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Abstract
This work aims at the establishment of methodology to model and analyze the thermal errors of a five-axis CNC machining center,
from an estimated temperature field, to finally model an artificial neural network (ANN) algorithm to accurately predict with
robustness the thermal error. The thermoelastic behavior of the machining center was modeled through two different approaches:
experimental (or data-driven) model and numerical (or physical) model. The thermal behavior of the machine was first modeled
using finite element method (FEM) techniques based on theory of friction heat and convection heat and validated with the various
experimentally raised temperature fields using temperature sensors and thermal imaging. The main machine subsystems were
initially validated, such as ball screw system, linear guides, and spindle, which allowed for validating of the thermal behavior of
the entire machine for five different duty cycles obtaining a maximum error of less than 8% when comparing the numerical results
with the experimental results. The components of the thermal errors in X, Y, and Z directions were obtained through FEM by
measuring the displacement of the spindle tip in relation to the reference bushing located on the worktable. The same procedure
was experimentally performed using a touch probe system clamped in the spindle, and the results were compared obtaining a
maximum deviation of 17μm. The validation of the finite elementmodel allowed for the use of the results obtained by the simulation
to train and validate an ANN for predicting the thermal errors of the machining center. The relative errors between the thermal errors
predicted by the ANN and the FEM simulation results were less than 1% indicating that themethodology developed in this work that
combines the use of physical models with data-driven models is an accurate and robust tool to predict the thermal errors of the
machine for various working conditions, even with the machine moving at different speeds or alternating the movement of the axles.

Keywords Thermal error . Finite element method . Machine tools . Precision . Accuracy . Robustness . Metrology . Artificial
neural network

Nomenclature
Tb Total friction torque in a ball bearing (N m)
Tbl Friction torques due to the applied load in a ball bear-

ing (N m)
Tbv Friction torques due to the viscous effect in a ball

bearing (N m)

Hbf Total friction heat generated in a ball bearing (W)
Tn Total friction torque of the ball screw nut (previous

load and dynamic load) (N m)
Hn Total friction heat generated by the ball screw nut (W)
Fgf Frictional force in the linear guide (N)
Hgf Total friction heat generated by the linear guide (W)
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Ph Magnetic power loss in the spindle motor (W)
PCU Electrical power loss in the spindle motor (W)
Pf Mechanical power loss in the spindle motor (W)
Hm Total heat generated in the spindle motor (W)
h1 Forced convection coefficient between ball screw

shaft and ambient air (W/m2 K)
V Slide unit speed for the three linear axes—X/Y/Z

(m/min)
L Machine stroke considered during the experimental

tests (mm)

1 Introduction

The accuracy of machined parts, which is defined by the degree
of conformity of the finished parts considering the geometric and
dimensional specifications, is highly dependent on the perfor-
mance of the machine tools. The accumulation and propagation
of the errors through the kinematic structure of the machine tool
is ultimately manifested directly in the dimensional variation of
the machined parts [1]. Errors classified as quasi-static, such as
geometric, kinematic, and thermal errors, are among the largest
contributors of machine tool errors [2]. According to studies
carried out by Bryan [3] andAronson [4], thermal errors account
for 40–70% of total machine tool errors. Therefore, the interac-
tion between these errors must be modeled, controlled, and
planned to ensure that the dimensions of the machined parts
are in accordance with the increasingly demanding design spec-
ifications. Nowadays, machine tool manufacturers are continu-
ously assuming the responsibility for the control of thermally
induced displacements. This change occurred due to machine
tool users realizing that machines which are similar in perfor-
mance may present significantly different thermal errors [5].
According to [6], there are a lot of different approaches to model
the thermoelastic behavior of machine tools in order to compen-
sate occurring errors. Generally, these approaches can be divided
in phenomenological models and physical models.
Phenomenological models use empirically proven correlations
between input parameters (e.g., temperatures) and an output val-
ue (e.g., tool center point (TCP) displacement). Experiments are
carried out at different loads, and the results over time are ap-
proximated by a regression model (RM) or artificial neural net-
works (ANN) for example. Physical models as finite element
method (FEM) models distinguish the calculation of thermally
induced errors into the calculation of the temperature distribution
using thermal load data and the calculation of the distortions in
order to determine TCP deviations. This approach, based on the
consideration of the underlying physical effects, enables an ex-
trapolation so that any thermal load can be considered. At the
same time, the separation into a calculation of the temperature
field and a calculation of the distortions enables real-time appli-
cations [6]. In his research, Liu et al. [7] classified the thermal
error modeling methods in data-driven model (DDM) and

physically based model (PBM). The DDM model is based on
the experimental data survey to represent the relation between
the thermal error and the temperature of the machine tool, and
then map thermal natural phenomena to mathematical equations
while the PBMmodel allows to express the thermal behavior by
explicit or implicit mathematical formula and does not need
enough data to train models. According to Liu et al. [7], the
advantage of PBM is that the model is designed based on heat
transfer theory and geometrical structure, so the forecast bias will
be small. Some techniques have been developed and implement-
ed in machine tools to reduce the influence of thermal errors,
including thermally symmetric machine design [8, 9], the intro-
duction of additional cooling systems [10, 11], and thermal error
compensation through measurements and simulation [12], as
shown in Fig. 1.

In the last two decades, the International Organization for
Standardization (ISO) published several standards such as
ISO 230-3 [13], concerning temperature distortion of machine
tools; ISO 10791-10 [14], concerning temperature distortion
of machining centers; and ISO 13041-8 [15], concerning tem-
perature distortion of turning machines. The thermal behavior
of rotary axes is not included in any international standard yet
and can only partly be derived fromwhat has been specified in
ISO 230-3 for linear axes, spindles, and the environmental
temperature influence [6]. These standards provide methods
for a systematic analysis of the thermal behavior of machine
tools withmain spindles. The present work includes the ETVE
(environmental temperature variation error), as well as the
thermal distortions caused by rotating (main) spindles and
thermal distortions caused by moving linear axes. The mea-
surement of the thermal distortion between the tool side and
workpiece side is common in the standards, which usually
uses a test mandrel clamped in the spindle and a setup with
five displacement measurement devices fixed onto the table of
machining centers [16]. According to Mayr et al. [16], using
touch probes clamped in the machine tool spindle to detect the
thermally induced TCP displacements has some advantages.
With one probe, the thermally induced TCP displacements in
up to three directions can be detected, and the thermal distor-
tion can be detected at the center line of the machine tool
spindle. Touch probes are often used to measure the displace-
ments betweenmachining operations. In such cases, the tool is
replaced by a touch probe which detects the actual thermally
induced TCP displacements, and a measurement setup with
several detecting points is clamped at the table. The measure-
ment procedure described in the standards is used for machine
tools under no-load or finishing conditions [17].

Figure 2 shows two different procedures widely used to
ensure thermal stabilization in the machining processes at in-
dustry. Figure 2a illustrates a touch probe for measuring the
reference bushing located on the worktable, whereas Fig. 2b
shows the temperature measurement of the workpiece by a
probe clamped in the spindle. Both methods are used to
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compensate the thermal error in real time, though penalizing
the process with secondary time for both the measurement
process and the tool change.

By analyzing the possibilities, it can be concluded that it
may be more effective and profitable to compensate the ther-
mal error by establishing an accuracy and robust mathematical
model between thermal error and temperature. The thermal
error can be predicted by measuring the temperature of the
machine tool and compensating it in real time [18]. The accu-
racy and the robustness of the thermal error prediction model
play an important role in the compensation effect using the
method mentioned above. Robustness reflects the retention
capability of predicted accuracy under varying external con-
ditions, and it is a major indicator of the thermal error com-
pensation effect of machine tools [19]. Generally, the strength
of the correlation between the input variables of the model and
the thermal error determines the accuracy of the prediction

[20]. Since the temperature field of machine tools has nonlin-
ear or temporal variability, its distribution is extremely com-
plex. To obtain the temperature distribution, many tempera-
ture sensors are required, thus increasing the test costs and the
workload of measurement and calculation errors.
Simultaneously, the compensation model is affected by the
multicollinearity between the temperatures read [21].

Several studies have focused on finite element method
(FEM) and statistical methods to determine the appropriate
modeling of the compensation algorithm to minimize the ef-
fect previously mentioned. Attia and Fraser [22] employed the
FEM to analyze the overall temperature field of a CNC ma-
chine and divided the temperature field into a plurality of
regular units according to the temperature field obtained in
the simulation and the chosen correlation, thus determining
the optimum number and the best position of the temperature
measurement points. In [23], Xu et al. studied the influence of

Fig. 1 Alternatives for thermal
compensation in machine tool
and in machined part

Fig. 2 Geometrical and thermal
sensors. a Reference bushing and
its measuring probe. b
Temperature probe
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temperature variation of the bearings in the transfer of heat of
machine tools and improved the precision of the model of
thermal error by FEM. In [24], Creighton et al. used the
FEM to compensate the thermal error caused by the spindle
of a high speed micro-milling machine tool. Although FEM
has proven to be a good thermal error simulation feature in
machine tool components, few studies have simulated the
thermal behavior of the entire machine, mainly due to its com-
plex modeling process [16].

Therefore, the statistical method is currently the most used
to model the thermal error of machine tools due to its low cost
and ease of use [25]. This method establishes an estimated
thermal error when measuring actual thermal error and tem-
perature of machine tools. Vanherck et al. [26] applied the
ANN model to approximate complex multivariate nonlinear
relationships and thus effectively compensated for the thermal
deformation of multiaxis machine tools. Their results showed
that the maximum deformation was reduced from 150 to
15 μm, and the machining error was reduced from 75 to
16 μm with the application of the neural model.

In [27], Yang et al. used the multivariate linear regression
algorithm and neural network algorithm to establish the ther-
mal error model and proved that both algorithms provided
proper results. In [28], Mize and Ziegert used the neural net-
work algorithm, based on diffuse artificial resonance theories,
to establish a thermal error model to increase the robustness of
the model against noise in the input variables. In [29], Zhang
et al. established a thermal error model based on the combi-
nation of artificial neural networks and gray system theory,
which can improve the learning efficiency and accuracy of
the model. As studies highlighted show, statistical methods
such asmultiple linear regression, neural network, and support
vector machine algorithms are still commonly used nowadays.
The main idea behind modeling using these algorithms is to
minimize the residuals of the model, thus guaranteeing robust-
ness in predicting the estimated thermal errors [25].

Some gaps observed in the literature that served as motiva-
tion for the development of this research were

& Several works where the modeling and analysis of the
thermal behavior of important subsystems of the machine
tools were carried out in isolation, without correlating the
combined effect of these components. As [30] that inves-
tigated the effect of thermal expansion on thermally in-
duced errors of the ball screw system, such as [24, 31,
32] that analyzed and modeled the thermal behavior of
the spindle, and as [33] that studied the effect of thermal
error on machine tool slide guide motion. In the present
work, all these subsystems were studied in an isolated way
and later in a combined way to evaluate the thermal be-
havior of the entire machine tool.

& Studies based only on physical models such as [34], which
modeled and simulated the thermal coupling for ball screw

in boring-milling machining center, or studies based on
experimental models such as [35, 36] that presented
modeling methods and compensation of thermal errors
based on data-driven acquisition. In the present work, a
combined methodology of the two methods was
developed.

& Few studies that studied the thermal behavior of a five-
axis machine tool due to the complex influence of rotating
axes on their kinematics.

Based on the research presented previously, this work,
which is focused on the industrial application, intends to de-
velop a combined methodology to study the thermal error of a
five-axis machining center. Themethodologywill allow to use
both the approach of phenomenological models with experi-
mental data collection and the physical approach that con-
siders the physical effects allowing an extrapolation of the
thermal load. With this combined methodology of the two
models, this work aims to increase the reliability of the predict
model developed and allow a joint analysis of design and
application engineering, to improve the thermal performance
of the machine in future applications.

2 Materials and methods

2.1 Introduction to experimental procedure

Figure 3 shows the schematic of the complete work strategy of
this research. However, this paper does not explore the imple-
mentation of the correction model in the CNC of the machin-
ing center. It is possible to observe in Fig. 3 that this work will
use two different approaches to model the thermoelastic be-
havior of the machining center in order to show that contrary
to what was presented in [6, 7], the phenomenological or data-
driven model (DDM), and the physical or physically based
model (PBM), can be complementary in order to achieve even
more accurate and robust results.

The data-driven or experimental model was based on tem-
perature and machine thermal error measurements for differ-
ent duty cycles. The physical or simulation model was based
on the modeling of the machine and its simulation through the
FEM. All data experimentally collected were used to validate
the finite element model of the machining center, as explained
later in this research. The simulated data collected from the
FEM analysis could be used to feed and train a neural net-
work, thus allowing the developed algorithm to predict the
behavior of the machine under untested working conditions.

Two main test stages were performed to survey the exper-
imental data which served as reference for validating the FEM
of the machine, classified as preliminary validation stage and
general validation stage, respectively.
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In the preliminary validation stage, only two subsystems of
the machine were evaluated, i.e., X-axis slide unit and (main)
spindle. The movement cycle was defined with an X-axis
speed of 30m/min, and the spindle was set with rotation speed
of 16,000 rpm in a 6-h cycle, with two more replicates being
performed, totaling 18 h of tests. Only the temperatures of the
ball screw nut and shaft, linear guide rail and carriage, and
spindle tip were measured during this stage. This preliminary
stage successfully permitted specifying and evaluating the
thermal behavior of ball screw and linear guide systems of
the X-axis, as well as the spindle of the machining center,
which enabled the validation of the FEM of said subsystems.
The success of the preliminary stage allowed the study of the
entire machine, which occurred in the second stage. In the
general validation stage, five different 4-h movement cycles
were carried out in the machining center to evaluate the total
thermal error, totaling 20 h of tests without replicates due to
the long time span demanded. The slide units of X, Y, and Z
axes were moved at two different speeds, simulating the usual
working speeds of the machining center in industry, as indi-
cated in Table 1.

The five cycles performed in this step were classified as
cycles #1, #2, #3, #4, and #5, respectively. In cycle #1, only
the X-axis was moving for a 4-h period with speed of V1 =
30 m/min, in a stroke, Lx = 800 mm. In cycle #2, only the Y-
axis was moving for a 4-h periodwith speed ofV2 = 30m/min,
in a total stroke Ly = 950 mm. In cycle #3, the Z-axis and the

spindle were moving for 4 h with speed of V3 = 30m/min, in a
total stroke Lz = 600 mm, and rotation speed of n =
10,000 rpm, respectively. In cycle #4, all three axes were
simultaneously moving with speed of V4 = 30 m/min and the
spindle was moving with rotation speed of n = 10,000 rpm.
Lastly, in cycle #5, the three axes were also moving; this time
at the speed of V5 = 20 m/min also with rotation speed of n =
10,000 rpm. A 14-h interval was taken between each cycle, by
stopping the machine to return it to room temperature.

The machine studied is a GROB five-axis universal CNC
machining center, which was installed in an environment with
excellent ± 2 °C controlled ambient temperature (Fig. 4). The
first goal in the experimental stage was to measure the com-
plete temperature profile of the machine under different work-
ing conditions using temperature sensors and thermal imaging
images. Simultaneously, the thermal errors in the X, Y, and Z
axis directions of the machining center were measured using a
touch probe. Thus, it was possible to evaluate the influence of
the temperature in different points of the machine and their
importance in the volumetric thermal error. In the next stage, a
model of the machine was developed through the FEM ap-
proach with validation for all analyzes experimentally
performed.

A total of 15 temperature sensors were installed in the
machine and distributed at strategic points in the machine
structure, aiming to accurately assess the thermal behavior of
the machine in the different movement cycles. Figure 5

Fig. 3 Thermal error model
research development strategy

Table 1 X/Y/Z axis slide unit
speed and ball screw rotation
speed of the machining center

X/Y/Z axis speed
(m/min)

X-axis ball screw rotation
speed (rpm)

Y-axis ball screw rotation
speed (rpm)

Z-axis ball screw rotation
speed (rpm)

20.0 667 1000 800

30.0 1000 1500 1200
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illustrates the exact placement of the 15 installation points of
the sensors. Sensor T14 was submerged in the coolant tank of
the machine to monitor the thermal behavior of the coolant
passing through the base of the machine. The room tempera-
ture monitoring sensor T15 was installed outside the machine
to avoid any influence.

Figure 6 shows photos of the temperature sensor T1
installed on the X-axis ball screw nut flange face (a) and the
sensor T2 installed on the X-axis motor bearing flange face
(b). An infrared camera was used to monitor the temperature
at difficult access points, although it also monitored the flow
of heat through the machine structure, thus confirming the
data obtained from the thermal sensors.

An M&H touch probe type IRP40.1 was used to measure
the displacement of the spindle tip in relation to the worktable.
Figure 7a shows the procedure for measuring the thermal er-
rors of the machining center, as well as the worktable and the
measuring probe clamped in the spindle.

Figure 7b illustrates the reference bushing located on the
side of the table and the probe tip close to the bushing, which
measures its center coordinate. One of the strategies of this
research was to evaluate the variation of the coordinates in the
directions of the X, Y, and Z axes over time, as the temperature
of the machine varies due to the friction generated in the

movement of its slide components. The initial measurement
is used as reference for the following thermal measurements,
to reduce the influence of the machine geometrical errors.

2.2 Numerical simulation of the temperature field
and thermal errors

Obtaining an analytical solution for the temperature field of
the machining center has proved to be a challenging task,
considering the transient heat flow in all directions and the
various sources of heat such asmotors, friction in the bearings,
ball screws, and linear guides, as well as the heat exchange by
natural and forced convection with the environment.
Therefore, the FEM was used to obtain the numerical solu-
tions for temperature fields and thermal errors of the entire
machine. The numerical solution can be similar to the analyt-
ical solution, once the machine model is correct and has a
suitable mesh and contacts, as verified by this research.

The reliability of the FEM simulation results also depends
on whether the boundary conditions, such as heat generated
and heat transfer coefficients, have been correctly defined.
ANSYS Workbench (WB) and Classic ANSYS Parametric
Design Language (APDL) were used to model and validate
the thermal behavior and transient thermal errors of the

sensor placement

T1 Ball screw nut (X-axis)

T2 Motor bearing flange (X-axis)

T3 Linear guide rail (X-axis)

T4 Ball screw nut (Z-axis)

T5 Motor bearing flange (Z-axis)

T6 Linear guide rail (Z-axis)

T7 Ball screw nut (Y-axis)

T8 Inside wall of column (Y-

axis)

T9 Motor bearing flange (Y-axis)

T10 Spindle tip (Z-axis)

T11 Spindle housing (Z-axis)

T12 Machine base

T13 Working area

T14 Coolant tank

T15 Room temperature

Fig. 5 Installation placement
points of the 15 thermocouples in
the machine tool

Fig. 4 The studied machining
center. a Schematic representation
of the five-axis kinematics. b The
machining center
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machining center. Initially, the thermal behavior of two
subsystems of the machining center was modeled and
analyzed, i.e., X-axis slide unit (particularly simulating
linear guides and ball screw systems) and spindle, in
order to validate the FEM model by comparing the re-
sults of the data experimentally collected. After this val-
idation, FEM analyses of the thermal errors for the en-
tire machine were performed and compared with the
errors experimentally measured during the five move-
ment cycles of the machining center. For the purpose
of this work, the use of FEM as an important method
of modeling and predicting thermal errors was based on
the following simplifying assumptions:

& Machining is not performed; thus, the chip effect is not
considered.

& The grooves in the ball screw shaft were disregarded:
hence, the ball screw shaft is a solid cylinder.

& The friction coefficient between the nut and the ball screw
shaft surfaces, as well as between the bearings and the ball
screw shaft, has constant value according to the manufac-
turer’s specifications.

& The convective coefficients have constant values and were
calculated according to the geometrical conditions of the
machine components in addition to their movement
situation.

& The effect of conduction of heat through lubricants and
thermal deterioration was disregarded.

The general considerations for the FEM analyzes were as
follows:

& Material of the machine base: steel St37-2-DIN 17100
(ISO 630-Fe360B)

& Ball screw shaft and linear guide rail material: steel AISI
52100-DIN 17230

& Slide unit housing material (X, Y, and Z): ductile cast iron
GGG-60-DIN 1693-1/2

& Total analysis interval: 0 to 21,600 s
& The thermal mapping of the machine was considered ev-

ery 360 s
& Thermal boundary conditions: based on the theory of heat

convection and friction heat generated between the sliding
elements of the machine

The heat generated by the friction was calculated for
the subsystems that provided the highest heat rate for
the machine, such as spindle, linear guide, and ball
screw system and applied directed to the surfaces of
the sliding elements. The forced convection coefficients
for these components were also calculated. The analyti-
cal models used to calculate the thermal boundary con-
ditions (TBC) are presented next.

2.2.1 Heat generation in bearings

The largest portion of the system heat generation is caused by
the process of machining and friction between the balls and
the bearing tracks [37]. However, in most cases, the machin-
ing heat is removed by the coolant and the chips; therefore, the
friction between the balls and the bearing tracks is the pre-
dominant reason for raising the temperature of the system.
According to Jafar [38], the total friction torque in a bearing
is a measure of the energy loss in the contact surfaces of the
bearing components, as well as the energy loss due to the
viscous friction. The analytical estimate of the friction torque
is overloaded with a multiplicity of factors, such as the friction
between the rolling elements and the tracks and the cage, and
the change in lubricant viscosity due to the increase in tem-
perature, and therefore is accompanied by uncertainties [39].

An empirical relationship proposed by Palmgren [40]
was used here, which was found to produce realistic
results in notes of [41, 42]. Note that these formulas
assume that there is an elastohydrodynamic film be-
tween the contact surfaces on the bearing side. The total
friction torque in a ball bearing is given by Palmgren
[40] using the relationship noted on [37, 41].

Tb ¼ Tbl þ Tbv ð1Þ

where Tbl and Tbv are, respectively, the friction torques due to
the applied load and the viscous effect. The modified equation
to consider the effect of the induced thermal preload [41] is as
follows:

Tbv ¼ 0; 8 f v μvnð Þ2=3 rin þ rbð Þ3 ð2Þ
Tbl ¼ μl f l Fn þ Ftð Þ rin þ rbð Þ ð3Þ
where fv and fl indicate the coefficient of rolling friction and
the coefficient of sliding friction, respectively. Fn and Ft are
the normal contact force and the thermally induced preload,
respectively. The radius of the inner ring and the radius of the
sphere are rin and rb, respectively, and μv is the viscosity of the
lubricant. The speed rotation is indicated by n in rpm, and fl is
a coefficient related to the bearing direction, which depends
on the bearing design as specified in the manufacturer’s cata-
log. The total friction heat generated is given by

Hbf ¼ 2πn
60

Tb ð4Þ

2.2.2 Heat generation on ball screw nut

According to Xu et al. [42], the principle of heat genera-
tion in the ball screw nut is very similar to that of ball
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bearings in general. The heat is mainly generated by the
friction between the balls and the grooves of the nut and
between the balls and the grooves of the shaft of the ball
screw. The nut load consists of two parts, i.e., the preload
and the dynamic load. The total friction heat generated by
the ball screw nut can be defined [43] as

Hn ¼ 0; 12π f 0v0nTn ð5Þ

where Hn is the total friction heat rate generated by the nut, f0
is a factor related to the nut type and lubrication method, v0 is
the kinematic viscosity of the lubricant, n is the rotation speed
of the ball screw, and Tn is the total friction torque of the nut
(previous load and dynamic load).

2.2.3 Heat generation in the linear guide

In contrast to the heat generation model of bearings,
which was developed by several researchers, the model-
ing of heat generation in linear guides has not been
addressed [44]. The total frictional heat generated in a
linear guide comes from the frictional force between the
rolling elements, the rail, and the carriage. Almost all

friction loss in a bearing is turned into heat inside the
bearing itself, raising the bearing temperature. The total
friction heat generated by the linear guide can be
expressed as the heat rate (Hgf) under [45]

Hgf ¼ ηFgf V ð6Þ

where Fgf is the friction force in the linear guide calcu-
lated from Eq. (7) and V is the speed. According to
Cheng et al. [46], the friction force is a composition
of the Coulomb friction force, the viscous friction, and
the Stribeck effect force, which results in

Fgf ¼ 0:315−0:03pcð ÞP � 10−3 þ 1:52pcLb
vie−0:067 T−Tið Þ e

−V=0:015

þ Lb 0:003LbpcVvie
−0:067 T−Tið Þ þ 0:029

� �
ð7Þ

where P is the external load, pc is the preload class, and
v is the kinematic viscosity. For the purpose of this
study, the friction force was assumed to be completely
converted into heat (η = 1) [45]. Subtracting Eq. (6) in

Fig. 6 Details of the
thermocouple sensor placement
on the machining center. a
Thermocouple T1 installed on the
X-axis ball screw nut flange face.
b Thermocouple T2 installed on
the X-axis motor bearing flange
face

Fig. 7 a View of the machining
center’s working area. b Detail of
the reference bushing on the
worktable and the probe tip
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Eq. (7) gives a relation for the generation of friction
heat in the following way:

Hgf ¼ 0:315−0:03pcð ÞVP � 10−3

þ V
1:52pcLb

vie−0:067 T−Tið Þ e
−V=0:015

þ VLb 0:003LbpcVvie
−0:067 T−Tið Þ þ 0:029

� �
ð8Þ

This model facilitates obtaining various rates of friction
heat by changing the operating parameters. The heat rate in-
creases with increasing operating parameters such as speed
(V), external load (P), and preload class (pc).

2.2.4 Heat generation in the spindle

The models for the estimation of the thermal power of the
bearings and the motor of the spindle are established as
follows:

Bearings Generally, bearing heat is generated in the contact
areas due to the friction between the balls and the internal and
external tracks [37]. Thus, the thermal energy modeling Hbf

(W) of the front and rear bearings of the spindle can be deter-
mined by Eq. (4) previously presented.

Motor The total heat generated Hm (W) in the motor is mainly
attributed to its magnetic power loss Ph (W), electrical power
lossPCU (W), and mechanical power lossPf (W), disregarding
the additional loss [47]:

Hm ¼ Ph þ PCU þ P f ð9Þ

In Eq. (10), the magnetic loss Ph (W) contains the loss of
hysteresis Pt (W) and the current loss of eddy P (W), which
can be calculated by

Ph ¼ Pt þ PE ð10Þ

Fig. 8 Thermal behavior of the
machine measured by the 15
sensors during cycle #4

Fig. 9 Machine tool thermal error
measurement during cycle #4
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being

Pt ¼ CfB2
max ð11Þ

PE ¼ π2t2 fBmaxð Þ2
6ργc

ð12Þ

In Eq. (11), C is a constant value related to the electric steel
grades, f (s−1) is the magnetization frequency, Bmax (T) is the
maximum magnetic flux density, t (m) is the thickness of the
silicon steel sheet, and γc (kg/m

3) and ρ (Ωm) are the density
and electrical resistivity of the iron core, respectively.
Additionally, the electrical loss PCU (W) in Eq. (13) can be cal-
culated by

PCU ¼ I2ρCL
S

ð13Þ

In Eq. (13), I (A) is the current and ρc (Ωm), L (m), and S
(m2) are, respectively, the resistivity, length, and section area
of a conductor. Finally, the method for calculating of the me-
chanical loss Pf (W) in Eq. (14) is

P f ¼ πC
0
ρarω

3R4
f L f ð14Þ

In Eq. (14), C′ is the coefficient of friction, Rf (m) and Lf
(m) are the outer radius and the length of the rotor,ϖ (rad/s) is
the angular rotor velocity, and ρar (kg/m

3) is the air density.

2.2.5 Coefficient of heat transfer by convection

The heat dissipation modeling of ball screw system,
linear guide system, and spindle mainly includes natural
convection heat transfer between their outer surface and
the air, as well as forced convection heat transfer be-
tween the movable parts and the circulating air. A liter-
ature review on the convection coefficient formulations
used in this research is presented next.

Forced convection between ball screw shaft and ambient air
Heat transfer by forced convection between the nut and
the shaft and forced convection of the shaft with the
cooling fluid was considered in [48]. During the work
cycle of the machining center, the ball screw spins at a
certain speed, which will accelerate the convection with
the air. This is known as the forced convection and the

Fig. 10 Experimental and numerical analysis of the spindle a photo, b thermal image, and c spindle FEM meshing
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heat transfer coefficient (W/m2 K) by convection, de-
fined [49] as

h ¼ Nukfluid=d ð15Þ
being Nu the Nusselt number, which is calculated from the
Reynolds number Re and the Prandtl Pr number as shown in
Eq. (15), kfluid is the thermal conductivity of ambient air, and
“d” is the outside shaft diameter (mm) when convection oc-
curs on the outer surface of the cylinder, as seen in this work.

Nu ¼ 0:133Re2=3Pr1=3 ð16Þ
where

Re ¼ ufluidd=vfluid ð17Þ
Pr ¼ cfluidμfluid=kfluid ð18Þ

In Eq. (17), ufluid is the air flow velocity and vfluid is the
kinematic viscosity of the air. In Eq. (18), cfluid is the specific
heat capacitance of air and μfluid is the dynamic viscosity of the
air. Thus, the convective coefficient of the external surface of the
ball screw shaft “h1” in Eq. (19) in [44] can be easily found.

h1 ¼ 0; 133� u1d1
vfluid

� �2=3

� cfluidμfluid=kfluid
� �1=3

� kfluid ð19Þ

where u1 is the relative velocity on the outer surface of the ball
screw shaft and d1 is the external diameter of the shaft.

Forced convection between the spindle and the ambient air
When the spindle rotates, air circulates around its surfaces at a
constant velocity, which according to [50] can be modeled as
air along a flat plate characterizing convection forced by

h4 ¼ 0:664
k
l
Re1=2Pr1=3 ð20Þ

where

Re ¼ u2l
v

; ð21Þ

u ¼ πd2n
60

; ð22Þ

l ¼ πd2 ð23Þ

where u2 is the relative velocity on the outer surface of the
spindle and d2 is the external diameter of the spindle.

3 Results and discussion

This paper presents the experimental data from representative
cycle #4 only, since there are several batches of experiments
which could not provide all the experimental data. The

Fig. 12 Experimental and numerical analysis of the X-axis linear guide a photo, b thermal image, and c finite element meshing
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Fig. 13 Comparison of the
thermal behavior of the linear
guide: experimental sensor
reading T13 versus temperature
predicted by FEM analysis
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temperature curves experimentally read by the 15 sen-
sors are shown in Fig. 8. The thermal stabilization of
the spindle could be observed after approximately
60 min, while the ball screw nut and the motor bearing
flange of Y-axis reached the highest temperatures and
stabilized only after approximately 4 h.

Figure 8 demonstrates also that the temperatures read
by the sensors T7 and T9 located in the ball screw nut
and in the bearing motor flange of the Y-axis showed
the highest increase, particularly in this machine move-
ment cycle in which the three linear axes were driven.
Subsequently, there was an increase in the temperature
of the spindle tip, which had a faster stabilization, and
in the temperature of the ball screw motor bearing of X
and Z axes, respectively. Similarly, the ball screw nuts
of X and Z axes showed high temperatures, displaying a
comparable behavior. The temperatures T11, T12, and
T13, which represent the temperatures read on the spin-
dle housing, machine base, and working area, respec-
tively, showed small variations caused by the heat gen-
eration in the servo-motors, as well as the heat friction
of the components in their related motion. Finally, the
temperature of the coolant and the ambient temperature
did not undergo significant changes, as expected.

Figure 9 shows the experimental thermal error in the X/Y/Z
axis direction obtained during cycle #4. Observed in Fig. 9 is
that the values of thermal error measured during cycle #4 in
the X and Y directions are similar, however having slightly

different values, indicating the increase in error coinciding
with the increase in temperature of the respective slide units.
The error in the Z direction indicates an approximation of the
spindle tip in relation to the worktable, which was expected by
analyzing the assembling conditions. The other experimental
results of the thermal errors obtained during cycles #1, #2, #3,
and #5 will be shown in comparison with the results from the
FEM simulation later in this paper.

3.1 Numerical simulation of machine subsystems

The thermal simulations were carried out in the machining
center’s X-axis slide unit comprising the ball screw and linear
guide systems, in addition to the spindle. The FEM results
were constantly compared with the experimental results in
order to validate the transient thermal behavior simulated at
ANSYS. The thermal loads and the heat transfer coefficients
by convection were calculated using the equations previously
mentioned for all the analyzed cases. This step aimed to eval-
uate the use of numerical modeling using the thermal bound-
ary conditions based on the theory of frictional heat and heat
convection.

3.1.1 Spindle transient thermal analysis

The heat generated in the rear bearing equaled 147 W; the heat
generated in the front bearing equaled 93 W, and the heat gener-
ated in the motor equaled 342 W, with a spindle speed of

Fig. 14 Experimental and
numerical analysis of the X-axis
nut a real image, b thermal image,
and c finite element mesh (FEM)
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Fig. 15 Comparison of the
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predicted by simulation
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16,000 rpm, considering the surrounding air. The front
bearing displayed a restriction to the axial displacement
to decrease the effect of the spindle tip expansion,
whereas the rear bearing moved freely in the axial di-
rection. The forced convection heat transfer coefficient
on the outer surface of the calculated spindle tip was
58 W/m2 K. Figure 10 shows the photo of the spindle
tip in the machining center (a), its thermal image (b),
and the finite element meshing (c). A 10-node tetrahe-
dral mesh with 20-mm element was used.

Figure 11 shows the graph of the comparative evolution
of the thermal behavior during the experimental measure-
ments and the numerical analysis during a 6-h operation
with a 16,000 rpm speed. Note that the experimentally
measured temperature increased quicker than the tempera-
ture obtained through the simulation. This is due to the
need to adjust the forced convection thermal boundary
condition at spindle tip. However, observe that both tem-
peratures reached virtually the same final temperature. The
final temperature obtained in the spindle tip region by FEM
was 40.89 °C, whereas the temperature obtained experi-
mentally was 39.40 °C with a relative error of 3.8%. The
largest errors occurred at the beginning of the analysis
since the thermal stabilization in the simulation occurred

more slowly. In the first 30 min, the maximum error
reached 8.6%.

3.1.2 X-axis linear guide rail transient thermal analysis

At an X-axis slide unit speed of 30 m/min, the heat rate at
the contact between the carriage and the rail reached
18 W, with a friction coefficient, μ = 0.35. The convective
heat transfer coefficient at the rail surface was 20 W/
m2 K. Figure 12 shows the image of the X-axis linear
guide (the rail and carriage) (a), a thermographic image
(b), and the FEM meshing (c). The type of element used
was the 20-node hexahedron with element size of 20 mm
in the guide and 10 mm in the carriage.

Figure 13 graph demonstrates the measurement and
simulation results at one measurement point on the rail
for the first 6 h of rail heating due to operation. The
carriage moved back and forth at a constant velocity of
30 m/min. Between the end points of an 800-mm stroke,
model adjustment, particularly quantification of the
boundary conditions, such as moving friction and thermal
conduction to the coupling structures, was conducted
through experimental measurement values for heat build-
up over the longer term. The temperature curves as a

Fig. 16 Machining center FEM
analyze a finite element mesh and
b temperature field

Fig. 17 FEM refined mesh
regions. a Reference bushing on
the table. b Spindle tip
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function of time (see Fig. 13) confirmed that the model
had accurately mapped the heat buildup on the rail. The
final temperature obtained in the linear guide trail by
FEM was 27.79 °C, whereas the temperature experimen-
tally obtained was 27.20 °C with an error of 2.1%.

3.1.3 X-axis ball screw nut transient thermal analysis

At an X-axis slide unit speed of 30 m/min, the heat
generated at the contact of the nut with the shaft
reached 48 W with friction coefficient equaled to 0.38.
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Fig. 18 Temperature curves for
all thermocouple measuring
points during cycle #4
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The heat rate in the front bearing reached 12 W, while
the heat rate in the rear bearing reached 17 W. The
convective heat transfer coefficient between the shaft
surface and the ambient was 42 W/m2 K, and at the
nut surface was 34 W/m2 K. Figure 14 shows the ball
screw nut photo (a), a thermal image (b), and the cor-
responding finite element meshing (c), composed of a
10-node tetrahedral element type, a 10-mm element in
the shaft, and 15 mm in the nut.

Figure 15 illustrates the comparative evolution of the ther-
mal behavior during the experimental measurements with the
numerical analysis during a 6-h operation with 30 m/min
speed. Note that the ball screw nut temperature rose as a func-
tion of time and that the value obtained with the simulation
precisely coincides with the value experimentally obtained
(see Fig. 15). This increase in temperature was due to the heat
generated by the friction between the nut and the ball screw
shaft contact in the round-trip displacement through an 800-

mm course. The final temperature obtained in the linear guide
trail by FEM was 35.30 °C, whereas the temperature experi-
mentally obtained was of 34.70 °C, with an error of 1.7%.

3.2 Numerical simulation of the entire machine

After validating the temperature fields for the X-axis
ball screw, linear guide, and spindle, the thermal bound-
ary conditions, as well as the friction contacts created in
the previous simulation, were used as initial boundary
conditions in the transient thermostructural analysis of
the entire machining center for all five experimental
cycles performed. In the FEM machine model, 409,786
second-order tetrahedral elements were used, totaling
737,629 nodes with element size of 50 mm in the ma-
chine structure, 40 mm in the worktable, and 25 mm in
the slide units (see Fig. 16). The 10-node tetrahedral
elements of 10 mm were used around the reference

Fig. 20 Simulation of the
machining center thermal error. a
Perspective view with indication
of the reference system. b Large-
scale detail of thermal error
measured in Y
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Fig. 21 Thermal errors obtained
by experimental tests and FEM
during cycle #1
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bushing hole (see Fig. 17a), and in the spindle tip re-
gion (see Fig. 17b), to ensure more accurate results.

3.2.1 Analysis of temperature field: FEM simulation results

As presented in item 2.1, the five test cycles performed in
the machining center were numerically simulated by FEM.
Only the graphs of the temperature field obtained by the
simulation of cycle #4 (see Fig. 18) and cycle #5 (see
Fig. 19) are presented due to the large number of results
collected. The comparison of the simulated temperature
field for cycle #4 results (see Fig. 18) with the experimental
results illustrated in Fig. 8 demonstrates the same lines of
thermal behavior. Moreover, observe that the T7 and T9
sensors showed the highest increase in temperature among

the other readings. The maximum relative error was 4.65%
for the temperature of the Y-axis ball screw nut, which is due
to the difficulty of accurately simulating the convective heat
transfer inside the machine column ambient.

Observe in Fig. 19 that the heating tendency of the 15
points analyzed in the machine for cycle #5 was the same as
seen in cycle #4 (see in Fig. 18). However, due to higher slide
axis speeds in cycle #4, the temperatures were higher at the
points exposed to friction heating. The room temperature as
well as the coolant temperature and the machine base temper-
atures remained virtually unchanged during cycles. Note that
the spindle tip temperature indicated by virtual sensor T10
remains practically unchanged, due to the spindle speed dur-
ing cycle #5 being the same as in cycle #4, i.e., n =
10,000 rpm.

The experimental and simulation results of the temperature
fields of the machining center subsystems seen in Figs. 11, 13,
and 15 were obtained during the preliminary validation stage.
These results confirmed the accuracy of the simulation model
adopted, which allowed to replicate the thermal boundary
conditions to simulate the thermal behavior of the entire ma-
chine for cycles #1, #2, and #3, not shown in this paper, and
cycles #4 and #5 (see Figs. 18 and 19) obtained during the
general validation stage, thus allowing a robust FEM simula-
tion of the thermal errors of the machine for each of the con-
ditions experimentally analyzed. The results of simulated ther-
mal errors for each of the cycles performed are presented next
in comparison with the experimental results.

3.2.2 Analysis of thermal error simulation results

During FEM numerical simulations, the thermal errors were
obtained by measuring the relative error between the spindle

Fig. 22 Thermal errors obtained by experimental tests and FEM during
cycle #2
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Fig. 23 Thermal errors obtained
by experimental tests and FEM
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tip and the reference bushing located on the worktable, thus
replicating the measurement of the thermal errors during the
experimental steps (see in Fig. 8). Figure 20 shows the per-
spective view of the worktable and spindle isolated from the
rest of the machine, i.e., (a) a close view in detail of the ther-
mal error obtained in the Y direction and (b) and in large scale
for the purpose of better understanding the measurement
strategy.

The thermal errors in the X, Y, and Z axis directions were
obtained by FEM for the cycles #1, #2, #3, #4, and #5 using
the methodology previously described. Only the results of the
thermal errors in cycles #1 (Fig. 21), cycle #2 (Fig. 22), and
cycle #5 (Fig. 23) are presented and consequently discussed in
this paper due to the large number of results collected. All the

corresponding thermal error curves experimentally obtained
were also added to the graphs to show the accuracy and ro-
bustness of the FEM analysis when simulating the thermal
error of the machining center.

Figure 21 shows the experimental and simulated results for
cycle #1, in which only the X-axis wasmoving in the machine,
while the other two linear axes were in idle mode. Observe
that for Fig. 21 results, in both cases, the thermal error in the X-
axis direction was higher and continuously increasing, i.e., the
distance between the reference bushing and the spindle tip in
the X-axis direction increases. The final value reached in the
X-axis direction by FEM was 90.35 μm, whereas the final
value experimentally measured was 73.88 μm, with an error
of 22.3%. This higher error value must be corrected by

Fig. 24 Neural network model
structure
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adjusting the coefficient of heat exchange with the ambient,
since in the experimental measurement, the faster thermal sta-
bilization was clear. At the same time, the spindle tip advanced
towards the machining table in the Z-axis direction by
19.51 μm during FEM and 17.92 μm during test cycle, with
an error of 8.9%. The error in the Y-axis direction slightly
increased, thus meaning that the spindle tip had risen in rela-
tion to the reference bushing by 14.13 μm with FEM simula-
tion and 13.25 μm experimentally, reaching an error of 6.6%.
Note that although the relative error between simulated and
experimental results was above 10% at the most critical point,
the tendency of the thermal error was the same in both analysis
methods. A major thermal error in Y-axis direction could be
verified during the cycle #2 result analysis, since in this case,
the friction heating of the machine predominantly occurred in
the Y-axis slide unit—ball screw and linear guide systems (see
in Fig. 22).

The final value reached in the Y-axis direction by FEMwas
73.91 μm, whereas the value experimentally obtained was
80.18 μm, with an error of 7.8%. Note that the error in the
Z-axis direction reached 29.04 μm with FEM simulation, and
23.41 μm experimentally, with an error of 24.0%, which im-
plied an approximation of the spindle tip to the reference
bushing.

The error in the X-axis direction during cycle #2 increased
to the opposite side of the axis in comparison to cycle #1. This

implied that the machine column had a decrease in perpendic-
ularity corresponding to the XY plane.

Observed in Fig. 23 are the thermal errors in cycle #5, in
which the three linear slide axes—X/Y/Z—were moving si-
multaneously, the same tendency of thermal error found dur-
ing cycle #1, although it presented smaller gradients, since the
speed in cycle #5 was inferior to the speed used in cycles #1
and #2, except by the error in Y-axis direction, which in this
case showed an increase as the error similar in X-axis direc-
tion, which is expected since both units were at the same speed
and had almost the same dimensions. The final value reached
in the Y-axis direction by FEM was 23.39 μm, whereas the
value experimentally obtained was 25.23 μm with an error of
7.3%. The spindle tip advanced towards the machining table
in the Z-axis direction by 11.36 μm during FEM and 9.84 μm
during test cycle, reaching an error of 15.4%.

Performing an analysis based only on percentage errors
computed between the results from the numerical simulations
with the experimental results may have left the impression of a
high error, as occurred in some cases by errors greater than
10%.However, the degree of complexity of the problem being
modeled should be taken into account, as well as if the error
tendency in the directions of the three linear axes is being
achieved. In addition, the relative error calculated between
the values from the two methods did not exceed 17 μm in
the worst case for all cycles analyzed.

Table 2 FEM temperatures during cycle #1 simulation that were not used in ANN training

Time (min) T1 (°C) T2 (°C) T3 (°C) T4 (°C) T5 (°C) T6 (°C) T7 (°C) T8 (°C) T9 (°C) T10 (°C) T11 (°C) T12 (°C) T13 (°C)

30 26.670 23.750 22.294 21.727 21.261 21.192 22.479 21.371 21.910 22.048 21.405 21.855 21.669

60 33.080 26.628 22.875 22.069 21.550 21.664 23.205 21.739 22.402 22.710 21.808 22.449 22.169

72 34.064 27.680 23.064 22.161 21.674 21.887 23.408 21.883 22.579 22.904 21.958 22.657 22.349

90 35.288 29.082 23.381 22.273 21.864 22.229 23.652 22.092 22.825 23.245 22.169 22.914 22.604

108 36.287 30.281 23.687 22.364 22.055 22.567 23.846 22.290 23.052 23.338 22.364 23.123 22.843

120 36.855 30.979 23.878 22.418 22.185 22.785 23.953 22.417 23.193 23.448 22.498 23.243 22.995

150 38.019 32.422 24.316 22.540 22.502 23.299 24.170 22.713 23.515 23.673 22.922 23.496 23.349

180 38.911 33.523 24.706 22.653 22.808 223.761 24.335 22.981 23.798 23.852 23.308 23.706 23.673

210 39.613 34.371 25.055 22.762 23.103 24.175 24.468 23.224 24.050 23.999 23.655 23.931 23.972

228 39.966 34.787 25.249 22.827 23.274 24.402 24.538 23.358 24.191 24.077 23.846 24.058 24.140

Fig. 26 Artificial neural network
topology developed
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3.3 Analysis of numerical data through artificial
neural network

The results obtained from the FEM for the temperature
fields and for the thermal errors of the five cycles ana-
lyzed allowed training an artificial neural network
(ANN) using MATLAB™ software to accurately predict
with robustness the thermal behavior of the machining
center under different operational conditions. Due to the
complexity of the neural network model, a brief intro-
duction is given below.

3.3.1 Introduction to the neural network algorithm

The neural network model is formally a network structure
composed of neurons or nodes, including an input layer,

hidden middle or intermediate layer, and the output layer, as
shown in Fig. 24.

For the neural network model shown in Fig. 24, the input
layer has three neurons, indicating that the model has three
input variables, whereas the output layer has two neurons,
indicating that the model has two output variables. In other
words, the number of neurons in the input and output layers is
determined by input variables and output variables. The hid-
den layer can have multiple layers, and the number of neurons
in each layer may be different. The optimization of the neural
network structure refers mainly to the reasonable selection of
the number of hidden layers and the number of neurons in
each layer [25, 51]. The principle of functioning of the neuron
with supervised learning is shown in Fig. 25.

In Fig. 25,wij = [wi1,wi2,…,win] is the vector of weights of
the entries of the ith neuron; xij = [xi1, xi2,…, xin] is the input
vector of the ith neuron; Ri = ∑ wijxij is the activation of

Fig. 27 Curves of the thermal
errors in the X, Y, and Z directions
obtained by FEM simulation
compared with ANN learning

Fig. 28 ANN’s learning
performance chart
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neuron ith; Oi ¼ f ∑
n

j¼1
wij⋅xij þ w0

 !
is the output of neuron

ith; Ti is the desired output pattern; Ei = Ti −Oi is the output
error used during learning, andΔwij is the variation of weights
during learning.

The commonly used transfer functions f(R) are sigmoid,
tansig, and purelin as follows:

sigmoid : f Rð Þ ¼ 1

1þ e−R
ð24Þ

tansig : f Rð Þ ¼ eR−e−R

eR þ e−R
ð25Þ

purelin : f Rð Þ ¼ R ð26Þ

The process of modeling with the neural network is, in fact,
the process of adjusting the weightsw and the limit values θ of
the neurons. Naturally, if the measured values of the input
variables are replaced in the neural network, the network will
have output values. When the output values are compared to
the measured values of output variables, the quadratic residual

sum is obtained. Therefore, the modeling process is tuning the
network in the direction which reduces the quadratic residual
sum and replaces input variables in the new network to obtain
the new quadratic residual sum for the next setting until the
quadratic residual sum is small enough to be acceptable [51].

3.3.2 Development of artificial neural network

In order to optimize and minimize quadratic errors, neural
networks were formulated with two layers, 22 neurons in the
first layer with transfer function tansig and 3 neurons in the
second layer, with a purelin transfer function. The network
was feed-forward backpropagation with Levenberg-
Marquardt training function (TRAINLM) and mean squared
error (MSE) performance function. The input data were the
time, the X/Y/Z axes speed (see in Table 1), the spindle rotation
speed, and the 15 read points of temperature (see in Table 2)
obtained by FEM. The output data were the thermal errors in
X, Y, and Z axis directions reached by FEM. FEM data obtain-
ed in cycles #1, #2, #3, #4, and #5 were used to feed the ANN.
The network topology is shown in Fig. 26.

Table 3. FEM predicted temperatures during cycle # 4 simulation not used in ANN training

time[min] FEM predicted temperatures [°C]

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

30 28.531 23.685 22.291 27.088 22.377 21.611 31.469 22.965 26.018 24.853 22.523 21.854 23.197

60 31.519 26.544 22.877 29.900 23.277 22.415 36.761 25.230 29.261 26.987 23.929 22.394 25.409

72 32.389 27.577 23.071 30.608 23.607 22.758 38.726 26.075 30.380 27.553 24.372 22.571 26.232

90 33.482 28.955 23.337 31.409 24.069 23.264 40.140 27.238 31.869 28.202 24.928 22.812 27.402

108 34.385 30.136 23.589 31.997 24.494 23.746 41.640 28.723 33.150 28.681 25.382 23.029 28.496

120 34.906 30.824 23,772 32.309 24.758 24.051 42.488 28.894 33.902 28.933 25.640 23.165 29.185

150 35.993 32.250 24.197 32.909 25.358 24.746 44.223 30.235 35.487 29.404 26.163 23.477 30.778

180 36.853 33.340 24.851 33.352 25.883 25.350 45.574 31.321 36.736 29.728 26.561 23.757 32.207

210 37.551 34.183 24.932 33.708 26.344 25.872 46.676 32.206 37.735 29.963 26.873 24.012 33.496

228 37.911 34.597 25.129 33.894 26.594 26.150 47.253 32.659 38.241 30.076 27.045 24.154 34.210

Fig. 29 Validation curves of the
thermal errors in the X, Y, and Z
axis directions obtained by FEM
and ANN simulation for cycle #1
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The result of the training and learning process for the three
linear axes (i.e., X/Y/Z) using the ANN is presented in Fig. 27,
which shows the learning process simultaneously for the re-
spective thermal errors along the three axes, as a function of
the temperatures developed at the critical points of the ma-
chining center analyzed in 1000 iterations. As seen in
Fig. 27, convergence occurred for all axes which means that
the network training was satisfactory, and the network is ex-
pected to be able to predict a result for which it has not been
exposed. The temperature and thermal error data obtained
during the FEM simulation of cycle #1 were used to test the
network.

The performance curves for the 1000 iterations, which
were extracted from the MATLAB™ environment, are shown
in Fig. 28, which demonstrates that the network was able to
learn and that the mean square error reached 1.2414E−5 μm
compared to simulated results.

3.3.3 Validation of artificial neural network

After the network undergoes the training process, it is impor-
tant to submit it to another process known as “validation.” The
validation process of an ANN aims to provide input data

values to the network after training different from those to
which it was submitted during training, in this case, different
temperatures, in order to compare the thermal errors obtained
by the network with the results simulated by FEM for the
same temperatures and to verify if the network can effectively
learn. This step aims to confirm through the developed ANN
if it will be possible to predict the thermal errors by providing
only the temperature values measured by the sensors or sim-
ulated by FEM.

The procedure adopted for the thermal error process of
validation was the following:

& Ten time ranges and temperature ranges of the simulated
result table for all the five simulated cycles were removed
prior to performing the network training. For each 240-
min cycle, the intervals 30′, 60′, 72′, 90′, 108′, 120′, 150′,
180′, 210′, and 228′ were removed. Thus, the ANN was
trained without these temperature values. This paper
shows only the temperature tables of cycles #1 (Table 2)
and #4 (Table 3) due to the large amount of data collected.

& The network was fed again from the temperature data of
these 10 time intervals removed for all five simulated cy-
cles without any new training.

Table 4 Relative errors between
the thermal error values in the X-
axis direction obtained by the
FEM and the thermal errors
predicted by ANN for cycle #1

Time (min) X-axis thermal error (FEM) (μm) X-axis thermal error (FEM) (μm) Relative error (%)

30 31.3504 31.3543 0.0124

60 50.4947 50.5226 0.0552

72 56.0431 56.0265 0.0296

90 62.9710 62.9721 0.0017

108 68.7050 68.7052 0.0003

120 72.0430 72.0403 0.0037

150 79.1650 79.1608 0.0053

180 85.0360 85.0469 0.0128

210 90.0260 90.0208 0.0058

228 92.6890 92.7018 0.0138

Fig. 30 Validation curves of the
thermal errors in the X, Y, and Z
axis directions obtained by FEM
and ANN simulation for cycle #4
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The validation values were obtained after performing the
process described above, i.e., the thermal errors predicted by
the network, as shown in Fig. 29, for the temperatures obtain-
ed during cycle #1, and for the temperatures obtained during
cycle #4, in Fig. 30. Therefore, ANN performed the error
prediction inserting different temperature values from those
values with which it was trained. Figure 29 graph shows the
thermal error curves simulated by FEM in the X, Y, and Z axis
directions obtained in the time intervals listed in Table 2,
which correspond to the intervals not considered in ANN
training.

Additionally, the curves of the thermal errors predicted
by ANN for the same intervals are illustrated in Fig. 29.
Thus, it is possible to conclude that the developed network
could accurately predict with robustness of the thermal
errors of the machining center under different working
conditions from which it was trained. The same can be
concluded from Fig. 30 graph, which shows the compara-
tive results of FEM and ANN for the temperature data
listed in Table 3.

The neural network developed in this research could
predict the machining center thermal errors through numer-
ically simulated temperature results, as seen in Figs. 29 and
30. The graphs, though, could not specify the relative error
between the values predicted by ANN and the results from
the FEM simulations. Therefore, Table 4 presents the re-
sults of thermal errors in the X-axis direction simulated by
FEM and predicted by ANN, both from cycle #1. Also in
Table 4, the percentage relative errors for the 10 time

intervals not used in ANN training were calculated show-
ing that the relative errors between FEM-simulated results
and ANN-predicted results were quite low, with the maxi-
mum in the order of 0.06%. This order of magnitude for the
relative error was repeated for all other validations of the
network in each of the cycles.

4 SWOT matrix

An evaluation of the strengths, weakness, opportunities, and
threats (SWOT) of the proposed methodology was developed.
The SWOT matrix is illustrated in Fig. 31. It allows to high-
light the strengths of this work, as well as to point out some
improvement opportunities through future work. In Fig. 31, it
is also possible to identify some weaknesses observed in rela-
tion to the developed model and threats to what has been done
up to the moment.

The main strengths of this work are the partnership
established with the industry and the robustness of the meth-
odology obtained by the simultaneous physical and experi-
mental approach. The main opportunity is associated with
the implementation of the model obtained in the machine’s
CNC for real-time error correction. The weaknesses and
threats are mainly associated with the need to consider a ma-
chining study and variable ambient temperature in the devel-
opment of the thermal error compensation model of the ma-
chining center.

Fig. 31 SWOT matrix evaluation of the proposed approach to control the thermal errors in a five-axis CNC machining center
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5 Conclusions

The general conclusion is that the methodology developed in
this research that combined experimental and physical ap-
proach allowed an accurate and robust simulation of the
thermomechanical behavior of the entire machining center.
This work verified that the use of physical models to simulate
the generation of heat by friction through the finite element
method is robust and accurate when compared with the results
obtained experimentally. It was possible to validate the finite
element model of the entire machine for several different duty
cycles. The results of the simulations showed that the meth-
odology is an effective tool to determine and predict the ther-
mal displacement of the machine by correlating the reading of
temperatures at strategic points with the displacement at the
tool tip, hence reducing the effort and analysis time to solve
thermal problems in machine tools. These conclusions are
justified by the practical implications listed next:

& The thermal boundary conditions based on the theory of
frictional heat and heat convection applied in the FEM
analysis were adequate, thus obtaining a maximum error
of less than 8% when comparing the numerical results
with the experimental results.

& The FEM analysis was able to simulate the thermal error
behavior of the machining center in different thermal con-
ditions represented by different duty cycles. The relative
errors between the values simulated numerically with the
values obtained experimentally were averaged between 6
and 15%. For cases of higher relative errors, the thermal
boundary conditions should be reviewed, but even in these
cases, the impact of the error is minimal since the error
was always lower than 17 μm.

& After ANN validation, it was possible to conclude that the
developed algorithm is an accurate and robust tool to pre-
dict the thermal errors of the machine for various working
conditions, being able to predict the errors even with the
machine moving at different speeds or alternating the
movement of the axes. The relative error between the
FEM-simulated results and the ANN-predicted results
for the same time step was less than 1.0% considering
all the five cycles analyzed.

& The data obtained by measuring the thermal errors in the
FEM model of the machining center can also be obtained
in any other model of machine tools, once the same meth-
odology is applied.

& This methodology allows developing preliminary studies
in the early design and development phase of machine
tools, as well as during the trial phase, thus avoiding ther-
mal errors affecting the machine performance.

& Thus, it can be verified that the presented methodology
could be used in actual cases of real-time thermal error
compensation, proceeding to a later implementation stage

of the algorithm developed in this research in the CNC of
the machining center.
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