-floor production manage-
ment and control systems for a single function or a single field
were proposed, such as production scheduling systems [1],
data acquisition systems, quality management systems, and
material management systems. The main feature of this stage
is that computers gradually became the main technical tools to
carry out shop scheduling, data acquisition, material manage-
ment, quality management, etc. Most of them aimed at achiev-
ing productivity gains by increasing production efficiency or
reducing production cost. Although quite a few enterprise
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information systems emerged in this period, such as MRP/
MRPII [2], Enterprise Resource Management (ERP), and
Product Data Management (PDM), shop-floor activities did
not catch much attention by information system specialists
[3].

Integrated production management and control stage based
on MES (since the early 1990s) In the early 1990s, the
manufacturing execution system (MES), as a specific applica-
tion system at the shop-level, was developed [4]. MES con-
sists of most functions of productionmanagement and control,
such as production planning and scheduling, material delivery
and control, product quality management and control, produc-
tion cost control, and equipment management and mainte-
nance. MES aims to realize integrated production manage-
ment and control in the shop-floor [5].

Collaborative production management and control stage
using networking manufacturing technologies (since the ear-
ly 2000s) With the rapid development of networking
manufacturing technologies in the early 2000s, many ad-
vanced manufacturing strategies and paradigms emerged,
such as agile manufacturing [6], collaborative manufacturing
[7], e-manufacturing [8], supply chain management [9], and e-
commerce [10]. These strategies and paradigms accelerated
the integration and collaboration among the supply chain en-
terprises in the product manufacturing and assembly process.
Enterprise competitiveness and production efficiency were
significantly improved in this stage.

Smart/intelligent production management and control stage
based on smart/intelligent manufacturing technologies (since
the early 2010s) The concept of smart/intelligent manufactur-
ing was born in the 1980s but attracted wide attention in this
period. In 2011, the Smart Manufacturing Leadership
Coalition (SMLC) was founded in the USA, and then the
concept of Industrial Internet was proposed along with an

action plan for Smart Manufacturing [11]. In 2013, the
German Federal Ministry of Education and the Federal
Ministry of Economy and Technology put forward a whole
new concept of “Industrial 4.0.” It sought to bring the
manufacturing industry into the smart/intelligent phase
through the full use of cyber-physical systems (CPS). In
2015, the Chinese government issued an ambitious plan
called, “Made in China 2025.” It aims to realize intelligent
manufacturing in a new round of scientific and technology
revolution.

Nowadays, shop-floor production management and control
stepped into its second stage. However, due to the rapid de-
velopment of new-generation information and communica-
tion technologies, such as Internet of things (IoT), cloud com-
puting, big data, mobile Internet, and artificial intelligence
(AI), ways of implementing shop-floor production manage-
ment and control are undergoing a significant change.
Meanwhile, the integration scope is also gradually shifting
from interior to exterior, aiming to fulfill collaborative produc-
tion management and control among the supply chain enter-
prises. Moreover, methods of shop-floor production manage-
ment and control are continuously evolving from automation
and digitalization to networking and collaboration and, ulti-
mately, to the smart/intellectualization. Thus, from the per-
spective of evolving process, the question of how to realize
smart production management and control in the shop-floor is
imperative. Additionally, it is a common issue for most ad-
vanced manufacturing strategies and paradigms [12] (such as
smart manufacturing, industrial Internet, Industrial 4.0, Made
in China 2025, wireless manufacturing [13], cloud
manufacturing [14, 15], wisdom manufacturing [16]). Smart
production management and control in the shop-floor have
become one of the most popular issues for domestic and for-
eign scholars and companies.

A complex product refers to a product that is complex in
terms of customer demand, product composition, product
technology, manufacturing process, and project management,
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such as missile, satellite, rocket, and aircraft. Assembly is the
last production step and one of the most important processes,
since the quality, life, performance, reliability, and maintain-
ability of a product mostly depend on assembly results.
Recently, to improve assembly efficiency, reduce production
cost, and ensure product quality, most aviation and aerospace
enterprises that produce complex products have already taken
actions to implement smart production management and con-
trol in their assembly shop-floors. Therefore, as an example to
analyze the current dilemmas in complex product assembly
shop-floor, we use satellite assembly. And a digital twin-based
framework for a satellite assembly shop-floor was proposed to
fulfill smart production management and control.

The remainder of the paper is organized as follows: Sect. 2
analyzes the existing problems in satellite assembly shop-
floors. Sect. 3 investigates the development and application
of digital twin technique. Based on digital twin, Sect. 4 pre-
sents a framework of smart production management and con-
trol for a satellite assembly shop-floor. To fulfill the frame-
work, Sect. 5 presents four key technologies in detail. Sect. 6
illustrates the implementation process of applying the pro-
posed framework in a satellite assembly shop-floor. The last
part concludes the main contributions of the paper and dis-
cusses research issues in the future.

2 The existing problems in satellite assembly
shop-floors

In 2017, Yao [17] proposed a new manufacturing paradigm,
called “proactive manufacturing,” according to the utilization
degree and exploration depth of data, and pointed out that the
manufacturing paradigmwould evolve from “traditional” pas-
sive manufacturing (also known as reactive manufacturing) to
real-time manufacturing and predictive manufacturing and,
ultimately, to proactive manufacturing. Similarly, the produc-
tion management and control strategies in the assembly shop-
floor will also go through these four stages: passive (reactive),
real-time, predictive, and proactive. The evolution of shop-
floor production management and control strategies is shown
in Fig. 2.

The first stage: passive (reactive) management and control
method In this stage, most data are collected via paperwork
or offline manual input. The amount of data is not large, and
the traditional relational databases can meet most of the re-
quirements for data storage, organization and management.
As the data is not real time, data processing and analysis is
always delayed. Shop-floor production management and con-
trol is normally based on historical data.

The second stage: real-time management and control meth-
od In this period, with the in-depth application of IoT

technology in the industrial field, assembly enterprises can
achieve smart perception of manufacturing resources and on-
line collection of real-time data by means of radio frequency
identification (RFID) tags and readers, smart sensors, bar
codes, wireless networks, sensor networks, Ethernet, etc. In
this stage, the data is real time. Compared with a passive
strategy, the real-time strategy has a higher level of demand
for the timeliness of data collection, processing, analysis, and
decision-making.

The third stage: predictive management and control method
In this stage, along with wide applications of machine learn-
ing, neural networks, data mining, cloud computing, and other
big data-related technologies, it is possible to predict potential
shop-floor production disturbance, the quality of a product,
the behavior and status of equipment and human, etc. The
relevant personnel can prevent potential disturbances, anom-
alies, and problems in advance following the prediction re-
sults. The predictive strategy can dig out the foresight value
of data by means of big data and digital twin technology.
Compared with a real-time strategy, a predictive strategy
comes along with more uncertainties due to the unknown
future.

The fourth stage: proactive management and control method
During this stage, the manufacturing system can not only
predict the behavior and status of equipment and human
resources, but also make decisions autonomously based
on prediction results. It can even drive and control phys-
ical entities in the real space based on CPS’ self-adaptive
and self-reconfiguration functions. Proactive strategy is a
natural extension of predictive strategy combined with AI
and digital twin technology. Applying big data, proactive
method is the ultimate goal of smart production manage-
ment and control.

Currently, most assembly companies are still in the first
stage. Unfortunately, there are still some companies which
have not yet achieved electronic data acquisition in as-
sembly shop-floors. Moreover, no assembly enterprise re-
ports that it has realized predictive management and con-
trol in assembly shop-floors. Therefore, how to implement
predictive management and control in assembly shop-
floors is one of the critical issues for assembly enterprises.
Only on this basis can assembly companies go forward
into proactive management and control stage and eventu-
ally achieve smart management and control. Likewise, for
satellite assembly enterprises, it is imperative to imple-
ment predictive production management and control in
assembly shop-floors.

Generally, the assembly process of a satellite has the fol-
lowing characteristics: manual-based discrete assembly, single
or small batch production, strict quality control, and long pro-
duction cycle. For each satellite, the related product data must
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be well collected, organized, and managed, so that the entire
production process can be monitored and traced if required.
However, due to the uncertainty, complexity and dynamic
characteristics of the assembly shop-floor and product itself,
disturbances emerged frequently in satellite assembly shop-
floors. Under the circumstances, prompt response to the dis-
turbance or disturbance prediction is a critical issue for satel-
lite assembly enterprises before the realization of smart shop-
floor production management and control.

As for the above problem, digital twin technology is con-
sidered as a feasible and effective approach [18]. Digital twin
technology refers to the process or method of describing and
modeling a physical entity’s characteristics, behavior, and per-
formance by means of digital technology. It embodies an ef-
fective approach to realize the interaction and convergence
between the cyber and physical worlds. Digital twin technol-
ogy is considered as a key technology to realize CPS (the core
to achieve smart manufacturing), since the main function of
CPS is to realize the association mapping, interaction and
convergence between cyber and physical spaces. Digital twin
technology applies not only mankind knowledge to establish a
virtual model, but also virtual model simulation technology to
explore and predict the unknown world. It can search a better
way to continually stimulate human’s initiative thinking and
pursue optimal progress. Meanwhile, a digital twin can act as
a single source to organize and manage shop-floor data based
on virtual models. Thus, digital twin technology provides new
concepts and tools for current manufacturing innovation and
development. It is a novel and promising approach towards
predictive production management and control in shop-floors.

3 Overview of digital twin

The introduction of the concept of “twin” in the field of
manufacturing can date back to NASA’s Apollo project in

the late 1960s. In this project, NASA created two identical
space vehicles. The one that was left on Earth was called
“the twin,” which was used to mirror the condition of the
space vehicle that performed the mission. From this point of
view, the twin was referred to as a prototype that mirrored the
real operating condition for the simulation of real-time behav-
ior [19]. It should be noted that the twin was a physical entity
at that time.

In 2003, Grieves introduced the concept of “a virtual, dig-
ital representation equivalent to a physical product” or a “dig-
ital twin” at the University of Michigan’s Product Lifecycle
Management course and presented its conceptual model [20].
The conceptual model stemmed from the expectation that all
the data and information of a physical entity could be put
together for a higher level of analysis. Although this model
was then not regarded as the digital twin (it was referred to as
the mirrored spaced model in 2003–2005 [21] and informa-
tion mirroring model in 2006–2010 [22]), it embodied all
functions of a digital twin. It consisted of three critical parts
for a digital twin, i.e., the physical space, the virtual space, and
the linkage or interface between the two spaces. Grieves’ con-
cept was treated as the origin of digital twin. In 2011, in the
book “Virtually perfect: driving innovative and lean products
through product lifecycle management” [23], Grieves quoted
his co-author Vickers’s way of describing this model—digital
twin—and this comes to be in use today [24].

In 2012, NASA and the US Air Force (USAF) Research
Laboratory presented a digital twin paradigm for future vehi-
cles, which met the requirements of lighter mass, higher loads,
and longer service in more severe conditions. The digital twin
was defined as an integrated multi-physics, multi-scale, prob-
abilistic simulation of an as-built vehicle or system, which
incorporated the best available physical models, updated sen-
sors data, and historical data to mirror the life and condition of
the corresponding flying twin [25]. In the same year, NASA
[26] released a road map called “Modeling, simulation,
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information technology, and processing,” and then the term
digital twin was widely applied for product or shop-floor.

In summary, digital twin is a virtual, dynamic model in the
virtual world that is fully consistent with its corresponding
physical entity in the real world and can simulate its physical
counterpart’s characteristics, behavior, life, and performance
in a timely fashion. Such a concept is also known as digital
twin model in Germany.

Currently, digital twin-related methodology and tech-
nology have been attempted in industrial fields, and
showed great potential. For example, in 2011, Tuegel
et al. [27] sought to establish an ultra-high fidelity simu-
lation model, the digital twin, for each space vehicle with
an independent tail number to accurately predict the life
and damage of a spacecraft structure. In 2012, the concept
of “airframe digital twin” was proposed aiming to reduce
the maintenance cost of the airframe [28]. In 2013,
Reifsnider et al. [29] adopted a new technique of dielec-
tric spectroscopy to support a multi-disciplinary physics-
based methodology. Such technique built a solid founda-
tion for an ultra-high fidelity simulation to digitally mirror
the feature of the corresponding flying physical twin. In
2014, Cerrone et al. [30] implemented an accurate predic-
tion of the crack path for each specimen using its as-
manufactured geometry, which gave a better definition
of digital twin through a more intuitive example. In
2015, General Electric (GE) [31] sought to realize real-
time monitoring, timely inspection, and predictive main-
tenance of engines based on digital twin technology. In
2016, Boschert and Rosen [32] studied the application
methods of digital twin in the simulation of complex sys-
tems. And digital twin was regarded as the next wave of
modeling and simulation. DebRoy et al. [33] proposed a
method to construct the first-generation digital twins of
3D printing machines. Schroeder et al. [34] proposed a
conceptual framework of digital twin based on a web ser-
vice. In 2017, in a NASA-related system, Grieves [24]
studied methods of fault prediction and elimination for
such a system based on digital twin technology and then
applied and tested it. Tao et al. [35] proposed a new meth-
od for product design, manufacturing, and service driven
by digital twin. Furthermore, three cases were illustrated
for the future applications of digital twin in three phases
of a product.

According to the rough annals of digital twin listed above,
it is obvious that the efforts have mainly focused on the field
of product management. However, in most recent past, some
scholars began to apply digital twin technology to the shop-
floor or production system. Stark et al. [36] adopted digital
twin as a testingmethod in a new approach for next generation
manufacturing systems. Tao et al. [12, 37] proposed a digital
twin shop-floor to realize the interaction and convergence be-
tween physical and virtual spaces.

4 Framework of digital twin-based smart
production management and control
for a satellite assembly shop-floor

Based on the analysis above, we propose a framework of
digital twin-based smart production management and control
for a satellite assembly shop-floor, as shown in Fig. 3.

Physical assembly shop-floor and assembly shop-floor digital
twin The physical assembly shop-floor is the collection of
existing physical entities. The assembly shop-floor digital
twin in virtual space is the reconstruction and digital map-
ping of the physical assembly shop-floor. They exchange
data/information/knowledge through the assembly shop-
floor big data storage and management platform. By con-
structing an assembly shop-floor digital twin, the working
progress and working status of assembly stations, prod-
ucts, and manufacturing resources in the physical assem-
bly shop-floor can be dynamically, realistically, and accu-
rately mapped in the virtual space. Therefore, the relevant
personnel can monitor and track the operating condition
of the physical assembly shop-floor any time. In addition,
various types of shop-floor production activities (such as
shop scheduling, product ion logist ics planning,
manufacturing resources allocation) and production pro-
cesses in the physical assembly shop-floor can be simu-
lated, evaluated, validated, and verified through the as-
sembly shop-floor digital twin in the virtual space. This
provides an effective tool to choose and conduct an opti-
mal production strategy based on digital twin simulation
results.

Assembly shop-floor big data storage and management plat-
form In recent years, large amounts of real-time data (e.g.,
environmental awareness data, machine operation data,
sensor data) and unstructured multi-media data (e.g., vid-
eo, audio, photos) in the assembly shop-floor abound. The
assembly shop-floor data presents the typical “3V” char-
acteristics of big data [38], i.e., volume (large amount of
data), variety (various types and forms of data), and ve-
locity (high data generation speed). In a satellite assembly
shop-floor, due to frequent production disturbances, the
shop-floor data also shows characteristics of uncertainty,
high noise, and variability. It is necessary to establish a
big data storage and management platform for the assem-
bly shop-floor, which forms a solid basis for digital twin.
The construction of a shop-floor assembly digital twin
means that the assembly shop-floor big data not only in-
clude data concerning the physical shop-floor, but also
include data related to the shop-floor in cyber space.
The latter consists of model data and operation data of
the digital twin, e.g., simulation data, prediction data,
and assessment data . The big data storage and
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management platform acts as a single data source and
provides data support for the physical assembly shop-
floor, the assembly shop-floor digital twin, and the shop-
floor service/application platform. It is the driving force
and foundation in a smart production management and
control system.

Digital twin and big data-driven assembly shop-floor service/
application platform Assembly shop-floor service/
application refers to the collection of technologies that
support the functional and target requirements of smart
production management and control. It includes monitor-
ing, prediction, and optimization control of manufacturing
resources, production activities, and production processes.
A digital twin and big data-driven assembly shop-floor
service/application platform provide real-time and predic-
tive production management and control services for the
physical assembly shop-floor. It is composed of a predic-
tion service platform and a production management and
control service platform. The prediction service platform
incorporates functions of product quality prediction,

work-hour prediction, production progress prediction,
production bottleneck prediction, production disturbance
prediction, equipment failure prediction, equipment life
prediction, material requirement prediction, etc. The pro-
duction management and control service platform com-
prises assembly process optimization, production logistic
optimization, manufacturing resources optimization,
work-hour optimization, shop scheduling, equipment
maintenance, etc. The systems that support the service/
application platform are enterprise information systems
(e.g., MES, PLM, ERP, PDM), a big data-based predic-
tion and analysis system, and a digital twin technology-
based prediction and analysis system. The prediction ser-
vice platform is the premise of predictive management
and control, which provides foresight information for the
production management and control service platform. On
this basis, the production management and control service
platform can realize dynamic, real-time, or predictive op-
timized management and control of manufacturing re-
sources, production activities, and production processes
in the satellite assembly shop-floor.
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5 Key technologies

Based on the proposed framework, this paper illustrates in
detail four key technologies. They are as follows: (1) real-
time acquisition, organization, and management of the physi-
cal assembly shop-floor data, (2) construction of the assembly
shop-floor digital twin, (3) digital twin and big data-driven
prediction of the assembly shop-floor, and (4) digital twin-
based assembly shop-floor production management and con-
trol service.

5.1 Real-time acquisition, organization,
and management of the physical assembly shop-floor
data

As mentioned in Sect. 2, an efficient method to collect, orga-
nize, and manage numerous assembly shop-floor data is one
of the main issues that impeding a satellite assembly shop-
floor in its entry to smart. We adopt a workflow technology-
based approach to realize data acquisition, organization, and
management in a satellite assembly shop-floor [39, 40]. This
approach can effectively organize andmanage assembly shop-
floor data. It promotes the shop-floor paperless production and
lays a solid foundation for the smart development of the sat-
ellite assembly shop-floor.

With the advances of sensor network, wireless network,
automation technology, semantic identification, and analysis
technology, a wide range of applications have been achieved
in manufacturing/assembly shop-floors with RFID as a repre-
sentative IoT technology. This meets the needs of
manufacturing/assembly shop-floors in real-time information
acquisition [41], material delivery [42], work-in-progress
(WIP) management [43, 44], product quality monitoring
[45], manufacturing cost tracking [46], adaptive production
process control [47], etc. Therefore, IoT technology can be
applied in a satellite assembly shop-floor to ensure the timeli-
ness of shop-floor data.

Additionally, the digital twin concept provides a new solu-
tion to data management. In the case of a product, the product
digital twin acts as a single data source throughout the product
lifecycle. It enables vendors to collaborate in the process of
product design, process planning, product assembly, product
use and maintenance, etc. In the satellite assembly shop-floor,
it is possible to achieve visualized and integrated management
of shop-floor data based on digital twin.

Below is a framework we propose for real-time acquisition,
organization and management of physical assembly shop-
floor data. It is realized by means of IoT, workflow, and digital
twin technologies, as shown in Fig. 4.

Smart access to manufacturing resources in the physical as-
sembly shop-floor Smart access to manufacturing resources is
the premise of real-time perception. Real-time perception

forms the basis of real-time data acquisition, which is the
foundation of real-time management and control. A
manufacturing resource that is equipped with sensing devices
(with perceptual or perceived ability) not only helps to achieve
its own business logic, but also enables interactive and collab-
orative work with other manufacturing resources [41]. At the
same time, place-fixed RFID readers or handheld RFID
readers at the entrance and exit of the warehouse, assembly
station, WIP buffer area, and other control areas can sense
RFID tags automatically in a timely fashion within the per-
ception scope. They retrieve the corresponding data to achieve
real-time perception and status updating of manufacturing
resources.

Real-time acquisition of physical assembly shop-floor data
The data collected in the physical assembly shop-floor are
divided into three categories: real-time perception data, pro-
duction process data, and production activity plan data. Real-
time perception data includes personnel status data, produc-
tion logistics status data, equipment operation data, etc.
Production process data refer to the data related to product
assembly process, including assembly progress data, comple-
tion data, work-hour data, product quality data, implemented
material data, assembly station status data, etc. Production
activity plan data comprises the data concerning the produc-
tion activity plan data, such as assembly plan data and material
distribution plan data.

In the production process, a series of events, such as
material flow, personnel flow, equipment operation, pro-
cess completion, and product inspection are main events.
Firstly, these events may trigger real-time perception of
manufacturing resources and generate real-time perception
data regarding the manufacturing resources. For example,
when a material is out of a warehouse, the RFID reader in
the warehouse exit perceives the RFID tag of the material
and obtains the material-related information. Then, the
middleware software estimates the location of the material
according to the location of the reader. After that, the rele-
vant data are transmitted to the database. In addition, these
events might trigger the collection action of production
process data. Secondly, real-time perception data and pro-
duction process data will drive shop-floor managers to dy-
namically optimize the production activity plans. In this
circumstance, production activity plan-related data are gen-
erated. Finally, the newly developed shop-floor production
activity plan is fed back to the physical assembly shop-floor
and guides the production second round. Thus, a series of
events might occur and form a closed-loop data acquisition
stream in the physical assembly shop-floor.

Assembly shop-floor data organization and management
Product bill of materials (BOM) is the data source of ma-
terial requirements in the assembly shop-floor, which
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passes through stages of product design, process planning,
and product assembly. Assembly shop-floor data can be man-
aged based on product BOM and digital twins. The detailed
approach is listed as follows. (a) In the product design stage,
the designer builds the product 3D model and develops the
product BOM. In the assembly process planning stage, the
technician draws the assembly process flowchart (formed by
process flow nodes with serial and parallel connection) for the
node of product or assembly/component on the BOM. The
process/step content information, inspection information,
and material information are structurally related to the process
flow nodes. (b) In the production scheduling stage, the dis-
patcher firstly receives the assembly production plan issued by
the ERP system. The assembly plan has not only already been
associated with the product node or assembly/component
node on the product BOM, but also structurally related to
the assembly process flowchart. On this basis, the assembly

plan is broken down into various assembly tasks, and the
assembly process flowchart is automatically combined with
each assembly task. (c) To further refine the scheduling, the
assembly task is decomposed into a daily plan. The daily
plan is structurally associated with one or more process
flow nodes. By this way, the process/step content informa-
tion, inspection information, and material information can
be structurally associated with an assembly process flow
node, a daily plan, an assembly task, and an assembly plan.
Therefore, the data related to production activity plans/
production process/manufacturing resources/products can
be well organized and managed based on product BOM.
On this basis, through the construction of digital twins
(e.g., product digital twin, assembly shop-floor digital
twin) and the mapping relationship between BOM and dig-
ital twins, the integrated management of assembly shop-
floor data can be realized.
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5.2 Construction of the assembly shop-floor digital
twin

To implement the proposed framework, the first task is to
build an assembly shop-floor digital twin in the virtual
space to map the physical assembly shop-floor using dig-
ital modeling technology. The digital twin can be built
considering the following three levels: element, behavior,
and rule. At the element level, the assembly shop-floor
digital twin is composed of shop-floor production ele-
ments’ geometric models and physical models, including
shop-floor model, production line models, assembly sta-
tion models, manufacturing resource models (assembly/
inspection/measurement/testing/logistics equipment
models, personnel models, material models), product
models, and environment models. At this level, the com-
monly applied tools that constructing 3D geometric
models are Pro/E, CATIA, SolidWorks, AutoCAD, etc.
Methods like finite element method (FEM) and boundary
element method (BEM) can be used to simulate the phys-
ical functions and performance of the elements. At the
level of behavior, the assembly shop-floor digital twin is
composed of elements’ behaviors and responsive mecha-
nisms, including the virtualized models of the personnel’s
act ions, equipment’s operat ions, and mater ia ls’
transportations. The most commonly used tools are
FlexSim, Unity3D, 3DVIA Composer, etc. At the rule
level, the assembly shop-floor digital twin consists of as-
sociation rule models among elements, shop-floor opera-
tion rule models, and evolution rule models, which ensure
that the operating mechanism of shop-floor digital twin
can match real situations and truly simulate the physical
shop-floor’s behavior, status, operation, and evolution.
Only with the use of these components can the shop-
floor digital twin truly achieve its functions of evaluating,
predicting, validating, and optimizing the production of
the physical shop-floor. To build these rule models, data
analysis algorithms, data mining algorithms and knowl-
edge mining algorithms are basic necessities.

To ensure the effectiveness and high fidelity of a digital
twin, there are some key issues needed to be studied: (1)
Methods to connect and fuse all the shop-floor models.
This is a premise of building a shop-floor digital twin.
Methods such as complex network and multi-agent can
be applied to tackle this issue. (2) Methods to validate
and test the accuracy of models. Tao et al. [37] proposed
a Verification Validation and Accreditation (VV&A)-based
method to solve the problem. However, some detailed im-
plementation technologies still need to be studied in the
future. (3) The mechanism, methods, and technologies of
operating and evolving models. Tao et al. [37] provided a
feasible models operation and evolution mechanism that
can be used as a guideline for the future work. The

methods and technologies that are involved in the mecha-
nism are still in its infancy. (4) Methods to implement the
interaction and interconnection between shop-floor data
and shop-floor models. It is the basis of applying a shop-
floor digital twin, since a digital twin is a dynamic model
that is in coherence with its physical counterpart. For ex-
ample, when a component has been installed on a product,
the workers will collect completion data and implemented
material data. Thenceforth, driven by the collected data,
the corresponding 3D model should transform from empty
to solid in a timely fashion so that the digital twin can
intuitively reflect the real condition in the physical space.

5.3 Digital twin and big data-driven prediction
of the assembly shop-floor

At present, predictive manufacturing is mainly applied at the
product use and service stage, including fault diagnosis and
prediction, predictive maintenance and repair, and equipment
health management and life prediction. However, it is rarely
involved in the product assembly stage. It is an urgent demand
to realize predictive management and control in the assembly
shop-floor for assembly enterprise. In comparison with tradi-
tional “small” data analytical tools, big data application has
the following characteristics: (1) From passive processing to
active prediction. With big data, it is possible and feasible to
predict incoming disturbances at the beginning of production
process. The workers can take actions proactively to prevent
or resolve the possible disturbances in advance. (2) From cau-
sality analysis to relevance analysis. With big data, the analyt-
ical model for optimization and decision-making is trans-
formed from a causal relationship analysis model to a corre-
lation analysis model. This provides a new approach for
product/process optimization and decision-making, especially
for large-scale resource combination and optimization prob-
lems. Moreover, as mentioned above, digital twin technology
not only takes advantage of mankind knowledge to establish a
virtual model, but also utilizes virtual model simulation tech-
nology to explore and predict the unknown world. It provides
new concepts and tools for current manufacturing innovation
and progress. It is a novel way to explore and predict the
future.

Below we propose a prediction framework for the satellite
assembly shop-floor, in combination with digital twin and big
data, as shown in Fig. 5.

Big data-driven prediction process For a specific prediction
requirement, big data-based prediction service platform calls
the corresponding prediction model that is encapsulated in the
service platform. The input consists of historical data, experi-
ences, knowledge, and the real-time data collected in the phys-
ical assembly shop-floor. The output is theoretical prediction
values/results.
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Digital twin-driven prediction process First, real-time data
collected in the physical assembly shop-floor should be asso-
ciated with the assembly shop-floor digital twin. In this case,
the shop-floor managers can visually and dynamically track
and monitor the operation condition of the physical shop-floor
through the shop-floor digital twin. Then, the digital twin-
based prediction service platform drives the assembly shop-
floor digital twin to simulate the future’s production operation
of the physical assembly shop-floor. Finally, the simulation
results generated by the shop-floor digital twin will feed back
to the service platform.

Comparison, analysis and optimization of prediction results
The theoretical analysis results, based on big data, are com-
pared with the simulation findings based on digital twin tech-
nology. It can not only achieve an effective accuracy evalua-
tion for prediction results, but also maintain improvement of
the big data prediction models and digital twin models to
achieve more accurate prediction.

5.4 Digital twin-based production management
and control service

Based on digital twin technology, Fig. 6 depicts a production
management and control service framework for the satellite
assembly shop-floor.

Map between the real-time data collected in the physical
assembly shop-floor and the corresponding model in the as-
sembly shop-floor digital twin It makes certain that the as-
sembly shop-floor digital twin in the virtual space can

truly reflect and mirror the operation condition of the
physical assembly shop-floor. The condition can be
reflected by the working status and working progress of
manufacturing resources (personnel, equipment, and ma-
terials), products, assembly stations, and production
processes.

Real-time decision-making based on the dynamic data col-
lected in the physical assembly shop-floor The application
scenarios include temporary assembly tasks added, prod-
uct lead time changed, equipment shutdown or failure,
product quality problems found, product design and pro-
cess changed, and other kinds of production disturbances.
Moreover, with the prediction results obtaining from the
prediction service platform, the production management
and control service platform can carry out predictive de-
cision-making.

Initial control scheme simulation in the assembly shop-floor
digital twin The simulation results can be utilized to evaluate
the feasibility and effectiveness of the scheme. Repeating this
closed-loop process in a reasonable time range can result in
the most optimal production control scheme. It is our aim to
apply those findings to guide the production of the physical
assembly shop-floor.

6 A case study

Figure 7 depicts the implementation process for digital twin-
based smart production management and control in a satellite
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Fig. 5 Digital twin and big data-driven prediction framework for the satellite assembly shop-floor
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assembly shop-floor. The process consists of twomain phases:
the construction phase and the operation phase.

6.1 Construction phase

The construction phase contains two parts, i.e., the construc-
tion of shop-floor IoT networks and the construction of a
shop-floor digital twin.

6.1.1 Construction of shop-floor IoT networks

According to the requirements of production control and
data acquisition in the satellite assembly shop-floor, shop-
floor IoT networks should be constructed to realize the
real-time perception and data acquisition. It enables real-
time and dynamic monitoring and tracking of manufactur-
ing resources. The concrete realization method can draw
in the references [48, 49], which includes, primarily two
steps: (1) Identify manufacturing resources uniquely using
RFID tags and bar codes, so that manufacturing resources
can be perceived. (2) Build an industrial LAN, wireless
and mobile networks, Bluetooth, and RFID sensor net-
works in the shop-floor to implement smart perception
of manufacturing resources and transmission of real-time
data. Real-time data normally need to be pre-processed in
the middleware software to produce available information
for enterprise information management systems (e.g.,
MES) processing and utilizing.

6.1.2 Construction of a shop-floor digital twin

The details on how to build a shop-floor digital twin are
described in Sect. 5.2. The sketch interfaces of construct-
ing a digital twin for a satellite assembly shop-floor are
shown in Fig. 8.

6.2 Operation phase

6.2.1 Real-time acquisition and organization of the assembly
shop-floor data

The data collected in a satellite assembly shop-floor consists
of three categories: (1) Real-time perception data of
manufacturing resources, collected byRFID, sensors, and oth-
er sensing technologies. It includes personnel status data,
equipment operation data and production logistical data. (2)
Production process data collected by human-computer inter-
actions. It includes the completion data (can be used for as-
sembly progress statistics), work-hour data, product quality
data, implemented material data, and reverse problem data.
(3) Production activity plan data (including the initial plan
data and updated plan data) generated by the as-built intelli-
gent optimization algorithms or manual fine-tuning. The in-
terfaces of collecting and organizing a satellite assembly shop-
floor data are shown in Fig. 9.

6.2.2 Operation of the satellite assembly shop-floor digital
twin

This step consists of two levels: The first one is to mirror the
working status and working progress of the physical satellite
assembly shop-floor dynamically, visually, and accurately in a
timely fashion. For example, before assembling a satellite, we
can set its 3D model as empty. When a worker assembles a
structure board, the corresponding structure board model be-
comes solid automatically. If the structure board is with a
quality defect, the color of the corresponding model becomes
yellow. So we can mirror the assembly progress and status of
this satellite in a timely fashion. Moreover, it also records the
entire operation processes of the physical assembly shop-floor
to ensure data traceability. The other one is to predict the
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future working status and working progress of the physical
assembly shop-floor. For example, when a worker completes
the first procedure, the completion data, fact hour data, imple-
mented material data, measure data, etc., are available to col-
lect. If the operator noticed that the second procedure is a key
procedure, he or she may call the service platform to run the
shop-floor digital twin to discover if some anomalies occur in
operating the second procedure.

6.2.3 Production services for the satellite assembly shop-floor

Production services for a satellite assembly shop-floor can be
divided into three categories. (1) Manufacturing resource
management services. It consists of personnel management,
material management, and equipment management. (2)
Production activity planning services. It comprises two cate-
gories: one is assembly shop-floor production scheduling, and
the other one is material distribution and path planning. The
shop-floor scheduling consists of two parts, i.e., static shop-
floor scheduling and dynamic shop-floor scheduling. The

material distribution and path planning also incorporates static
and dynamic types. According to driving factors, it consists of
proactive distribution and passive distribution. (3) Production
process control and optimization services. The following are
detailed functions of production process control and optimi-
zation services. (a) Product quality control and optimization.
Product quality includes product geometric accuracy, physical
characteristics, function characteristics, and performance char-
acteristics. (b) Production progress control and optimization.
(c) Manufacturing resource control and optimization. It in-
cludes logistics monitoring and control, personnel status mon-
itoring and control, and equipment status monitoring and con-
trol. (d) Assembly station status monitoring and configuration
optimization.

When a worker completes an assembly procedure of a sat-
ellite, procedure-related data (such as measuring data, prog-
ress data, implemented material data) must be collected before
the operation of the next procedure. By comparing the plan-
ning progress and the actual progress, the service/application
platform uses heuristics or meta-heuristic algorithms (e.g.,

Fig. 7 Implementation process for digital twin-based smart production management and control in a satellite assembly shop-floor
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GA, TS, PSO) to implement dynamic scheduling of the as-
sembly plan with the current condition of manufacturing re-
sources, e.g., personnel status, equipment operation condition,
equipment utilization condition, material inventory, and logis-
tics status. Moreover, through the comparison of product de-
sign and measured values, dynamic compensation of product
accuracy can guarantee product quality. Below we take the
tolerance analysis of the optical system in a satellite as an
example to illustrate the process. First, the detect system in
the physical world will transmit the collected measured/test
results to the product digital twin in virtual space and compare
themwith the design target. Then, the manufacturing error and
the assembly adjustment error can be calculated and analyzed
based on the consistency. The process compensation can be
evaluated in the process parameter calculation module.
Afterwards, the processing errors and equipment error are
compensated and controlled according to the requirements
of system stability and consistency. Finally, the overall system
compensation performance can be evaluated. The personnel

can drive the actuator to complete compensation through the
assembly operation. Alternatively, through optimizing the as-
sembly parameters, it is possible to predict the final optical
performance, anti-vibration, and warm red ability of the sys-
tem according to the measured data. Therefore, the personnel
can make preventive decisions following the prediction
results.

6.2.4 Feedback operation of the physical assembly shop-floor

In this step, the optimal schedule of production activity plan
generated by the shop-floor service/application platform is fed
back to the physical assembly shop and drives its operation. In
the operation of the physical assembly shop-floor, a large
amount of production process data and real-time data will be
generated. It enables real-time acquisition and organization of
the physical assembly shop-floor data. Thus, the operation
phase is a continuous process with the characteristics of dy-
namic adjustment, iterative optimization, and closed-loop

Fig. 9 Interfaces of collecting and organizing a satellite assembly shop-floor data

Fig. 8 Sketch interfaces of constructing a digital twin for a satellite assembly shop-floor
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control. In this process, the allocation of manufacturing re-
sources, the progress of production activity plans, and the
logistics efficiency of the satellite assembly shop-floor tend
to be optimal or near optimal. It can reduce the negative im-
pact of shop-floor uncertainties and play an important role in
reducing the assembly cost. Meanwhile, it can control product
quality, improve productivity and production efficiency, and
ensure the delivery rate. For example, due to the advent of
production disturbances, the original schedule of an assembly
plan is invalid and the dispatcher should reschedule or adjust
the plan accordingly. Then, the newly made schedule is sent to
the physical assembly shop-floor. Thus, the corresponding
materials can be conveyed to the appointed assembly station.
Workers in the shop-floor may conduct assembly operation
using these materials and collect implement material data.
Afterwards, the checkers measure and record the values of
key parameters of the product. When a procedure is fully
completed, workers and checkers collect completion data
and work-hour data. If disturbances occur and cause a signif-
icant delay of the plan in the operation process, the dispatcher
will reschedule or adjust the plan again in the service platform
and send the updated plan to the physical shop-floor to guide
the production.

7 Conclusions and future work

In recent years, with rapid development of new-generation
information and communication technologies, such as IoT,
big data, mobile Internet, and AI, the era of big data has ar-
rived. Meanwhile, as the key technology of CPS, digital twin
has gained wide attentions from domestic to international
scholars and companies. Thus, it is of importance to apply
digital twin and big data technologies to the manufacturing
field to promote the implementation of smart manufacturing
in the assembly shop-floor.

The main contributions of this paper are as follows. (1) It
provides prediction services for a satellite assembly shop-floor
by integrating digital twin and big data technologies, which
promotes the realization of predictive manufacturing in the
product assembly stage. (2) We propose a framework of dig-
ital twin-based smart production management and control for
a satellite assembly shop-floor, which is a feasible and novel
solution to the implementation of a smart assembly shop-floor.
(3) We present a case study to illustrate how to apply the
proposed framework practically in a satellite assembly shop-
floor.

This study attempts to explore the application method
of digital twin-based smart production management and
control for the complex product assembly shop-floor. At
present, this research is in its infancy and still requires a
lot of work. Future research on this topic needs to be
undertaken as follows: (1) construction and optimization

of IoT networks in a physical assembly shop-floor; (2)
construction, running, and optimization of an assembly
shop-floor digital twin; (3) construction of an assembly
shop-floor big data management platform; (4) construc-
tion and optimization of big data-driven prediction models
and algorithms; (5) modeling and implementation of
smart decision-making and optimization algorithms; and
(6) more applications of digital twin and big data technol-
ogy in the complex product assembly shop-floor.
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