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Abstract
Additive manufacturing (AM) of functionally graded material (FGM) objects has garnered significant research interest in
the last decade. FGM parts printed using a 3D printer are finding innovative usages in numerous applications. To move
from research sample and prototypes to commercially viable functional FGM parts, it is necessary to develop an integrated
approach for modeling, optimization, and process planning for AM fabricated FGM parts. While solid modeling of FGM
objects has been studied in detail, the build orientation optimization and process planning for AM fabricated FGM objects
remain largely unaddressed. The build orientation of FGM object can significantly influence overall print quality and cost.
In this paper, we introduce a novel approach for build orientation optimization (BOO) of additively fabricated FGM parts.
The formulated BOO cost function encapsulates material error and geometric error as primary factors. The geometric
error considers volumetric stair-case error and the material error accounts for errors due to the discretization of material
composition across the cross-section of the toolpath. A novel multi-scale material error computation approach has been
proposed to effectively and efficiently compute the material error. Since the build orientation cost function cannot be
explicitly defined, and an expansive parametric sweep is too computationally expensive to implement, a surrogate model-
based global optimization was implemented to solve the formulated BOO problem. The proposed optimization framework
has been assessed using various test objects to illustrate the overall methodology and demonstrate its effectiveness.

Keywords Functionally graded materials · Distance-based material representation · Orientation optimization · Additive
manufacturing · Multi-scale random error

1 Introduction

Functionally graded materials (FGM) are advanced mate-
rials with varying material composition, microstructure, or
porosity across the volume, tailored for a specific per-
formance or function [35]. FGMs offer great promise
in areas of applications with harsh working conditions
and/or extraordinary material properties requirement such
as defense, aerospace, and healthcare (medicine deliv-
ery, dental/orthopedic implants) [29]. Bulk FGM parts are
mainly fabricated by powder metallurgy method, centrifugal
casting method, and additive manufacturing methods [24,
30, 44].
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As the initial capital cost and the cost of raw materials
for additive manufacturing is declining with each passing
year, additive manufacturing of FGMs have garnered a lot
of research interest in the last decade. Researchers have
mainly focused on FGM modeling, material processing,
and optimization of fabrication processes for FGMs. The
main advantage of FGM over homogeneous material is the
distribution of material composition/microstructure over its
volume to accommodate conflicting and spatially varying
material properties. However, to actualize this fascinating
advantage, it is also important to produce the desired
material distribution using a given manufacturing method
with minimal error.

In layered manufacturing, build orientation choices can
severely impact the material composition error. There exist
several studies focusing on the impact of build orientation
on surface quality, build time, and overall fabrication cost
of single material (homogeneous) 3D printed part [2, 3,
8, 33]. However, there is a dearth of research focused
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on studying the impact of build orientation on material
composition error in additively fabricated FGM objects.
This paper addresses an important research gap in the area
of build orientation optimization for additive manufacturing
of FGMs.

In this paper, a novel build orientation optimization
framework is introduced that aims to minimize geometric
error (surface quality) and material composition error
for FGM objects fabricated using additive manufacturing
processes like fused deposition modeling (FDM). The
optimization cost function was defined as a weighted
average of normalized geometric and material composition
errors. Geometric error takes into account the staircase
effect that degrades surface quality. Material composition
error encapsulates the difference between the desired
fractional composition of two or more materials at a given
point and the estimated attainable fractional composition
at that point. The difference in desired and attainable
material composition error arises mainly due to two
factors: (a) discretization along slice height (z-axis) and
(b) discretization across the cross-section of toolpath (xy-
plane). A novel concept of multi-scale random error
has also been introduced that attempts to compute the
material composition error more efficiently and accurately
compared to conventional integration or grid-point-based
error computations.

The primary contributions of the paper are as follows:

1. A novel optimization-based framework to formulate the
build orientation optimization of additively fabricated
FGM parts that encapsulates both geometric and
material composition errors.

2. A novel multi-scale material error computation to
compute material composition error that takes into
account the contextual information around the point of
error evaluation.

3. A surrogate model-based global optimization frame-
work for solving the formulated optimization problem.

The paper is organized as follows: In Section 2, relevant
literature is reviewed. The FGM modeling scheme is dis-
cussed in Section 4. The overall build orientation objective
cost function formulation and computation is described in
Section 5. The surrogate model-based optimization process
is discussed in Section 6. Results for example test cases are
presented in Section 7 to demonstrate the effectiveness of
the proposed methodology. Section 8 concludes the present
work with some notes on future research directions.

2 Literature survey

Extensive research literature exists in additive manufactur-
ing (AM) related fields like computational design for AM

[13, 25], AM processes [14, 15, 39], process modeling and
optimization [6, 21, 37, 45], material science [1, 11], and
energy and sustainability [27, 42]. However, additive man-
ufacturing for functionally graded materials (FGMs) has
only recently started attracting research interest. So far,
most of the research work in FGM domain has focused on
computational modeling of FGM objects. Build orientation
optimization and fabrication process planning for additive
manufacturing of FGM is still an understudied research
topic.

Since the early 2000s, there have been many FGM rep-
resentation schemes proposed to efficiently and accurately
store, exchange, and process the volumetric as well as mate-
rial composition information. One of the first notable work
to represent FGM for layered manufacturing was done by
Kumar and Dutta [9], wherein the modeling space was rep-
resented by rm-sets and rm-objects. Mathematical Boolean
operators were also defined to facilitate modeling process.
Jackson et al. [19] and Liu et al. [28] devised a finite
element-based local composition control (LCC) approach
that represents FGM objects as tetrahedral mesh model and
material composition was evaluated for every tetrahedral
node by using Bernstein polynomials. The material compo-
sition of any query point was then interpolated using mate-
rial composition at the nodes of the incidental tetrahedron.
Kou and Tan [26] proposed a hierarchical representation for
FGM by using B-rep to represent geometry and heteroge-
neous feature tree to define material distribution. Gupta and
Tandon [16] used material convolution surfaces to model
complex FGM objects with multi-functional heterogeneity,
convolution material primitives, membership functions, and
material-potential functions. A review of FGM representa-
tion techniques can be found in [44].

Insufficient research work, thus far, has been done on
build orientation optimization for additive manufacturing of
FGM objects. Majority of the research in build orientation
optimization has focused on optimizing build time, build
cost, and geometric features (such as surface quality,
support volume, contact area of support, and number of
layers) of single (homogeneous) material parts. Frank and
Fadel [10] proposed an expert system that considered
surface finish, build time, and support generation. Cheng
et al. [8] presented a multi-objective approach with part
accuracy as the primary objective and build time as the
secondary objective. The algorithm seeks to maximize the
primary objective (part accuracy) and uses the secondary
objective (build time) when several orientations are within
a certain range of the maximum accuracy. Hur and Lee
[18] used stair-case error as their primary parameter
and build time and volume of support as secondary
parameters. Allen and Dutta [3] used support structure
and contact area for support structure to determine the
optimal orientation. Alexander et al. [2] developed an
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accuracy and cost calculation model. Pandey et al. [33]
proposed a multi-objective genetic algorithm to search for
the Pareto solutions. A multi-step optimization framework
was proposed by Verma and Rai [40] wherein they sought
to minimize energy consumption, material wastage, and
geometric errors. Armillotta et al. [5] proposed a two-step
selection method in which near-optimal orientations are
generated by former multi-objective optimization methods
and the final optimal orientation is selected by a visual
evaluation that is based on the criterion of the integrity
of fine form details and local defects. Verma and Rai
[41] developed a computational geometric approach to
make critical manufacturing planning decisions in AM that
involves identifying optimal build orientation based on
material wastage and surface roughness.

Numerous optimization-based frameworks have been
developed for build orientation selection of single material
3D printed parts. However, none of the existing frameworks
consider material composition error during the printing
process. The material composition error is an important
criterion for additive manufacturing of FGM objects. Shin
and Dutta [36] addressed this issue partially in the process
planning for additive manufacturing of FGM objects.
They discretized material composition in a layer into
homogeneous lumps and sought to minimize the number
of material change, assuming that it will reduce material
composition error and improve surface finish. However,
minimizing the number of material changes inherently
increases the size of homogeneous lumps and hence results
in a higher difference in desired and attained material
distribution. Therefore, in this paper, a novel approach to
compute material composition error has been proposed.
The material composition error was used in conjunction
with stair-case geometric error to solve the build orientation
optimization problem.

The build orientation cost function evaluation involves
several expensive computations. Due to a computationally

expensive cost function evaluations required in the overall
proposed formulation, very few methods are left at our
disposal to solve the formulated optimization problem.
Surrogate model (also known as response surface model or
meta models)-based optimization is one such method, where
the objective function is approximated by a surrogate model,
that can be used to efficiently solve such problems. The
application areas for surrogate model-based optimization
vary immensely, and hence various types of surrogate
models have been proposed in literature. Surrogate models
are typically divided into two broad categories: interpolating
models such as kriging [22, 31] and radial basis functions
[17, 34], and non-interpolating models such as polynomial
regression and multivariate adaptive regression splines [12].
In our study, we have utilized MATLAB Surrogate Model
Toolbox (MATSuMoTo) developed by Mueller [32] to
enable surrogate model-based optimization. MATSuMoTo
was designed to solve computationally expensive black-
box global optimization problems. Black-box optimization
problems are a class of optimization problems where an
explicit mathematical and functional description of the
problem is not available.

3 Overview

Figure 1 shows an overview of the overall build orientation
optimization process. The absence of a standardized FGM
model representation scheme mandated selection and devel-
opment of an efficient and robust representation scheme.
A distance function-based material representation scheme
inspired by fixed reference feature-based representation [43]
and distance field-based representation [7] is used for FGM
model representation (Fig. 1b). This scheme allows for rep-
resenting complex material distribution over any geometric
shape. It also enables easy and efficient processing to formu-
late and solve the build orientation optimization problem.

Fig. 1 An overview of the FGM object build orientation optimization process
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Due to discretization and limitations of the additive pro-
cesses, it is usually not possible to achieve the desired shape,
surface finish, and material distribution in the printed part
without errors and defects. Although there are a variety
of sources of error, in this paper, we focus on staircase
error and material distribution error. This paper introduces a
novel multi-scale random error computation for quantifying
material distribution error. To this end, we define attainable
material composition that portrays an estimate of material
distribution achievable in printed part. It is different from
the desired material composition and is defined based on the
discretization due to slice height, toolpath, and printer reso-
lution. Since the error computation over the whole volume
of the model would involve computationally expensive inte-
gration, a multi-scale random error computation approach is
used to compute the material distribution error.

The build orientation optimization cost function is for-
mulated as a weighted sum of geometric and material
error. The angles representing the build orientation are
regarded as design variables. The large number of com-
putationally expensive geometric computations involved
in the cost function evaluation renders the conventional
gradient/Hessian-based optimization methods incapable of
solving the build orientation optimization problem. Hence,
a surrogate model-based optimization method [32] has been
used. In this method, a minimal initial design point set
representing multiple build orientations is created and eval-
uated to arrive at cost function values (Fig. 1c). A surrogate
model is then fitted onto the dataset to generate an approx-
imation of the cost function. New data points, based on
a specified search criteria, are sampled and evaluated to
progressively improve the surrogate model (Fig. 1d). The
process is repeated until the stopping criteria is satisfied and
an optimal build orientation is identified (Fig. 1e). Next, we
outline the details pertaining to all the main components of
the overview.

4 FGM:modeling and representation

Representation of an FGM model in the form of computer
readable data structure is key to perform computations

related to build orientation optimization. An effective
data structure allows for efficient creation, modification,
retrieval, and processing of the contained information.
There are numerous techniques proposed for representing
and modeling FGM objects [44]. For the purposes of
the presented work, a distance function-based FGM
representation scheme has been used. In this scheme, the
object geometry is represented by a triangulated surface
mesh and material composition at any point inside the
object is defined as a non-negative function of distance from
one or more user-defined reference geometries. The user
is provided with the flexibility to define any number of
references and distance functions to realize highly complex
material distribution inside the object. It is important to note
that the presented build orientation optimization approach
is independent of the FGM representation scheme, and it
could be used in conjunction with any valid representation
scheme.

4.1 Data structure

A schema of the data structure used to represent FGM
objects is shown in Fig. 2. The data structure includes
information regarding the geometry and material of the
FGM object. It could also contain optional manufacturing
process specific information, such as slice height and nozzle
diameter. The triangulated surface mesh geometry is stored
as a half-edge data structure [23] with few additional
information such as face normals for efficient retrieval
and processing. To represent the material distribution of
the FGM object, the information about the constituent raw
materials, the reference geometries, and the non-negative
distance functions are included. The desired materials
composition at any point can be easily computed using such
a representation as described in Section 4.2. The process
specific information helps in estimating the attainable
material composition at a given point.

4.2 Material composition definition

Material composition at a point x is defined by a vector
Mx of volume fractions of constituent raw materials. The

Fig. 2 A layout of the data
structure of FGM model
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length of the vector is same as the number of constituents.
A valid material composition vector has an L1-norm of
1, i.e.,

∑
i Mx,i = 1 and each element of the vector is

non-negative. Each point x has two material composition
definitions – a desired composition Md

x and an attainable
composition Ma

x . The desired composition is the material
composition defined using the reference geometries and
the distance functions. The attainable composition is
the estimated material composition achievable at the
corresponding point after the model has been additively
fabricated (Section 5.2.1). The desired and the attainable
compositions are usually different from each other due to
unavoidable manufacturing errors and limitations of the AM
process.

To specify the desired material distribution in the FGM
object, one or more reference geometries could be defined.
A reference geometry could be a point, a line, a plane,
or a surface. The material composition can be defined
as a vector-valued function of Euclidean distances from
these references. For instance, consider a two-dimensional
example shown in Fig. 3 with two reference geometries –
β1: line x = 1 and β2: point (x = 0, y = 1.5). Let
the shortest Euclidean distances of a point x from these
references are given by sx,1 and sx,2, respectively. One could
define a material distribution, consisting of two materials P

and Q, as polynomial functions of sx,1 and sx,2:

Md
x = 1

Z
[5sx,1 + sx,2, s

2
x,2] (1)

where Z = 5sx,1 + sx,2 + s2x,2 is the normalizing factor. The

first and second coordinates of Md
x represent the volume

fraction of the constituent materials P and Q, respectively.
The generated material distribution in a 2D plane is shown

Fig. 3 An example of desired material distribution in 2D created using
two reference geometries β1 and β2

as a color plot in Fig. 3. In a similar fashion, material
distribution can be generated in 3D inside the FGM object.
A simple example of 3D cylinder with a linear gradient of
materials across its axis is shown in Fig. 4. In this case,
the reference geometry is the bottom planar surface of the
cylinder or z = 0, and the material composition function
is linear with respect to the Euclidean distance from the
surface.

4.3 Slicing and toolpath generation

The optimal orientation (minimum error) for manufacturing
of the FGM object is highly dependent on the slicing and
toolpath. Here, a brief description of the approach used
for slicing and toolpath generation is provided. The global
positive z-axis was considered to be the build direction.
The slices were created by intersecting the triangulated
surface mesh geometry of the FGM model with planes
perpendicular to the build direction at specific heights.
For a layer thickness of h, the slicing started with the
plane at height h/2 above the minimum z-coordinate of the
surface mesh. At steps of h, new slices were created until
the maximum z-coordinate was reached. The intersection
between a plane and surface mesh was performed using
axis-aligned bounding box (AABB) tree implemented in
CGAL C++ library [4, 38]. The intersection results in a list
of boundary line segments for the slice, which are then used
for further processing.

A simple toolpath generation approach was followed.
In this approach, a zig-zag toolpath aligned along y-axis
was created for each slice. Parallel line segments with a
finite width were generated to fill the 2D region enclosed
within the slice. The ends were connected alternately to

Fig. 4 A simple example of FGM object: cylinder with material
gradient along z-axis
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create a zig-zag pattern. Since the toolpath was used only
to define attainable material compositions (Section 5.2.1),
the non-printing segments of the toolpath were ignored, and
only the printing segments were stored. The optimization
techniques described in this paper is independent of the
toolpath generation scheme used, and any other scheme
could also be used.

5 Build orientation optimization

Build orientation is one of the key factors that influence
the printed part quality, build time, support structure, and
cost. As discussed in Section 2, the majority of the research
for build orientation optimization focuses on homogeneous
material objects. In the case of FGM object, the build
orientation also directly affects the material composition
quality and discretization. Hence, it is crucial to study the
effects of build orientation on material distribution in FGM
objects and account of material composition error in the
overall build orientation optimization.

In addition to the material composition error, geometric
error in additive manufacturing of the FGM objects is
also considered. In this paper, equal priority is assigned
to both geometric and material accuracy. Hence, the
build cost function is defined as the mean of normalized
geometric error and normalized material composition error
with equal weights. However, the relative weights can
be adjusted to reflect the importance of one over the
other based on the application and the process used. In
addition, other key attributes, such as support structure
and print time, can also be augmented into the build cost
function.

5.1 Geometric error

Geometric error is a well-studied subject in additive
manufacturing with many methodologies developed that
focus on various sources contributing to the overall error.
Following two errors are the most studied sources of
geometric errors in research literature:

1. Staircase effect: The layer-wise manufacture of the
object in 3D printing causes staircase effect due to finite
layer thickness. It is the most studied and critical source
of geometric error that appears along the inclined or
curved surfaces. Often, the printed object requires post-
processing, such as polishing, to remove the unevenness
caused by staircase effect. The layer thickness and
the local inclination of the surface directly affect the
staircase error. Since the layer thickness cannot be
lowered beyond the limits of the machine, the goal of
the build orientation optimization is usually to adjust

the inclination of the surface relative to the build
direction in a global sense.

2. Support contact area: In many additive manufacturing
processes like SLA and FDM, a support structure is
necessary to provide support to the overhanging regions
of the design. Support structures influence the surface
roughness of the manufactured object. After printing,
time-consuming and uneconomical post-processing is
required to remove the support structure and finish
the surface. Hence, minimizing support contact area is
another vital factor in reducing geometric error.

There are few other sources of geometric error, such as
tessellation, distortion, shrinkage, and the trapped volumes
due to surface tension. However, in this study, we will
mainly focus on the staircase effect. The staircase error
was computed as the volume of unwanted under-deposition
and over-deposition of material (see Fig. 5). The erroneous
volume can be estimated by accumulating volumes of
under- and over-depositions caused by each triangular facet
on the surface of the model. The erroneous volume νk for
kth triangular facet is calculated as follows:

νk =
{

λδkAk, if |η̂k
z | = 1

1
2λη̂k

zA
k, otherwise

(2)

where,

δk = |�rk + 0.5� − rk|, (3)

rk = zk − zmin

λ
, (4)

zk is the z-coordinate of kth triangle with face normal along
z-axis, zmin is the bounding box minima in z-direction, λ is
the slice thickness (constant for all slices), Ak is the area of
kth triangular facet, and η̂k

z is the z-component of its unit
face normal. The accumulation of erroneous volumes over
all facets gives the total geometric error εG = ∑

k νk .

5.2 Material composition error

In addition to geometric accuracy, material composition
accuracy is another critical factor in additively fabricated
FGM object. Conventional process planning steps, such as

Fig. 5 Staircase error in additive manufacturing
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orientation optimization, support generation, slicing, and
toolpath generation, are mainly based on geometry and do
not consider their effects on the material distribution in
the object. In this paper, a novel methodology is proposed
to quantify the material composition error in additive
manufacturing of the FGM objects. The manufacturing
process parameters are used to discretize the material
composition to simulate the as-printed part. Material
composition error is then computed by evaluating the
difference of the desired material composition and the
attainable material composition after discretization. The
material composition error is used in conjunction with the
geometric error to identify an optimal build orientation for
FGM objects.

5.2.1 Material composition discretization

As shown in Fig. 6, it was assumed that the additive
manufacturing equipment deposits material as a circular
sweep on continuous portions of the toolpath and could
achieve arbitrary grading of material composition along
the length of the toolpath. The assumption is reasonable
for the recent state-of-the-art multi-material 3D printers
and processes. In these processes, the material is deposited
as a continuous flow of molten ingredients, which forms
a circular sweep shape. A remarkable characteristic of
these processes is that they can continuously change the
material composition ejected from the nozzle while printing.
However, at a given instant of time, the bulk of the ejected
material has a uniform composition. Hence, the material
distribution across the cross-section of the toolpath was
considered to be uniform and same as the desired material
composition at the center of the circular cross-section. This
discretization of material was used as the primary source
of material composition error, since the desired material
composition often varies across the cross-section. Material
discretization depends on slicing and toolpath, which are
both affected by build orientation. Therefore, by optimizing
the build orientation, it is possible to minimize the material
composition error between the desired material distribution
and the actual material printed.

Fig. 6 Material composition discretization across the toolpath cross-
section

Fig. 7 The attainable material composition at a point x is same as the
desired material composition at the closest point y on the toolpath

5.2.2 Multi-scale random error computation

The material composition error at a point x is given
by �2-norm of the difference between desired material
composition (Md

x ) and attainable material composition
(Ma

x ). The desired material composition was computed
based on the reference geometries and distance functions
as described in Section 4.2. The attainable material
composition was estimated using the material discretization
assumption. It was assumed that the actual material
deposited at x would have the composition same as of the
nearest point on a toolpath segment. Hence, the attainable
material composition was calculated by first finding the
point y on the toolpath that is nearest to x and then
computing the desired material composition at y (see
Fig. 7). Therefore, Ma

x = Md
y .

Computing the aggregate material composition error of
the whole FGMmodel requires a computationally expensive
and prohibitive integration over the 3D domain. In order to
balance an effective estimate of the material composition
error and the computational cost, a multi-scale random
error approach is proposed. In this approach, random points

Fig. 8 A single point is often incapable of capturing material
composition error in its local neighborhood. In this example, the
material composition error at x would be zero, although the attainable
material composition in its neighborhood is not error-free
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were sampled in the 3D space, and the material error was
computed at those points. However, often a point might
not be an effective representative of the local material error
in its neighborhood as shown in Fig. 8. Therefore, the
error was computed at four different scales. For defining
the scales, we assume a uniform axis-aligned voxelization
of the FGM model. In our study, the edge length of the
voxels was chosen to be 1/8th of the layer thickness λ. The
material composition error in a voxel was defined to be the
material composition error at its centroid. To capture the
local characteristics of the error, the four different scales
(Fig. 9) were chosen as follows:

1. Single voxel: This is the smallest scale, where the
material composition error is simply computed at the
centroid of the selected voxels.

2. 6-connected voxels: At this scale, all the face neighbors
(voxels sharing a face) of the selected voxels are
considered in the material error computation as well.

3. 18-connected voxels: Face neighbors and edge neigh-
bors are both included in the error computation at this
scale.

4. 26-connected voxels: At this scale, all the neighbors of
the voxels, including face, edge, and corner neighbors,
are considered in the error computation.

A unique set of voxels was randomly selected for each
scale. For each scale (except the first one), in addition to
computing the material composition error at the centroid
of the selected voxels, the error was also computed at the
centroid of their neighbors. The error from all the voxels at

Fig. 9 The four scales chosen for multi-scale random error
computations

all scales was then accumulated as a sum and divided by
the total number of voxels for obtaining a mean multi-scale
material composition error εM .

εM = 1

N

N∑

i=1

‖Md
i − Ma

i ‖ (5)

where ‖ · ‖ is �2-norm, N is the total number of voxels
(including neighbors), and Md

i and Ma
i are desired and

attainable material composition at the ith voxel centroid,
respectively. Note that, in our study, we varied the number
of randomly selected voxels for error computation based
on the number of layers (q) in a particular orientation of
the FGM model. The number of voxels for each scale was
selected such that the total number of voxels N was around
∼ 150q.

5.3 Optimization problem formulation

An orientation of the FGM model is described by a vector
of three angles 	 = [θx, θy, θz] corresponding to rotations
about the three coordinate axes. The default orientation
was assumed to be a zero-valued vector 	0 = [0, 0, 0].
For any orientation, the rotations are performed on the
whole FGMmodel, including its vertices, face normals, and
reference geometries. Due to the non-commutative nature
of the rotations, it must be carried out in a specified order –
rotation about z-axis, followed by y-axis, and finally x-axis.
The homogeneous affine rotation matrices about each of the
axes are given as follows:

Rx(θx) =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos(θx) − sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1

⎤

⎥
⎥
⎦ (6)

Ry(θy) =

⎡

⎢
⎢
⎣

cos(θy) 0 sin(θy) 0
0 1 0 0

− sin(θy) 0 cos(θy) 0
0 0 0 1

⎤

⎥
⎥
⎦ (7)

Rz(θz) =

⎡

⎢
⎢
⎣

cos(θz) − sin(θz) 0 0
sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (8)

The objective of the build orientation optimization is
to identify an optimal orientation that minimizes the error
in manufacturing of FGM object. The design variables
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of the optimization problem are 	 = [θx, θy, θz]. The
optimization problem can be stated as follows:

minimize
	

f (	) = wε̂G + (1 − w)ε̂M

subject to − π

2
≤ θx ≤ π

2

− π

2
≤ θy ≤ π

2
− π ≤ θz ≤ π

where f (	) is the optimization cost function given by
the weighted sum of normalized geometric and material
composition errors. In our study, the weight w was set
to 0.5 to reflect equal importance to both geometric and
material composition error. ε̂G and ε̂M are normalized form
of geometric (εG) and material composition (εM ) errors,
respectively. Normalization was performed using initial
design space described in the following section.

6 Surrogatemodel-based global
optimization scheme

The optimization cost function computation, which involves
calculation of geometric and material error, is highly com-
putationally expensive due to a large number of 3D geomet-
ric computations involved. Some of the complex geometric
tasks in cost function evaluation include slicing, toolpath
generation, geometric error computation, voxelization, and
numerous distance computations for desired and attainable
material composition definitions. Moreover, the compu-
tational complexity escalates with lower layer thickness,
intricate geometries, and complex material distributions.
Therefore, we adopted a surrogate model-based optimiza-
tion approach, wherein the cost function is considered as
a black box problem characterized by only its input and
output. How surrogate model-based optimization works is
illustrated in Fig. 10. Here, the x-axis represents the design
variable and the cost function is plotted on the y-axis.

In our study, we used MATLAB’s surrogate modeling
toolbox (MATSuMoTo) [32]. MATSuMoTo provides flex-
ibility to choose from various types of surrogate models,
initial design space generation methods, and new sample
points generation methods. The basic outline of MAT-
SuMoTo optimization process is described below.

Initial design space The algorithm starts by creating an
initial design space, which in our case is an initial set
of orientations, using the chosen design of experiment
(DOE) scheme. Although the user has the flexibility to
adjust the size of the design space, the minimum size
depends on the desired surrogate model. MATSuMoTo
toolbox provides three DOE strategies, namely Latin
hypercube design, symmetric Latin hypercube design, and
corner points design. In this paper, Latin hypercube design
strategy was used to evenly distribute the initial design
space over the entire domain of design variables. Once
the design space of orientations is generated, geometric
error and material composition error was evaluated for
these orientations. The geometric error and the material
composition error were normalized independently between
0 and 1. The normalization parameters were stored for
further computations. The weighted average (equal weights
in our study) of the normalized errors yield the cost function
value.

Surrogate model Next, a surrogate model was mapped on
the initial design space data to create an analytical function
mapping the design variables to the cost function values.
The choice of the surrogate model is application specific
and is based on methods such as radial basis functions
(RBF) models, Kriging models, and polynomial regression
models. MATSuMoTo toolbox offers fifteen different types
of surrogate models, which are designed using one or more
of the above-mentioned methods. In this paper, the cubic
RBF surrogate model was used. The cubic RBF model
does not require shape factor tuning and hence provides
fast computation. It also delivers high performance and
robustness for small sample sizes [20].

Fig. 10 One-dimensional example of surrogate-model-based opti-
mization: a Objective cost function (- - -) and initial design space (•);
b Surrogate model (—) mapped to initial design space; c New sample

points (•) generated in the next iteration; d Surrogate model updated
based on information from new sample points; and e After iteratively
updating and achieving convergence, optimal solution (•) obtained
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Selection of new samples In this step, a new set of sample
orientations are generated, and the geometric and material
composition errors were evaluated at the newly generated
orientations. The errors were then scaled using the pre-
stored normalizing parameters, and the cost function was
computed. Note that the normalized errors can overshoot
the [0, 1] range in this case. The surrogate model was
progressively improved using the new data samples. The
user can define the desired number of sample points to be
selected in each iteration. MATSuMoTo toolbox provides
three different approaches for new sample point generation
– CANDloc, CANDglob, and Surrogate model minima. Due
to the effectiveness of CANDglob method in avoiding local
minima, it was used in our study to generate five new sample
points at each iteration. In this method, few candidate points
are generated by small perturbations of the current minima
of the surrogate model and the remaining by uniformly
sampling points from the whole domain.

Iterations and termination The algorithm compares the
cost function values of the new sample points and asses the
stopping criteria. The algorithm iterates through the process
and progressively improves the surrogate model until the
stopping criteria are satisfied. In this paper, two stopping
criteria are used. Either one of them has to be satisfied to
terminate the program. First stopping criterion is satisfied
if the improvement in the optimal cost function value is
less than 10−4 for 10 consecutive iterations (∼50 function
evaluations). Second is satisfied when the total number
of function evaluations including the initial design space
exceeds a pre-set limit T . In the test case studies presented
in this paper, T was set to between 300–900. The initial
design space size was chosen to be T/6 for all the test cases.

7 Results and discussions

Several test cases were designed with varying degree
of geometric and material complexity to assess the
developed methodology. Five test cases are presented
here. The first two test cases have simple geometry and
material distribution that allows for intuitive prediction
of optimal build orientation. This enables verification
and demonstration of the correctness of our system. The
remaining test cases have complex geometry and material
distribution establishing the effectiveness and applicability
of the proposed approach. These test cases encompass FGM
products for real applications in various domains, such as
consumer products (mouse), healthcare (dental implant),
and aerospace (propeller).

Test case 1 A cube with side-length a = 50 mm was created
with two materials (Fig. 11a). The material composition

varied linearly along the space diagonal of the cube. In
the initial axis-aligned orientation, the desired material
composition Md

x at a point x inside the cube is given as
1√
3a

[sx,
√
3a − sx], where sx is the distance of point x from

the plane passing through origin [0, 0, 0] and normal to the
space diagonal direction [1, 1, 1].

The build orientation cost function is formulated with
equal importance to geometric and material accuracy.
Therefore, the expected optimal orientation is likely to keep
the faces of the cube either parallel or perpendicular to
the build direction to reduce geometric error. It is also
likely to orient the cube such that the material grading
direction (space diagonal) is aligned with the toolpath as
much as possible to minimize material composition error
due to discretization. Note that in our approach, the zig-zag
toolpath pattern is generated with y-direction as the major
axis. The results of the optimization process are shown in
Fig. 11a. As expected, the optimal build orientation of 	 =
[90, 38,−180] degrees ensures that all the cube faces
are either parallel or perpendicular to the build direction
(z-axis) and the material gradient direction in each slice is
majorly aligned with y-axis. Two next best orientations are
also presented, along with three least favorable orientations
evaluated during surrogate model-based optimization. The
convergence plot of the minimum function value with the
number of function evaluations is also presented.

Test case 2 A cylinder with radius r = 25 mm and height
h = 50 mm was created with linearly grading material
along its central axis (Fig. 11b). The initial orientation
of the cylinder has its central axis aligned with z-axis
and its bottom face coplanar with xy-plane. The desired
material composition Md

x at a point x = [x, y, z] inside
the cylinder in this orientation is given as 1

h
[z, h − z].

Intuitively, the optimal build orientation would be same
as the initial orientation with build direction along z-
axis. In this orientation, the tessellated triangular faces
on the surface are either parallel or perpendicular to the
build direction for minimal geometric error. Also, since the
material composition is constant in any plane perpendicular
to build direction, the only source of material discretization
error would be the finite slice thickness.

The results of the optimization are shown in Fig. 11b.
The optimal orientation is indeed found to be very close
to the initial orientation. The next top two orientations are
also found to be very similar to the initial orientation. The
bottom three orientation samples with highest cost function
values are also presented. The convergence plot of optimal
cost function value is also shown.

Test case 3 A FGM mouse cover with two constituent
materials was created (Fig. 11c). The desired material
composition varied linearly with the distance from the
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Fig. 11 Results for the five test
cases (a–e) are presented.
Section views of (c–e) show the
material distribution inside the
models. The top three and the
bottom three orientations in
terms of cost function values
among the orientations evaluated
during surrogate model-based
optimization are shown. The
convergence plots for the
optimization are also included

boundary surface of the cover. Hence, for a point x inside the
cover, the desired material composition is given as Md

x =
[τx, 1 − τx], where τx = sx/sub, sx is the shortest distance
of point x from the boundary, and sub is an upper bound
of sx used as normalizing factor. One-half of the smallest
edge-length of the axis-aligned bounding box (AABB) is
used as sub in our study. Figure 11c shows the results of
the optimization process with top three and bottom three
build orientations based on the cost function evaluations
during the optimization process. The convergence plot is

also presented in the figure. The optimal cost function value
obtained was −0.1289.

Test case 4 A FGM model of dental implant was created
(Fig. 11d). The desired material composition was a function
of the distance from the boundary surface of the implant.
It is given as Md

x = [τ 1.5x , 1 − τ 1.5x ], where τx = sx/sub,
sx is the shortest distance of a point x inside the dental
implant from its boundary, and sub is one-half of the smallest
edge-length of AABB of the implant model. The top three
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and bottom three orientations that were evaluated during the
optimization process are shown in Fig. 11d with optimal
cost function value of − 0.0851.

Test case 5 A FGM propeller model was used as one of
the test cases for our experiments (Fig. 11e). The desired
material composition inside the propeller was a function of
the distance from the its boundary, given as Md

x = [τ 2.5x , 1−
τ 2.5x ], where τx = sx/sub, sx is the shortest distance of a
point x inside the propeller from its boundary, and sub is an
upper bound of sx defined as one-half of the smallest edge-
length of AABB. The results of the optimization are shown
in Fig. 11e. The optimal build orientation achieves the cost
function value of −0.0179. The figure also shows the next
top two orientations and bottom three orientations based on
cost function values among all the samples evaluated during
surrogate model-based optimization.

The test cases demonstrate the applicability and effec-
tiveness of our approach in identifying the optimal
build orientation for FGM models. The convergence
plots show that the surrogate model-based optimization
method can converge to the minima of the cost func-
tion with a small number of function evaluations. This
allows for efficient estimation of optimal build orientation
although the cost function evaluations are computationally
expensive.

8 Conclusions and future research

The quality of the printed part in additive manufacturing
is profoundly impacted by the build orientation used for
fabricating the part. The severity of this influence increases
for functionally graded material fabrication since the build
orientation not only affects the geometric accuracy of the
part but also affects the material distribution within the
part. In this paper, a novel optimization approach was
developed to identify an optimal build orientation that
minimizes both geometric and material composition error. A
distance-based FGM modeling scheme was implemented to
represent and encode the desired material distribution within
the part. Using this representation, the error in material
composition was captured by quantifying the difference
between desired and attainable material distribution. The
cost function formulated for the minimization problem
considered both geometric error and material composition
error. The optimization problem was solved using surrogate
model-based optimization method that accelerates the
process by strategically choosing useful samples in the
design space in each successive iterations. Using surrogate-
based optimization, the optimal build orientation can be
found with a small number of computationally expensive
cost function evaluations.

In this work, the primary source of material error was
considered to be the discretization across the cross-section
of the toolpath. However, in practice, the overall material
error is also dependent on the additive manufacturing
equipment’s ability to vary material composition along
the toolpath. In this paper, it was assumed that the
equipment could produce arbitrarily complex material
composition variation along the toolpath. Several existing
FGM printers can only mix materials in discrete fractional
quantities rather than in a continuous manner. Therefore,
further study is required to consider the discretization of
material composition along the toolpath based on equipment
specific limitations. Moreover, the developed approach
only considers nozzle-extrusion-based processes such as
fused deposition modeling. Studying other processes and
incorporating them into our optimization framework or
developing a similar framework for those processes is an
exciting avenue of future work.

The computational framework developed in this paper
successfully represents the functionally graded objects
and optimizes the build orientation to minimize the
geometric and material composition error. However, it is
computationally very expensive and hence limits user’s
ability to evaluate a large number of different orientations
in the optimization process efficiently. By incorporating
parallel programming, the issue can be largely resolved.
Since evaluating different orientations are not inter-
dependent and the computation for individual slices can also
be handled independently, therefore parallel computation
could drastically reduce the required execution time and
benefit the overall optimization process. Another possible
direction of future work is extending the framework for
process planning of additive manufacturing of functionally
graded materials. An adaptive slicing and contour-based
toolpath planning can also be implemented to further
broaden the applicability of our work and improve the
material composition error quantification scheme.
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