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Abstract
Laser transmission welding is a quick, easy, and viable method to join plastic materials for several industrial domains. The main
challenge for manufacturers is still on how to choose the input process parameters to achieve the best joint performance. Joining
between PET (polyethylene terephthalate) films does not make an exception, with quality strictly depending on laser joining
parameters. The purpose of the present study is to estimate the weldability of a polymeric material couple according to their
thermal and optical properties. This paper investigates an experimental study of laser transmission welding of PET 100% and
PET-PEVA (polyethylene vinyl acetate) 5%, 10%, and 15% sheets by a diode laser. In the present work, laser power and scan
speed were considered as operational parameters, which have a significant influence on the quality of the joint zone. Then, the
influence of PEVA aliquots in PET/PEVA blends, which altered the mechanical properties, such as joining behavior, mechanical
characterization, and degradation level, was analyzed. In addition, an artificial neural network model is developed to achieve the
optimal laser parameters. The obtained results proved the advantage of this model, as a prediction tool, for developing laser
welding parameters.
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1 Introduction

Plastic materials can be applied in small-scale components
such as medical and electronic devices, food containers, sen-
sor enclosures, or consequently in the manufacturing of com-
ponents for large-scale projects such as automotive, aero-
space, and construction industries. Being an attractive devel-
oping field, researchers are looking for some new methods to
optimize the manufacturing processes such as joining tech-
niques [1, 2]. One of the most applicable plastic materials is
poly(ethylene terephthalate) which is widely used in the shape
of foils and sheets in various manufacturing processes and
products. This polymer, which commercially is well known

as PET, can be used for a wide range of products from food to
drug packaging items because of its good thermal stability,
impermeability, and dielectric properties [3]. The application
of biodegradable polymers has attracted many attentions due
to their reduced environmental impact. The possibility to de-
velop simple processing of biodegradable plastic can increase
their potential, as they could be processed at a high rate with a
reasonable cost. Accordingly, the joining of these biodegrad-
able polymers can make a great opportunity to be used in
various products as well as their current applications in med-
ical and electronic devices and sports equipment.

Laser transmission welding (LTW) is an appropriate and
fast method for joining of thermoplastic components with du-
rable and strong bond [4, 5]. This process is applied in
welding of plastic materials in the packaging industry with a
high quality and productivity, which highly depends on ther-
mal parameters, light absorption, and light scattering [6]. In
fact, these parameters can be utilized as a functional tool for
optimization of the laser welding process [7–9]. Numerical
computations can also simulate the welding process in order
to achieve the optimized welding parameters and a prediction
of material weldability [10–13].
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Brown et al. firstly presented a laser transmission welding
of multi-layer polymer for the manufacture of the food con-
tainer. They applied opaque Nylon 66 as outer polymeric layer
lids to a tubular container. The results demonstrated appropri-
ate weld strength in the welded zone [4]. Ilie et al. investigated
the weldability of PMMA (poly-methyl-meth-acrylate) and
ABS (acrylonitrile-butadiene-styrene) by a combination of
the both experimental and simulation methods. They used a
thermal model to estimate the evolution of the temperature
field and laser beam behavior at the interface of two compo-
nents. They consequently proved the obtained results of the
simulation with experimental results. This approach, as an
efficient tool, determined the weldability of polymeric mate-
rials with a significant reduction in costs and time [14, 15].
Ussing et al. represented the micro-laser transmission welding
of PETG (polyethylene-terephthalate-glycol) and Topas COC
(cyclic-olefin-copolymer) by using a low power diode laser.
They employed a wide range of parameters to achieve various
targets such as welding width, speed, or precision. They alter-
natively treated the surface of PETG with IR absorber dye by
applying a slender laser wavelength and the surface of Topas
was coated by a thin layer of black carbon (5–10 μm) [16].

Spekta et al. also used the same IR thermography as a non-
contact method for the laser transmission welding of ABS and
PMMA polymeric materials. The results of the numerical
modeling are compared with experimental temperature during
heating and cooling of the process and the optimal process
parameters ultimately are acquired by goodmatching between
experimental and simulation [1]. Amanat et al. assessed the
effect of laser parameters such as scan speed, laser power, and
material morphology on weldability of PEEK (poly-ether-
ether-ketone). They investigated the quality of the joint for
semi-crystalline and amorphous PEEK materials and they
found the higher bond strength for semi-crystalline materials
compared to the amorphous polymer when the scan speed is
the lowest [17]. Zak et al. investigated a laser transmission
welding of PA6 (polyamide 6) and PA6GF (glass fiber rein-
forced polyamide 6) by a diode laser in order to explore the
influence of laser power on weld line width. They employed a
simple technique for the measurement of the energy distribu-
tion of a weld line without the application of sophisticated
measurement equipment [2]. Chen et al. also described the
effect of the absorption coefficient to measure the laser energy
distribution as a function of part thickness for unreinforced
PA6 and PA6GF as well as amorphous polycarbonate (PC)
with or without carbon black (CB). This linear model made
a relation between the amount of applied BC and the absorp-
tion coefficient in polymers based on the obtained experimen-
tal result of PA6, PA6GF, and PC [18].

Artificial neural network (ANN) is a powerful tool for the
modeling of the relationships between variables which can
learn and predict based on the experimental data. ANNs is
recently applicable to various fields such as manufacturing

and material processes. For example, Sterjovski et al. success-
fully applied an ANN model for predicting the mechanical
properties of the welding steel materials [19]. Li-Ming et al.
developed a neural network model for diffusion welding of
SiCw/6061Al metal matrix composites and the predicted out-
puts had a good agreement with the experimental data [20].
Jeng et al. applied a back-propagation (BP) learning model for
the prediction of laser welding parameters of a butt joint [21].
Acherjee et al. reported an artificial neural network model for
laser welding of thermoplastic sheets that can successfully
predict the relationship between the laser parameters (includ-
ing laser power, scan speed, stand-off-distance, and clamp
pressure) and joint quality (inducing strength and dimension
of the joints) [22]. Wang et al. also applied an artificial neural
network model for laser transmission welding of
thermoplastic-polycarbonate (PC). Their model can predict
the optimum laser parameters and the joint quality that the
predicted values match well with the actual values [23]. In this
respect, the present work deals with similar and dissimilar
laser welding of PET and PET/PEVA polymer sheets by a
diode laser. The purpose of the present study is to estimate
the weldability of a polymeric material couple according to
their thermal and optical properties. The laser joining was
performed under a wide range of welding conditions. Then,
joining behavior, mechanical characterization, and degrada-
tion level were analyzed in detail and the effectiveness of the
process was discussed. Moreover, a correlation between the
applied laser parameters and the achieved output was devel-
oped through a nonlinear model by applying ANNs. This
model can be employed as a prediction tool to estimate the
optimum weld based on various laser parameters including
laser power and scan speed. The predicted achievements show
a good agreement with the experimental data set.

2 Experimental setup

2.1 Material and equipment

In this study, Neopet 84 Poly(Ethylene Terephthalate) pro-
duced by Neogroup (UAB Neo Group, Rimkai, Lithuania)
was investigated. This type of polymer is employed in various
applications, mostly in packaging. This PET has a high intrin-
sic viscosity (0.84 ± 0.02 dL/g) and a melting temperature of
around 250 °C. This PET can also be reprocessed and mixed
with the other material by melt processing. Therefore, Neopet
84 was blended with PEVA (polyethylene vinyl acetate), a
biodegradable polymer, with a melting temperature of around
105 °C. Consequently, four types of blends were produced for
this investigation: PET 100%, PET-PEVA blends with 5, 10,
and 15 wt% PEVA (i.e., the additive). All of the polymeric
specimens have the same dimension with the length of
120 mm, the width of 28 mm, and thickness of 0.33 mm.
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A high-power diode laser with a continuous wave (HPDL-
CW, ROFIN-SINAR DL 015, Plymouth, Michigan) is
employed in this experimental process. The laser equipment
has a maximum power of 1500Wwith a wavelength of 940 ±
10 nm. Also, the beam shape is elliptical with 1.2 mm ×
3.8 mm axes. The shorter axis is parallel to the orientation of
the laser scan. The focal distance of the lens, which was used
during the experimental tests, is 63 mm, while the working
distance is 32 mm. Argon gas (less than 1 bar) is also flushed
to the melting zone during the process for protection and in-
sulation purposes.

The mechanical response of the welded samples was inves-
tigated by a static testing machine (MTS Insight 5,MTS, Eden
Praire, USA). All tests were implemented setting the deforma-
tion speed at 2 mm/min. This machine was connected to a
computer system by a direct remote control and was calculat-
ed some parameters such as elasticity modulus, yield stress,
breaking load, and elongation percentage.

2.2 Research method

All the samples were cleaned by a mix of detergent and
water, then alcohol at the beginning to remove any con-
tamination from the surfaces of the sheets. Then, as
shown in Fig. 1, the overlapping samples were positioned
in a simple clamping system, fixed by a screw and bolt
system. After that, the laser parameters were set and the
clamping system was positioned under the laser beam.
The underlying surfaces were painted with a thin layer
of black acrylate to improve the absorption of radiation

during the laser transition welding. In fact, the heat ab-
sorption raises the local temperature and changes the
polymer status, thus promoting the formation of the laser
joints. The experiment was performed on PET 100% and
PET-PEVA 5%, 10%, and 15% according to the opera-
tional parameters summarized in Table 1. As indicated,
the tests included five different values of laser powers
and three scan speeds, which applied for all polymeric
samples. The experiment was operated with two replica-
tions to demonstrate reliability and repeatability of the
experimental results.

3 Neural network solution

3.1 Neural network scheme

In this study, a set of two different neural network models is
investigated to find the desirable solutions for predicting the
experimental trends in similar laser welding of PET and PET-
PEVA sheets based on all operational parameters:

& Generalized feed-forward (GFF-MLP) neural network
& Radial basis function (RBF) neural network

The algorithm of BP was used to train both of the (GFF-
MLP) and (RBF) neural networks. The software simulator
used was NeuroSolutions version 7.0.1.0 developed by
NeuroDimension Incorporated.

Fig. 1 The schematic of the
clamping system and laser
position

Table 1 Setting of laser
operational parameters Type of polymers PET 100% PET-PEVA 5% PET-PEVA 10% PET-PEVA 15%

Laser power (W) 50 60 70 80 90

Scan speed (mm/s) 6 8 10
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3.1.1 GFF-MLP

GFF-MLP is one of the most common artificial neural net-
works that applied for the connection between units without
cycle form, since the information only travels forward in the
network (no loops) [24, 25]. In fact, this model works based
on the connection between input and output nodes (also hid-
den nodes if present) and there are no feedback connections in
which outputs of the model are feedback into itself. Overall,
GFF-MLPs neural networks are primarily used for supervised
learning in cases where the data to be learned is neither se-
quential nor time-dependent [26].

3.1.2 RBF

Broomhead et al. introduced RBF networks as a class of ANN
that can be used in many classification problems in science
and engineering [27]. Rather than of having threshold units,
each RBF neuron has a set of values named a “reference
vector” for comparison with an input set of the same cardinal-
ity. The driving equation of individual neuron used in this
study is based on the multivariate Gaussian function:

φ rð Þ ¼ e
− 1
2σ2

j
x−t jk k2

� �

where x is the input vector for the neuron, tj is the set of
reference values, σj is the standard deviation (σ2 is the vari-
ance) of the function for each of the centers (j), and the value r
(||x − tj||) is the Euclidean distance between a center vector and
the set of data points [28]. Figure 2 shows a schematic of the
RBF neural network that an input vector (X1, Xn) was used as
input to all radial basis functions for different parameters. The
output of the network is a linear combination of the outputs
from radial basis functions.

3.1.3 Back-propagation algorithm

In 1986, Rumelhart et al. proposed a systematic neural network
training approach [29]. One of the significant contributions of
their work is the error BP algorithm [30]. The main objective of
this neural model is to find an optimal set of weight parameters
(w), as a variant in the function of y = y (x, w), which closely
represents the original problem behavior. This is achieved
through a process called training (that is, optimization in w-
space). A set of training data is present to the neural network.
The training data are pairs of (xk, dk), k = 1, 2… p, where dk is the
desired output of the neural model for inputs xk, and p is the total
number of training samples. During training, the neural network
performance is evaluated by computing the difference between
actual network outputs and desired outputs for all the training
samples. The difference, also known as the error, is calculated by

E ¼ 1

2
∑

k∈Tr

∑
m

j¼1
y j xk ;wð Þ−djk

� �2

where yj(xk,w) is the jth neural network output for input xk, and
djk is the jth element of dk, and finallyTr is an index set of training
data. The weight parameters (w) are adjusted during training to
result in the minimum error [31].

Table 2 Similarities between biological neural networks and artificial
neural networks

Biological neural networks Artificial neural networks

Stimulus Input

Receptors Input layer

Neural net Processing layer(s)

Neuron Processing element

Effectors Output layer

Response Output and an entry

Fig. 2 A schematic of the RBF
neural network and the relation of
various layers
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3.2 Neural network setup

Artificial neural networks are networks of highly intercon-
nected neural computing elements that have the ability to re-
spond to input stimuli and to learn and to adapt to the envi-
ronment. ANN includes two working phases, the phase of
learning and recall. In fact, the recall phase works by the
weight which obtained from the learning phase based on the
input and output dataset [32]. As a nonlinear learning ma-
chine, ANNs apply many different processing elements
(PEs). Each PE receives connections from other PE and/or
itself. Table 2 indicates similarities between biological neural
networks and artificial neural networks [33]. There are several
empirical methods to investigate and calibrating networks
based on mentioned factors. Therefore, using the error pro-
cessing method can be resulted to find the optimum network.

This research reported a set of different ANNs designed by
different learning rules (algorithms) to find the optimum pa-
rameters for the laser welding of PET and PET-PEVA

polymeric sheets. The empirical parameters contain remark-
able effects on the laser welding that is laser power and laser
scan speed were used as input processing elements (PEs) in
two neural network models. The response maximum amounts
of load and elongationwere considered as the output. The total
samples investigated in both neural networks were divided
into three subsamples, which are presented below:

& 70% training
& 15% cross-validation
& 15% testing

Various neural network models applied to find the best so-
lutions for predicting the experimental trends of the laser
welding process. The capability and effectiveness of these neu-
ral networks were evaluated through two different criteria to
make accurate predictions: the root mean square error (RMSE)
and the coefficient of correlation (r). The best fit between de-
sired and predicted values would be RMSE = 0 and r = 1.

Fig. 4 Analysis of the best PEs
number in the hidden layer for the
different neural network model

Fig. 3 The applied neural
network with five hidden layers
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Figure 3 shows the structure of the neural network with five
hidden layers which applied to two neural network models.
The number of hidden layers is achieved based on the mini-
mum of RMSE number which obtained for five hidden layers.
As can be seen, laser power and scan speed were chosen as the
input elements, and also max-load and elongation as the out-
put elements. In this study, a Gaussian transfer function was
used only in RBF neural network model. Also, the GFF-MLP

network applied a sigmoid function as a transfer function for
evaluating the accuracy of the predictable tool.

Figure 4 shows the performance of the two neural networks
which is applied in this study. The impact of RMSE on the
number of PEs in the hidden layer is described. RMSE is
minimized when the number of PEs is set at 6 for GFF-MLP
neural networks, while RMSE is minimized for RBF neural
network when PEs is set at 7. The epoch number for each

Fig. 5 Four categories of
obtained experimental results: a
no melting, b melting-no welded,
c welded, and d welded with
degradation

Fig. 6 The visual analysis of the welding process of PET 100% and PET-PEVA 5%, 10%, and 15%
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neural network model was fixed to 1000, except for RBF
model in which 1100 epochs, including 1000 epochs for the
supervised learning, and 100 epochs for the unsupervised
learning.

4 Results and discussion

4.1 The experimental results

Figure 5 shows PET and PET-PEVA samples after the exper-
imental investigation. The samples are classified into four cat-
egories: (a) no melting: no melting and adhesion are observed
in the faying surface of the polymeric sheets due to the low
intensity of the laser radiation; (b) melting/no welded: the
forming of welded joint is not stable because of low or medi-
ate laser intensity; (c) welded: the faying surfaces exhibit a
sufficient melting and a firm welded joint due to adequate
laser intensity; and (d) welded with degradation: the
overheating in faying surface resulted in an unacceptable

welded joint due to the excess of power density delivered to
the plastic surface.

Figure 6 reports a qualitative evaluation of the joints based
on the effect of laser operational parameters, including laser
power and scan speed, specifically on the weldability of PET
100% and PET-PEVA 5%, 10%, and 15% additive samples.
As visible, the green zone of the map represents the ranges of
the acceptable parameters for the welding of the polymeric
sheets. PET-PEVA 15% boasts a wider range of high-quality
welded joints compared to the other polymeric blends since
PEVA can absorb more IR wavelength in the overlaying area
than the transparent PET during laser irradiation [3, 34].

The mechanical properties of the welded joints were inves-
tigated by tensile test through the evaluation of strength and
elongation at break. The experimental results showed the sam-
ples remained in the elastic range during the tensile tests; then,
the breakage of the welded joint suddenly occurred in the
interface location where the samples are welded together
[35]. Figure 7 shows the results of the tensile test based on
various operational parameters, including laser power and
scan speed, for all types of polymers. This diagram represents

Fig. 7 The results of the mechanical test (load-extension diagram) for all polymeric samples
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the maximum load and extension for each individual welded
sample which was in the green zone of the visual map in Fig.

6. The results are categorized in three different colors based on
various laser speeds including 6 mm/s, 8 mm/s, and 10 mm/s.

Fig. 9 The trend of RMSE testing
elongation (above) and max-load
(bottom) by varying the number
of epoch for GFF-MLP (left) and
RBF (right)

Fig. 8 The trend of RMSE by
varying the number of epoch for
GFF-MLP (left) and RBF (right)
networks
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It can be observed that PET-PEVA 15% exhibits the best
performance with the maximum strength compared to PET
100%, PET-PEVA 5%, and PET-PEVA 10%, possibly due to
the best capability of the opalescent PEVA to absorb the laser
radiation in comparison with the nearly transparent pure PET.
Therefore, the intrinsic properties of material, like the capabil-
ity of extension, are modifiable with the addition of PEVA in
the PET polymer. Also, the maximum elongations are
achieved for PET-PEVA 15% and are significantly higher than
other polymers. In fact, the elongation of welded joints signif-
icantly increases with the increase in PEVA aliquot inside the
blends (PEVA 5%, 10%, and 15%). On average, PET 100%
achieved the minimum elongation of 0.97 mm, while PETs
blended with PEVA at 5, 10, and 15 wt% show 1.04 mm,
1.09 mm, and 1.10 mm of maximum elongation, respectively.
These results confirm how PETs modified with increasing
aliquot of PEVA have better strength and elongation (up to
10%) of the welded joints compared to the transparent PET.

4.2 Modeling of experimental data and results

GFF-MLP and RBF neural network models have applied with
BP algorithm for modeling the available experimental data,
both the strength and the elongation of the different sample
investigated. Figure 8 reports the trend of the RMSE accord-
ing to epoch numbers for both GFF-MLP and RBF networks
on the left and right sides. The training was repeated three
times to minimize the resulting variability, and the network

weights, which minimized the RMSE of the cross-validation,
were chosen as the best weights. The best values of process
element (PE) were adopted in the hidden layers so that the best
topology of the neural networks could be found and 1000
epochs were fixed for each model. As can be seen, the trend
of the average values for the training and cross-validation set
during the learning process is lower for GFF-MLP model than
for the RBF model.

Figure 9 also represents the performance of GFF-MLP and
RBF models with reference to the available experimental data
(maximum load, bottom, and, elongation, above) for both net-
works. The trend of the designed networks was displayed
according to the number of epochs. GFF-MLP network shows
better learning because of lower error compared to the RBF
model. In fact, for GFF-MLP, the precision of results during
training improved and training time increased.

Standard deviation (SD) represents the variation or disper-
sion of a data set and can specify the distribution of a dataset
compared to the mean value. Table 3 presents the error cor-
rection parameters and the results of training and cross-
validation for both GFF-MLP and RBF networks based on
the comparison of final mean square errors (MSEs). As visi-
ble, the achieved results proved that the value of the final MSE
is significantly lower for GFF-MLP network than the RBF
model. Moreover, Table 4 shows the best network and regres-
sion model in accordance with the result of training and cross-
validation for GFF-MLP and RBF networks. The number of
run, epoch, and regression is the elements compared in these
two neural networks. Consequently, GFF-MLP network
proved a good capability as a prediction tool, with a fitting
of over 98 and 97%, for training and cross-validation values in
order, which is higher than those achievable by RBF neural
network model.

5 Conclusion

The present study investigated weldability of some polymeric
blends, namely PET 100%, PET-PEVA 5%, 10%, and 15%
sheets. An appropriate set of operational parameters was
found based on the mechanical characterization tests.
Accordingly, the following pointwise conclusions can be
drawn:

Table 3 Error correction
parameters of training and
validation for GFF-MLP and
RBF networks

All runs Training
minimum

Training standard
deviation

Cross-validation
minimum

Cross-validation
standard deviation

Generalized feed-forward (GFF-MLP)

Average of final MSEs 0.021824993 0.00414251 0.098351286 0.002091817

Radial basis function (RBF)

Average of final MSEs 0.039360885 0.001172871 0.10573846 0.008258775

Table 4 Best network and a regression model for the different neural
network with 1000 epochs

Best network model Training Cross-
validation

Generalized feed-forward (GFF-MLP)

Run # 3 1

Epoch # 1000 1000

Regression 0.98916114 0.973707277

Radial basis function (RBF)

Run # 1 1

Epoch # 1000 247

Regression 0.962683697 0.941057339
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& Thermal sensitivity of PET and PET-PEVA is very close.
However, PET-PEVA 15%, despite featuring a large ali-
quot of a biodegradable polymer, boasts a wider range of
weldability if compared with the other blends;

& The influence of PEVA aliquots in PET was found to
improve the mechanical properties of the resulting blends
in terms of both maximum load and elongation based on
the experimental evidence;

& The artificial neural network model was applied as a pre-
diction tool for optimizing the setting of laser parameters,
specifically laser power and scan speed. Accordingly,
GFF-MLP model was found to be the best neural network
solution based on the fitting between measured data and
predicted data.

& The simulation results show a very good agreement of the
numerical data with the available experimental data for a
wide range of operational parameters of the laser welding
process.

In conclusion, the establishment of welded joints in PET
and PET/PEVA blends by high-power diode laser involves a
quick, easy, and low-impact process, easily predictable by
neural network modeling. Therefore, welding by high-power
diode laser of polymeric blends offers of a viable option in
several industrial domains, where easy processing, accurate
control, and high level of automation is required.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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