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Abstract
This paper deals with the elastodynamic modeling and parameter sensitivity analysis of a parallel manipulator with articulated
traveling plate (PM-ATP) for assembling large components in aviation and aerospace. In the elastodynamic modeling, the PM-
ATP is divided into four levels, i.e., element, part, substructure, and the whole mechanism. Herein, three substructures, including
translation, bar, and ATP, are categorized according to the composition of the PM-ATP. Based on the kineto-elastodynamic
(KED) method, differential motion equations of lower levels are formulated and assembled to build the elastodynamic model of
the upper level. Degrees of freedom (DoFs) at connecting nodes of parts and deformation compatibility conditions of substruc-
tures are considered in the assembling. The proposed layer-by-layer methodmakes themodeling process more explicit, especially
for the ATP having complex structures and multiple joints. Simulations by finite element software and experiments by dynamic
testing system are carried out to verify the natural frequencies of the PM-ATP, which show consistency with the results from the
analytical model. In the parameter sensitivity analysis, response surface method (RSM) is applied to formulate the surrogate
model between the elastic dynamic performances and parameters. On this basis, differentiation of performance reliability to the
parameter mean value and standard variance are adopted as the sensitivity indices, from which the main parameters that greatly
affect the elastic dynamic performances can be selected as the design variables. The present works are necessary preparations for
future optimal design. They can also provide reference for the analysis and evaluation of other PM-ATPs.
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1 Introduction

Parallel manipulator with articulated traveling plate (PM-
ATP) is one of the most well-recognized mechanisms in the
research community of parallel manipulators [1, 2]. The com-
mon parallel manipulator is composed of one fixed base, one
moving platform, and several kinematic chains linking to
them. The moving platform is usually a single plate.
Alternatively, the articulated traveling plate (ATP) is a special
type of moving platform consisting of two or more in-parts
and one out-part [3]. Besides the mobility provided by the
kinematic chains, PM-ATP gains extra motions from the
ATP. Therefore, PM-ATPs are more flexible in terms of

motion capability. One typical example of PM-ATPs is the
parallel manipulator with Schönflies motion (three transla-
tions and one rotation around the vertical axis, i.e., 3T1R)
whose rotation is provided by the relative translation of the
two in-parts. The well-known Par4 [4], I4 [5], and the four
degree of freedom (DoF) parallel robot [6] belong to this
group of PM-ATPs. The extra rotation from the in-parts is
up to 720 degree, making the PM-ATP attractive to posture
changing of disorder products. In practice, these PM-ATPs
have been successfully applied for the high-speed pick-and-
place in food packaging, medicine, and semiconductor
manufacturing.

Inspired by the successful applications of parallel manipu-
lators with Schönflies motion, more and more attention has
been drawn to the investigation of PM-ATPs. Referring to the
industrialization of conventional parallel manipulators in the
sequence of topology innovation [7, 8], optimal design
[9–13], calibration, and control [14–18], the developments
of PM-ATPs start from the topology synthesis. The aim is to
invent new PM-ATPs for wider industrial scenarios [19, 20].
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In this regard, Sun [3] discussed the kinematic constraints
within the ATP and proposed a group of PM-ATPs that can
be applied as tracking mechanism, docking equipment, or
machine tools. The parameterized topological models were
further analyzed [21–23]. By filling in the gap between finite
and instantaneous screw theory, Sun [24, 25] succeeded in
connecting topology analysis to the following performance
analysis and even optimal design, which is a milestone in
the topology synthesis of parallel manipulators.

A PM-ATP (details shown in Section 2) is then selected
from the topology synthesis and used as a pose-adjusting
mechanism for assembling large components in aviation and
aerospace. The next problem for the development of the PM-
ATP is the optimal design that builds an actual mechanism
from certain topological structure. The concerned perfor-
mances would be optimized by adjusting the structural param-
eters which are regarded as design variables. Therefore, the
two essential elements for the optimal design are the perfor-
mance and the structural parameters.

The commonly concerned performance indices of parallel
mechanisms include workspace [26], singularity avoidance
[27, 28], stiffness [29, 30], and dynamic [31–33]. Since the
studied PM-ATP is targeted for assembling large components,
elastodynamic performance [34, 35] catering on large load-
carrying, lightweight structure and small deflections is of im-
portance. Performance indices such as natural frequency or
elastic deformations can be adopted as objectives in the opti-
mal design, which require for the mapping model between the
elastodynamic performances and the structural parameters.

The existing elastodynamic modeling methods are mainly
for the high-speed pick-and-place PM-ATPs whose links are
made of light weight material. The elastic deformations of the
links are coupled with the pick-and-placemotions, resulting in
an ongoing trend of applying flexible multibody dynamic
methods to model the elastodynamic performances [36–38].
Although the obtained elastodynamic models are with high
accuracy, the modeling process is computationally expensive
due to the nonlinear couplings between link deformations and
rigid motions. For the rigid structures moving in a low speed,
however, elastic deformations of parts are much smaller than
the rigid body motions. The deformations are assumed not to
affect the mechanism motions and the kineto-elastodynamic
(KED) method can be applied [39, 40]. In the KED frame-
work, the motions of PM-ATP are firstly analyzed by the rigid
body kinematics, and then the elastic deformations computed
by the structural dynamics at each instantaneous moment are
added. The modeling procedure is greatly simplified while the
effectiveness in describing the elastodynamic performance of
the whole mechanism can be kept.

The KED method is applicable under the assumption that
the parts are relatively rigid and the mechanism moves slowly.
Since the pose-adjusting motions of the studied PM-ATP are
relatively slow and the parts are designed towards high

stiffness, the KED method can be adopted. Two challenges
need to be addressed in the elastodynamic modeling of the
studied PM-ATP by the KED method. (1) The parts are usu-
ally with irregular shapes, increasing difficulty in analytically
computing the dynamic behavior. (2) The ATP contains com-
plex structures and multiple joints, complicating the whole
system.

In order to address the modeling difficulties, the studied
PM-ATP is divided into four levels, i.e., element, part, sub-
structure, and the whole mechanism. By applying the element
as basic unit, the elastic deformation of irregular parts can be
captured. The elastodynamic model of each level is built by the
KED method and the model of upper level is assembled by the
model of lower level. The obtained elastodynamic model of the
PM-ATP will be verified by simulations in finite element soft-
ware and elastic dynamic experiments in the following sec-
tions. Herein, the relation of structural parameters and
elastodynamic performance are the major concern in the
modeling. Noises [41, 42] that impose influence on the dynam-
ic performance in practical application are not included. They
are regarded as system disturbances and solved by in the con-
troller development after the optimal design of the PM-ATP.

However, the optimal design is still challenging if the
elastodynamic model is directly applied. Large amounts of
structural parameters are involved because of the irregular
parts, the complex structures, and the compositions of the
PM-ATP. Parameter sensitivity analysis is usually implement-
ed to exclude the trivial parameters and simplify the model
[43]. By analyzing the change of the output performances
when varying the input parameters, parameter sensitivity iden-
tifies the effects of parameters to the performances.
Parameters with high sensitivity impose more influence to
the performance and should be chosen as design variables
while the parameters with low sensitivity can be eliminated
in the optimal design.

Current parameter sensitivity methods mainly compute per-
formance changes by randomly changing the values of one
parameter at a time, in which the rest of the parameters remain
unchanged [44, 45]. The coupling effects of multiple parame-
ters are ignored in these methods. In order to efficiently and
effectively analyze parameter sensitivity, more comprehensive
parameter sensitivity indices are required. They should (1) con-
sider the possible coupling effects among parameters, and (2)
evaluate the change of each parameter via statistic technique,
for instance mean value and standard variance.

In summary, this paper focuses on the preparations for the
optimal design of a PM-ATP, i.e., the elastodynamic modeling
and the parameter sensitivity analysis. The difficulties of this
work are resulted from the complicated composition and the
substantial parameters. To illustrate the adopted methods, this
paper is organized as follows. Section 2 briefly introduces the
PM-ATP and carries out the inverse kinematics analysis.
Based on the KED method, elastodynamic modeling of the
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PM-ATP is implemented in Section 3. Translation, bar, and
ATP substructures are assigned to assemble the dynamic mod-
el of the whole mechanism. In Section 4, simulation and ex-
periment are conducted to verify the elastodynamic model.
Section 5 is dedicated to the parameter sensitivity analysis,
from which the main parameters are identified and selected
as design variables in future optimal design. Conclusions are
drawn in Section 6.

2 Mechanism description and inverse
kinematics

The studied PM-ATP is named as PaQuad PM (Fig. 1a). The
PaQuad PM is composed of a fixed base, an ATP, and four
identical PRS limbs. Herein, P, R, and S denote actuated pris-
matic, revolute, and spherical joint. The PRS limbs connect to
the fixed base and the ATP by P joint and S joint, respectively.
The ATP consists of in-part 1, in-part 2, and out-part. The in-
part 1 links to the out-part through helical (H) joint, whereas
the in-part 2 joins to out-part by R joint. The axes of the H
joint and R joint are collinear. According to the mobility anal-
ysis, the ATP has one translational and two rotational capabil-
ities provided by the PRS limbs. Additionally, the relative
translation of in-part 1 and in-part 2 results in the rotation of
H joint, which adds an extra rotation to the out-part. Hence,
the PaQuad PM has one translation and three rotations.

In order to formulate the kinematic model of the PaQuad
PM, some denotations and coordinate frames are defined as
shown in Fig. 1b. Point Ai is assigned to the connecting point
of the ith (i = 1, 2, ⋯, 4) PRS limb and the fixed base. The
fixed base is defined by a circle whose center is point O and
radius is a. Points Bi, Ci, and Di denote centers of P joint, R

joint, and S joint, respectively. The lengths of in-part 1 (D1D3 )

and in-part 2 (D2D4 ) are both 2b and the vertical distance
between them is e. The traveling distance of P joint and the
length of bar are represented by qi and l. A fixed reference
frame O − xyz is assigned to point O. The x-axis is collinear
withOB2 and the z-axis is vertical to the fixed base. A moving
reference frameO′ − uvw is attached to the pointO′ on the out-
part. Its w-axis points to the same direction as H joint and the
u-axis is parallel to D4D2 at home position.

The rotation matrix of frameO′ − uvwwith respect to frame
O − xyz can be computed by

R ¼ Rα;xRβ;yRγ;z ¼ u v w½ �

¼
cβsγ −cβsγ sβ

sαsβcγ þ cαsγ −sαsβsγ þ cαcγ −sαcβ
−cαsβcγ þ sαsγ cαsβsγ þ sαcγ cαcβ

2
4

3
5 ð1Þ

where α, β, and γ are the three Euler angles. c and s denote
cosine and sine, respectively.

Considering the projection of pointDi on theO
′ − uv plane,

the position vector of point Di in frame O′ − uvw can be
expressed as

d1O0 ¼ −bsinγ −bcosγ −d0−eð ÞT;
d2O0 ¼ bcos γ1 þ γð Þ −bsin γ1 þ γð Þ −d0ð ÞT
d3O0 ¼ bsinγ bcosγ −d0−eð ÞT;
d4O0 ¼ − bcos γ1 þ γð Þ bsin γ1 þ γð Þ −d0ð ÞT

where γ1 denotes additional rotation angle produced by Euler
angles α and β.

Point Di can also be described in frame O − xyz as

di ¼ RdiO0 þ rO0 ; i ¼ 1; 2;⋯; 4 ð2Þ

where rO0 ¼ xO0 yO0 zO0
� �T

.

The pointDimoves within the plane spanned by s1, i and s3,
i due to the limitation of the R joint, which can be mathemat-
ically described by

di
Ts2;i ¼ 0; i ¼ 1; 2;⋯; 4 ð3Þ

where
s2;1 ¼ 1 0 0ð ÞT; s2;2 ¼ 0 1 0ð ÞT; s2;3 ¼ −1 0 0ð ÞT;

s2;4 ¼ 0 −1 0ð ÞT

Substituting Eq. (1) and Eq. (2) into Eq. (3) yields

xO0 ¼ d0 þ eð Þsinβ
yO0 ¼ −d0sinαcosβ
γ1 ¼ arctan tanαsinβð Þ

8<
: ð4Þ

where e ¼ Ph�γ
2π þ e0. Ph denotes screw pitch, e = e0 when

PaQuad PM is at home position. d0 represents distance be-
tween point O′ and D2D4.Fig. 1 The PaQuad PM. a Virtual prototype. b Schematic scheme
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The closed-loop equation can be formulated as

rO0 þ d
0
i ¼ ai þ qis1;i þ ls3;i ; i ¼ 1; 2;⋯; 4 ð5Þ

where

d
0
i ¼ RdiO0 ; ai ¼ a sinϕi −cosϕi 0ð ÞT; ϕi ¼ i−1ð Þπ=2;

s1;i ¼ 0 0 1ð ÞT:

For the inverse kinematic of the PaQuad PM, the z value of
point O′ and the three Euler angles (α, β, γ) are the known
parameters. By solving Eq. (1) to Eq. (5), the traveling dis-
tance of the P joint is obtained as follows

qi ¼ zO0 þ d
0
iz−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2−M 2−N 2

p
; i ¼ 1; 2;⋯4 ð6Þ

where M ¼ xO0 þ d
0
ix−asinϕi, N ¼ yO0 þ d

0
iy þ acosϕi.

3 Elastodynamic modeling

As has been mentioned in Section 1, the KED method is
adopted to formulate the elastodynamic model of the PaQuad
PM. Based on the inverse kinematics, any configuration within
workspace can be computed, with which the elastodynamic
modeling is implemented. The PaQuad PM is divided into four
levels, i.e., element, part, substructure, and the whole mecha-
nism. Euler-Bernoulli beam is applied to be the basic element,
whose dynamic performance can be analytically formulated.
The elastic dynamics of parts are denoted by the elements and
then assembled to form the elastodynamic model of substruc-
tures. Finally, the model of the whole mechanism is established
by the models of substructures. During the assembling process,
displacements at connecting points of parts and deformation
compatibility conditions of the substructures are concerned.

According to the KED method, some basic assumptions
are made as follows. (1) The rigid body motions and the elas-
tic deformations are independent and linear superposition is
feasible. (2) The transformation matrices are time invariant.
(3) Transversal deformations of the beam elements are cubic
polynomial and the longitudinal deformations are linear.

3.1 Differential motion equation of beam element

Figure 2 shows a spatial beam element whose two nodes are
E1 and E2. An element coordinate frame E1−xyz is assigned to
point E1. Elastic deformation of any point on the beam can be
expressed as

δi ¼ Nu ð7Þ

whe r e δi ¼ U tð Þ V tð Þ W tð Þ θx tð Þ θy tð Þ θz tð Þ½ �T;
U(t), V(t), and W(t) are the linear deformations along x, y,

and z -axis while θx(t), θy(t), and θz(t) are the angular defor-
mations. The details are referred to [39]. N is a type function

matrix [39], and u ¼ u1 u2 ⋯ u12½ �T is the elastic de-
formations of node E1 and E2.

The beam element generates tension, compression,
bending, and torsional deformations if an arbitrary force
is applied. Elastic energy of the beam is thus computed
by

Ep1 ¼ 1

2
∫L0

EA U
0

� �2
þ EIz V ″

� �2
þEIy W ″

� �2 þ GIx θ
0
x

� �2
2
64

3
75dx ð8Þ

where E, A, and G are Young’s modulus, area of cross
section, and shear modulus. Ix, Iy, and Iz denote the

polar moment of inertia about each axis. U′ and θ
0
x are

the first-order differentiation of U and θx, and V″ and
W″ are the second-order differentiation of V and W.

In addition, gravity potential energy is given by

Ep2 ¼ −∫L0ρAg
Trp2dx ð9Þ

where ρ, g, and rp2 are density, gravity acceleration, and vector
from point O to point Ei in frame E1−xyz.

Moreover, kinetic energy can be expressed as

Ek ¼ 1

2
∫L0u

˙ T
aiGu

˙
aidx ¼ 1

2
∫L0u

˙ T
aN

TGNu˙ adx ¼ 1

2
u˙
T
amu˙ a ð10Þ

where u̇ai ¼ N u̇r þ u̇ð Þ ¼ Nu̇a. Herein, u̇ai is the absolute
velocity of point Ei. u̇r and u̇ denote velocities of rigid body
motion and elastic deformation.

Hence, Lagrange equation is formulated as

d

dt
∂Ek

∂u̇

� �
−
∂Ek

∂u
þ ∂Ep

∂u
¼ f ð11Þ

where Ep = Ep1 + Ep2, f is the vector of external forces.
Differential motion equation of the beam can be formulated

by substituting Eq. (8) to Eq. (10) into Eq. (11) as follows.

MeU
:: e þKeUe ¼ Fe þQe ð12Þ

where Ue is the generalized coordinates of nodes.Me, Ke, Fe,
and Qe are the mass matrix, stiffness matrix, and vector of
external and internal forces in frame O − xyz.

Me ¼ TTmT; Ke ¼ TTkT; Fe ¼ TT f1;

Qe ¼ TT f2−∫
L
0ρA

0
TTNTgdx−MeU

:: e

r ;

T ¼ diag Re Re Re Reð Þ
:

herein T is the transformation matrix of frame E1−xyz with
respect to frame O − xyz.
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3.2 Differential motion equation of substructures

The differential motion equation of the beam is applied to
assemble the elastic dynamic of the parts by considering
DoFs of the connecting points. Then, the parts will be used
to construct the substructure. The PaQuad PM is divided into
three substructures, i.e., translation, bar, and ATP. The first
two substructures are from the PRS limb, where the former
is the main body of the P joint and the latter is the connecting
structure of the R and S joints. The effects of P, R, and S joints
will be taken into account in the mechanism level. Unlike the
other two substructures, ATP contains internal joints (H and R
joints) whose influences need to be addressed in the substruc-
ture level.

3.2.1 Translation substructure

The P joint is composed of screw pair and guide slider, as is
shown in Fig. 3. Ball screw and slider are the major

components to deform; thus, they are assumed to be elastic
and represented by two and three beam elements, respectively.
The elements are named from iE1 to iE5 and the seven nodes
are denoted by iN1 to iN7. Element coordinate frames are
firstly established for establishing the differential motion
equation of elements. Frame iN1 − xiyizi is assigned to node
iN1. The xi-axis is collinear with the rotational axis of ball
screw, the yi-axis is parallel to the x-axis in frame O − xyz,
and zi-axis satisfies right hand rule. Frames of element iE2,
iE3, and iE4 are parallel to frame iN1 − xiyizi. Frame iN7 − x-
iyizi is established at node iN7, whose xi-axis points to the axis
of element iE5 and zi-axis is in the same direction as z-axis of
O − xyz.

Based on Eq. (12), the differential motion equation of ball
screw can be computed as

MiP1 €UiP1 þKiP1UiP1 ¼ FiP1 þQiP1 ð13Þ

where UiP1 ¼ UiN1 … UiN18½ �T is the vector of general-
ized coordinates of ball screw. MiP1, KiP1, FiP1, and QiP1 are

Fig. 3 Translation substructure

Fig. 2 The spatial Euler-
Bernoulli beam element
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the mass matrix, stiffness matrix, and vectors of external and
internal forces.

MiP1 ¼ ∑
2

j¼1
JTiE jMiE j JiE j; KiP1 ¼ ∑

2

j¼1
JTiE jKiE jJiE j;

Fip1 ¼ ∑
2

j¼1
JTiE jFiE j;Qip1 ¼ ∑

2

j¼1
JTiE jQiE j:

Similarly, the differential motion equation of slider is

Mip2 €Uip2 þKip2Uip2 ¼ Fip2 þQip2 ð14Þ

where Uip2 ¼ UiN19 ⋯ UiN42½ �T is generalized coordi-
nates of slider.

Mip2 ¼ ∑
5

j¼3
JTiE jMiE j JiE j; Kip2 ¼ ∑

5

j¼3
JTiE jKiE j JiE j

Fip2 ¼ ∑
5

j¼3
JTiE jFiE j; Qip2 ¼ ∑

5

j¼3
JTiE jQiE j

:

herein JiEj (j = 1, 2, ⋯, 5) is referred to Appendix.
Next, the boundary conditions and relations of connecting

points are analyzed. The elastic deformations of node iN1 are
restricted because one end of the ball screw is fixed to the servo
motor. The other end is linked to the fixed base by bearings.
Thus, the five elastic deformations of node iN3 are zeros except
for the rotation about the screw axis. Node iN2 of the ball screw
and node iN5 of the slider are connected by H joint, hence

UiN25 ¼ UiN7 þ ph
2π

UiN28−UiN10ð Þ ð15Þ

UiN8 UiN9 UiN11 UiN12ð ÞT
¼ UiN26 UiN27 UiN29 UiN30ð ÞT ð16Þ

where ph is the pitch of ball screw.
Finally, the differential motion equation of translation sub-

structure is obtained by Eq. (13) to Eq. (16) as

Mip €Uip þKipUip ¼ Fip þQip; i ¼ 1;⋯; 4 ð17Þ

where Uip is generalized coordinates of translation substruc-
ture. Uip, Mip, Kip, Fip, and Qip are shown under Fig. 3, in
which Bipj is referred to Appendix.

3.2.2 Bar substructure

According to the features of the bar, ten elements with nine
nodes are assigned to the bar, as is shown in Fig. 4. The
element coordinate frames iNj − xiyizi(i = 5, ⋯, 8; j = 1, ⋯,
10) are defined, where the xi-axis is along the length of the
elements. Differential motion equation of the bar is expressed
as

Mip €Uip þKipUip ¼ Fip þQip; i ¼ 1;⋯; 4 ð18Þ

where Uip ¼ UiN1 ⋯ UiN54½ �T is the generalized coordi-
nates. Mip, Kip, Fip, and Qip are the mass matrix, stiffness
matrix, and vector of external and internal forces,

UiP ¼ UiN7⋯UiN12 UiN16 UiN19⋯UiN24 UiN28 UiN31⋯UiN42½ �T26�1

Mip ¼ ∑
2

j¼1
BT
ip jMip jBip j; Kip ¼ ∑

2

j¼1
BT
ip jKip jBip j; Fip ¼ ∑

2

j¼1
BT
ip jFip j;

Qip ¼ ∑
2

j¼1
BT
ip jQip j;

Mip ¼ ∑
10

j¼1
JTiE jMiE j JiE j; Kip ¼ ∑

10

j¼1
JTiE jKiE j JiE j

Fip ¼ ∑
10

j¼1
JTiE jFiE j; Qip ¼ ∑

2

j¼1
JTiE jQiE j

;

herein JiEj (j = 1, 2, ⋯, 10) is shown in Appendix.

3.2.3 ATP substructure

The ATP is shown in Fig. 5. Concerning the effects of the
internal joints, the procedure for formulating differential mo-
tion equation of ATP is summarized as follows: (1) apply
beam element to describe the major features of each compo-
nent and establish element coordinate frames, (2) formulate
differential equation of each component separately, (3) ana-
lyze the relations of connecting modes according to the as-
sembling conditions, and (4) assemble to get the differential
equation of ATP by step (2) and (3).

First of all, elements are assigned to the parts. The in-parts
are represented by four beam elements (R1E1, R2E1, R3E1,
and R4E1). The two cylindrical structures are designed to
enhance translational capability of the H joint and assessed
by concentrated masses at their centers of mass (R5 and R6).
The screw of the H joint is denoted by two elements (R7E1
and R7E2). The out-part is regarded as concentrated mass
(R8). Then element coordinate frames are defined. For the
elements R1E1, R2E1, R3E1, and R4E1, frame Di − xRiyRizRi

Fig. 4 Bar substructure
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are assigned to point Di (i = 1, 2,⋯, 4). The xRi-axis is collin-
ear with direction of element length and zRi-axis is perpendic-
ular to the plane of in-parts. For the elements R5, R6, and R8,
frameO′ − xRiyRizRi (i = 5, 6)is defined at pointO′. The xRi-axis
is along the axis of screw, and zR5-axis and zR6-axis are parallel
to xR4-axis and xR1-axis.

Next, differential motion equation of each component can
be formulated by the elements as

MRi €URi þKRiURi ¼ FRi þQRi; i ¼ 1;⋯; 4 ð19Þ

MRi €URi ¼ FRi þQRi; i ¼ 5; 6; 8 ð20Þ

MR7 €UR7 þKR7UR7 ¼ FR7 þQR7 ð21Þ
where URi is the generalized coordinates of components;
MRi, KRi, FRi, and QRi are the mass matrix, stiffness
matrix, and vector of external and internal forces.
Differential motion equation of R7 and R8 is formulated
in frame O′ − xR6yR6zR6.

URi ¼ URiN1 ⋯ URiN12½ �T; i ¼ 1;⋯; 4; URi ¼ URiN1 ⋯ URiN6½ �T; i ¼ 5; 6; 8; UR7 ¼ UR7N1 ⋯ UR7N18½ �T;
MR7 ¼ ∑

2

j¼1
JTR7E jMR7E jJR7E j; KR7 ¼ ∑

2

j¼1
JTR7E jKR7E j JR7E j; FR7 ¼ ∑

2

j¼1
JTR7E jFR7E j; QR7 ¼ ∑

2

j¼1
JTR7E jQR7E j

JR7E1 ¼ E12�12 0 12�6

	 

; JR7E2 ¼ 012�6 E 12�12

	 


The relations at connecting nodes of each part are then
assessed by the assembling conditions as shown in Fig. 5.
Node R8 and node R7N3 have the same generalized coordinates
since the out-part and the screw is fixed. Node R8 and node R5
are linked by R joint; thus, the five coordinates are the same
except for the angular deformation about rotational axis.
Cylindrical joint is formed between node R5 and node R6, and
the coordinates about/along the joint axis are different. Node R6
and nodeR7 is connected byH joint. NodeR6 is attached to node
R1 and R3 rigidly, while node R5 is fixed to node R2 and R4.
These assembling conditions can bemathematically expressed as

UR8N1 ⋯ UR8N6½ �T ¼ UR7N13 ⋯ URiN18½ �T ð22Þ
R56 0
0 R56

� �
UR5 ¼ UR8; UR5N4 ¼ UR8N4 ¼ 0 ð23Þ

R56 0
0 R56

� �
UR5 ¼ UR6;

UR5N1 ¼ UR5N4 ¼
UR6N1 ¼ UR6N4 ¼ 0

ð24Þ

UR7N7 ¼ UR6N1 þ phc
2π

UR7N10−UR6N4ð Þ ð25Þ

UR1N7

⋮
UR1N12

2
4

3
5 ¼ R61

0
−R61S a1ð Þ

R61

� �
UR6 ð26Þ

UR3N7

⋮
UR3N12

2
4

3
5 ¼ R63

0
−R63S a3ð Þ

R63

� �
UR6 ð27Þ

UR2N7

⋮
UR2N12

2
4

3
5 ¼ R52

0
−R52S a2ð Þ

R52

� �
UR5 ð28Þ

Fig. 5 The ATP substructure
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UR4N7

⋮
UR4N12

2
4

3
5 ¼ R54

0
−R54S a4ð Þ

R54

� �
UR5 ð29Þ

where R56 is the rotation matrix of frame O′ − xR5yR5zR5 with
respect to frame O′ − xR6yR6zR6. R61 and R63 are rotation ma-
trices of frame O′ − xR6yR6zR6 with respect to frame D1 −
xR1yR1zR1 and frame D3 − xR3yR3zR3. R52 and R54 are the ro-
tation matrices of frame O′ − xR5yR5zR5 with respect to frame
D2 − xR2yR2zR2 and frame D4 − xR4yR4zR4. S(a1) and S(a3) are
the skew matrices of node R6 to node R1N2 and node R3N2
in the frameO′ − xR6yR6zR6. S(a2) and S(a4) are skewmatrices
of node R5 to node R2N2 and node R4N2 in the frame O′ −
xR5yR5zR5.

Finally, the differential motion equation of ATP can be
formulated from the equations of parts and relations of
connecting nodes as follows.

M9p €U9p þK9pU9p ¼ F9p þQ9p ð30Þ

where U9p is a 40 × 1 vector representing generalized coordi-
nates.

M9P ¼ ∑
8

j¼1
BT
9P jM9P jB9P j; K9P ¼ ∑

8

j¼1
BT
9P jK9P jB9P j

F9P ¼ ∑
8

j¼1
BT
9P jF9P j; Q9P ¼ ∑

8

j¼1
BT
9P jQ9P j

herein B9Pj is referred to Appendix.

3.3 Dynamic model of PaQuad PM

With the differential motion equations of substructures avail-
able at hand, the elastodynamic model of the whole mecha-
nism is assembled by the deformation compatibility condi-
tions among substructures. Node iN7 of translation substruc-
ture connects to node iN8 and iN9 of bar substructure by R
joints. Hence, the other five generalized coordinates of these
nodes are the same except for the rotational deformations
about the axis of R joint.

U kþ5ð Þp 43 : 45ð Þ ¼ U kþ5ð Þp 49 : 51ð Þ ¼ U kþ1ð Þp 37 : 39ð Þ;
U kþ5ð Þp 47 : 48ð Þ ¼ U kþ5ð Þp 53 : 54ð Þ ¼ U kþ1ð Þp 41 : 42ð Þ;
U kþ6ð Þp 43 : 46ð Þ ¼ U kþ6ð Þp 49 : 52ð Þ ¼ U kþ2ð Þp 37 : 40ð Þ;
U kþ6ð Þp 48ð Þ ¼ U kþ6ð Þp 54ð Þ ¼ U kþ2ð Þp 42ð Þ:

ð31Þ
where k = 0, 2.

Node iN2 (i = 5,⋯8) links to the in-parts through S joints.
Considering the stiffness of the S joints, the generalized coor-
dinates of connecting nodes between bar structure and ATP
are expressed as

K1S
U5p 7 : 9ð Þ
U9p 1 : 3ð Þ
� �

¼ Q1S; K2S
U6p 7 : 9ð Þ
U9p 7 : 9ð Þ
� �

¼ Q2S ð32Þ

K3S
U5p 7 : 9ð Þ
U9p 13 : 15ð Þ
� �

¼ Q3S; K4S
U8p 7 : 9ð Þ
U9p 19 : 21ð Þ
� �

¼ Q4S

ð33Þ
where KiS ¼ kiS −kiS

−kiS kiS

� �
(i = 1, 2,⋯, 4) is stiffness matrix of S

joint. kiS ¼ diag kiSx kiSy kiSzð Þ.QiS is the external forces
of ith PRS limb.

Therefore, the elastodynamic model of the PaQuad PM is
obtained by assembling differential motion equations of sub-
structures as follows

M€UþKU ¼ F ð34Þ
where M, K, and F are the mass matrix, stiffness matrix, and
external forces of PaQuad PM.

M ¼ ∑
9

i¼1
DT

i MipDi; F ¼ ∑
9

i¼1
DT

i Fip þ ∑
4

i¼1
AT

i QiS;

K ¼ ∑
9

i¼1
DT

i MipDi þ ∑
4

i¼1
AT

i KiSAi

herein Di and Ai are listed in Appendix.

4 Natural frequencies

4.1 Case study

The virtual and physical prototypes of the PaQuad PMwere built,
which can be used to verify the elastodynamic model formulated
in Section 3. The natural frequency of the PaQuad PM can be
computed by the elastodynamic model shown in Eq. (34) as

det −ω2MþK
� �¼0 ð35Þ

where ωi (i= 1, 2,⋯, n) is the natural frequencies.
Dimensional parameters of the PaQuad PM are shown in

Table 1. The major material for most components is 45# steel,
whose density is 7.8 × 103 kg/m3, Young’s modulus is 2.2 ×
1011 Pa and shear modulus is 7.938 × 1010 Pa. The mass of in-
part 1 is 13.13 kg. Its moment of inertia about x-, y-, and z-axis
is 0.0598, 0.0598, and 0.0572 kg ⋅m2, respectively. The mass
of in-part 2 is 20.46 kg, whose moment of inertia is 0.146,
0.146, and 0.278 kg ⋅m2. The mass of out-part is 34.27 kg, the
moment of inertia is 0.348, 0.348, and 0.681 kg ⋅m2.

By applying the parameter value to the elastodynamic
model, the distribution of natural frequencies within
workspace is shown in Fig. 6. The first frequency is symmet-
rical to the plane β = 0∘ and the maximum value is at β = 0∘,
then it decreases with the increasing of β. With the increment
of α, the first frequency drops when β is fixed. The second
frequency is symmetrical to the axis α = β = 0∘. It decreases
with the changes of α and β. The peak value is at the sym-
metrical axis.
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The third frequency monotonously climbs up as α in-
creases and obtains the maximum value at α = 10∘ when β
keeps the same. However, the third frequency decreases if α
increases to α = 30∘, then it increases again. The fourth fre-
quency is plane symmetrical. Maximum and minimum values
are mainly on the boundary of the workspace. The former are
atα = 0∘, β = ± 40∘, and α = ± 40∘, β = 0∘, while the latter are
at α = ± 40∘ and β = ± 40∘. The fifth frequency is axial sym-
metrical to α = β = 0∘, where it gets the minimum value.
Distribution of the sixth frequency is similar to the first fre-
quency but the change is sharper.

In summary, the natural frequencies change versus config-
urations and they show plane-symmetrical features due to the
plane-symmetrical structure of the PaQuad PM.

4.2 Simulation and experiment

Simulations on the virtual prototype by FEA software are
applied to verify the elastodynamic model of PaQuad PM.
SAMCEF from SEMTECH Inc. is chosen to analyze the nat-
ural frequencies of eight typical configurations within
workspace. The simulation is implemented as follows.

(1) Compute actuations of the first configuration through the
inverse kinematics. Drive the P joints according to the
calculated input value. Save the corresponding 3Dmodel
under the first configuration as name.x-p file.

(2) Choose Structural analysis and Modal in the Solver
Driver Setting of SEMCEF. In the Modeler, insert the
file from step (1).

(3) Define material property of all components. They are the
same as theoretical model in Section 4.1. Assign assem-
bling conditions to the adjacent parts and add boundary
condition to the fixed base in Analysis Data.

(4) Select the type of finite elements and mesh the elastic
components in Mesh.

(5) Calculate the natural frequencies in Solver and analyze in
Result.

(6) Choose the second configuration and proceed to step (1)
to step (5). Repeat until PaQuad PM under all eight con-
figurations is simulated.

The simulation results are shown in Table 2. The changing
tendencies of the first to sixth frequencies are similar for both
theoretical analysis and simulations. Generally, the simulated fre-
quencies are smaller because non-standard features, such as

Table 1 Dimensional parameters
of the PaQuad PM (unit: m) Part Element Value Part Element Value

Screw [iE1] 0.818-qi, 0.025 Bar [iE6] 0.09, 0.15, 0.06

[iE2] qi, 0.025 [iE7] 0.09, 0.15, 0.06

Slider [iE3] 0.285, 0.278, 0.085 [iE8] 0.2, 0.15, 0.06

[iE4] 0.285, 0.278, 0.085 [iE9] 0.06, 0.16, 0.09

[iE5] 0.115, 0.12, 0.096 [iE10] 0.06, 0.16, 0.09

Bar [iE1] 0.15, 0.15, 0.09 In-part 1 [R1E1] 0.2, 0.14, 0.176

[iE2] 0.15, 0.15, 0.09 [R3E1] 0.2, 0.14, 0.176

[iE3] 0.09, 0.15, 0.05 In-part 2 [R2E1] 0.15, 0.26, 0.055

[iE4] 0.09, 0.15, 0.05 [R4E1] 0.15, 0.26, 0.055

[iE5] 0.22, 0.13, 0.06 Central screw [R7] 0.24, 0.025

Fig. 6 Natural frequencies of PaQuad PM within prescribed workspace
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shape and dimension, are included in the simulation while they
are approximately represented by standard beam element.

Elastic dynamic experiments are also carried out as shown
in Fig. 7. Measuring points are firstly assigned to different

parts of PaQuad PM, on which acceleration sensors are at-
tached. Hammer is then applied to excite the PaQuad PM at
the end reference point. Through collecting exciting forces
and response signals from the sensors, the modes are fitted
and analyzed by LMS dynamic testing system (including
SCSASA III data collecting hardware and LMS Test. Lab
software from SIEMENS). Finally, the frequencies of
PaQuad PM are obtained. The experimental procedure can
be summarized as follows.

(1) Geometrical modeling. In the Geometry interface, the
overall and local coordinate frames (fixed and element
frames) are defined according to Section 3. Measuring
points are assigned in the local frames based on the struc-
tures. By connecting the measuring points in the overall
frame, the geometrical model of PaQuad PM is obtained.
There are 68 measuring points in total.

(2) Sensor setting. In the Channel Setup interface, channel 1
is assigned to measure force. The actual sensitivity is
0.2838 mv/N. Channels 2 to 4 are chosen to collect sig-
nals from acceleration sensors in three directions. Their
sensitivity are 9.822, 9.99, and 9.864 mv/(m/s2),
respectively.Fig. 7 Experiment setup for natural frequencies of the PaQuad PM

Table 2 Frequencies from analytical model, simulation, and experiment (unit for z value is m; for α, β, and γ are rad)

Typical poses
(z, α, β, γ)

1st 2nd 3rd 4th 5th 6th

I (1, 0, 0, 0) Analytical 41.9304 44.1657 82.4025 94.6113 92.7057 143.2316

Simulation 35.5523 36.1542 64.9501 81.9512 87.3907 129.2675

Experiment 32.4898 34.2315 60.6773 72.7372 71.3741 108.8969

II (1, 0, 0, π) Analytical 41.4272 44.3282 83.1551 94.6537 93.8977 142.4961

Simulation 35.3664 37.7455 71.5466 80.0202 78.9961 115.8921

Experiment 32.6736 33.6141 65.0023 73.2241 71.5970 104.9939

III (1, 0, π/12, 0) Analytical 40.3680 43.5945 82.3984 93.9079 96.2659 150.3307

Simulation 35.4754 37.3910 68.9345 80.0847 82.1822 127.9465

Experiment 30.0822 34.1650 60.3733 69.8487 71.1116 112.1317

IV (1, π/12, 0, 0) Analytical 40.9937 43.2746 81.9762 93.9391 96.3282 140.0827

Simulation 35.0209 37.7225 69.9667 81.2197 83.2854 119.3925

Experiment 32.7171 33.6979 63.0069 70.2946 72.5737 106.6450

V (0.85, 0, 0, 0) Analytical 42.1163 58.0972 108.4610 128.3735 125.8064 152.1344

Simulation 36.1695 49.3942 93.1355 108.5654 110.0303 129.8467

Experiment 31.8357 43.7879 84.8382 98.7064 95.1600 114.4203

VI (0.85, 0, 0, π) Analytical 41.6071 58.0864 112.5567 128.4408 132.8896 151.5208

Simulation 34.8418 51.7550 95.0654 111.1527 113.2618 128.4896

Experiment 32.3661 46.0683 88.1770 97.4737 104.1190 115.6255

VII (0.85, 0, π/12, 0) Analytical 40.5888 52.7093 105.8559 124.5424 138.7063 158.1596

Simulation 34.8171 45.8676 90.7503 107.7790 119.9393 135.6851

Experiment 30.9002 41.3979 81.7419 93.8178 105.2365 116.5478

VIII (0.85, π/12, 0, 0) Analytical 41.1648 51.9080 105.5830 124.5799 135.0210 152.9583

Simulation 35.1259 44.2516 93.4832 107.4254 115.0919 130.8864

Experiment 31.5693 40.9191 81.3306 94.2945 105.6809 118.6038
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(3) Excitation setting. In the Impact Scope interface, the ex-
citation of hammer is set as free form mode with 200 Hz
bandwidth. The pre-excitation time and signal setups are
also defined.

(4) Data collection. In theMeasure interface, excitations are
applied to the end reference point by hammer. These
excitations are exerted along x-, y-, and z-axis and repeat-
ed five times at each direction. Measurement data is col-
lected from the measuring points.

(5) Data analysis. In the Validate interface, the data is
checked. Modal parameter is then analyzed in the
Modal Data Selection.

The experimental results are shown in Table 2 and Fig. 8.
Comparing with the analytical models and simulations, exper-
imental frequencies are the smallest due to (1) detail features
such as chamfer and groove are included in the physical pro-
totype while they are ignored in the other two cases; (2)

contacts between parts, especially within joints are not ideal
in experiments; and (3) there are external influences like mea-
surement noise, non-rigid fixed base, or low bearing preload.

The modals of the PaQuad PM are further analyzed to
check the consistency of the analytical, simulation, and exper-
iment results. Taking pose I in Table 2 as an example, the first
and second modals are the relative vibrations of opposite PRS
limbs along x- and y-axis. The third and fourth modals are the
torsions of opposite PRS limbs and the connected in-parts.
The fifth and sixth modals are the vibrations along z-axis.
The first to sixth modals have the same rules.

In summary, frequencies from the analytical model, simu-
lation, and experiment are close, and the changing tendencies
are similar. In addition, the modal of the eight typical poses are
the same. The elastodynamic model is validated. The paramet-
ric elastodynamic model can be applied to the re-design of the
PaQuad PM under specific requirements from different appli-
cation scenarios.

Table 3 Parameters of PaQuad PM for sensitivity analysis (unit for mean value is m, standard variance ×10−5)

Parameters Mean value Standard variance Parameters Mean value Standard variance

dsc Screw diameter 0.025 0.2091 dsj S joint diameter 0.09 0.677

lsd1 Horizontal length of slider 0.285 27.17 lsj S joint length 0.13 1.413

hsd1 Horizontal height of slider 0.085 2.417 lip1 Length of in-part 1 0.63 33.19

bsd1 Horizontal width of slider 0.278 25.85 hip1 Height of in-part 1 0.04 0.535

lsd2 Vertical length of slider 0.096 3.083 bip1 Width of in-part 1 0.23 4.42

hsd2 Vertical height of slider 0.115 4.424 lip2 Length of in-part 2 0.63 33.19

bsd2 Vertical width of slider 0.12 4.817 hip2 Height of in-part 2 0.37 45.80

lb Bar length 0.205 3.515 bip2 Width of in-part 2 0.04 0.535

hb Bar height 0.16 2.141 dhj H joint diameter 0.02 0.134

bb Bar width 0.12 1.204 lhj H joint length 0.25 5.227

Fig. 8 Comparisons of
frequencies at eight poses from
analytical solution, simulation,
and experiment
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5 Parameter sensitivity

The complicated composition and structures of the PaQuad
PM lead to large amounts of parameters. In the re-design or
the optimization process, however, it is not necessary to opti-
mize all the parameters since some parameters impose little
effects to the elastodynamic performance. Besides, the sub-
stantial parameters increase the difficulties of the optimiza-
tion. Based on the engineering experience, the parameters
are scaled down as shown in Table 3. Parameter sensitivity
analysis is then implemented to categorize the main or subor-
dinate parameters according to their effects to the natural fre-
quencies. In our previous work, we proposed a parameter
sensitivity analysis method by response surface method
(RSM) based model, parameter mean value, and variance-
based indices [44]. The RSM method is to build the surrogate
model between parameters and the performances. Based on
the explicit mapping model, the parameter mean value and
variance-based indices are applied as the criteria for evaluat-
ing the parameter sensitivity. The merits of this method are
twofold. (1) Coupling contributions among different parame-
ters are included in the analytical expression of RSM model.
(2) Comprehensive evaluation is achieved by considering the
statistic features of parameters. According to this method, pa-
rameter sensitivity analysis of PaQuad PM can be divided into
two parts: formulation and assessment of RSM model, com-
putation, and analysis of sensitivity indices.

5.1 RSM model

Based on design of experiment (DoE), RSM employs a set of
experiments to establish the polynomial surface function for
mapping the relations between parameters and targeted per-
formances [46]. Herein, experiments are performed by the
elastodynamic model built in Section 3. The experimental
setup, including different combinations of parameters, number
of experimental sets, is decided by the DoE strategy. Due to
the amount of parameters and uncertain order of polynomial
functions, the Latin hypercube design (LHD) strategy [47] is
chosen since it is capable of dealing computation-intensive
problems with limited number of experiments. After setting
up by LHD strategy and implementing the experiments by the
elastodynamic model, the linear, quadratic, cubic, and quartic
RSM functions can be formulated as

f linear xð Þ ¼ a0 þ ∑
20

i¼1
bixi ð36Þ

f quadratic xð Þ ¼ a0 þ ∑
20

i¼1
bixi þ ∑

20

i¼1
cix2i þ ∑

20

i¼1
∑
20

i< j
dijxix j ð37Þ

f cubic xð Þ ¼ a0 þ ∑
20

i¼1
bixi þ ∑

20

i¼1
cix2i þ ∑

20

i¼1
∑
20

i< j
dijxix j þ ∑

20

i¼1
eix3i ð38Þ

f quartic xð Þ ¼ a0 þ ∑
20

i¼1
bixi þ ∑

20

i¼1
cix2i

þ ∑
20

i¼1
∑
20

i< j
dijxix j þ ∑

20

i¼1
eix3i þ ∑

20

i¼1
f ix

4
i

ð39Þ

where x ¼ x1 x2 ⋯ x20ð ÞT is the vector of parameters.
a0, bi, ci, dij, ei, and fi are the estimated coefficients obtained
from the least square regression. xixj is the interaction of any
two parameters. x2i , x

3
i , and x

4
i are the second, third, and fourth

nonlinearity of x.
Accuracy assessment is then carried out to verify the RSM

models. Additional parameter sets are randomly generated.
The errors between the actual responses and the results from
RSMmodels are compared via fourmetrics [48], i.e., R square
(RS), relative average absolute error (RAAE), relative maxi-
mum absolute error (RMAE), and root mean square error
(RMSE), as follows

RAAE ¼
∑
m

i¼1
jyi−ŷij

∑
m

i¼1
jyi−yj

; R2 ¼ 1−
∑
m

i¼1
yi−ŷi
� �2

∑
m

i¼1
yi−y
� �2 ð40Þ

RMAE ¼
max jyi−ŷ1j;⋯; jyi−ŷmj

n o
∑
m

i¼1
jyi−yj=m

ð41Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i¼1
yi−y
� �2
m

vuuut ð42Þ

where yi is the natural frequency obtained from analytical
model, ŷi is the value computed by RSM model, and y is the
mean value of yi.

In these accuracy metrics, RS, RAAE, and RMSE evaluate
the overall accuracy of RSM models within the parameter
ranges while RMAE shows the maximum error. Through the
simultaneous consideration of global and worst accuracy,
RSM model that has smaller RS, RAAE, and RMSE and
larger RS are selected as the surrogate model for parameter
sensitivity analysis.

For the PaQuad PM, the parameter values shown in Table 1
are regarded as the baseline and the range of parameters is set
as ±10%. Since the number of involving parameters is 20, the

Table 4 Accuracy assessment of RSM model for first-order natural
frequency

Error (accepted level) Linear Quadratic Cubic Quartic

RS (> 0.9) 0.98898 0.99985 0.99985 0.99984

RAAE (< 0.2) 0.01807 0.00157 0.00175 0.0022

RMAE (< 0.3) 0.05898 0.00789 0.00676 0.0107

RMSE (< 0.2) 0.02401 0.00201 0.00232 0.00284
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number of parameter sets required by LHD is 42, 462, 502,
and 542 for linear, quadratic, cubic, and quartic RSM func-
tions. The formulation of RSM models shown in Eq. (32) to
Eq. (34) can be implemented with the aid of MATLAB and
Isight software. Additional 21, 231, 251, and 271 sets of pa-
rameters are randomly generated to assess the accuracy of the
RSM models (see Table 4). The errors of quadratic and cubic
RSM models are smaller than the linear and quartic models.
RS values of quadratic and cubic RSM models are the same.
The RAAE and RMSE values of quadratic RSM model are
lower than cubic model, but the RMAE value is higher. From
the comparison, the quadratic RSM model is finally chosen.

5.2 Parameter sensitivity indices

Based on the explicit RSM model, parameter sensitivity indi-
ces are defined by the differentiation of performance reliability
to the parameter mean value and variance. Performance reli-
ability describes the probability of the studied PM achieving

target performance with given range of parameters. It is
expressed as

Rp ¼ P g xð Þ > 0f g ¼ 1−P Y > −βrf g ¼ 1ffiffiffiffiffiffi
2π

p ∫
−∞

βr

e−
t2
2 dt ð43Þ

where P{g(x) > 0} denotes the probability of g(x) > 0. And
g(x) is the subtraction of RSM model and the allowable
values. Y = [g(x) − μr]/σr is a random variable determined by
βr = μr/σr. Herein, Y ∈ [0, 1] is subjected to normal distribu-
tion. μr and σr are the mean value and variance of g(x) > 0.

Taking differentiation of Eq. (43) to the mean value and
covariance of parameters yields

∂Rp

∂μ
¼ dRp

dβr

∂βr

∂μr

∂μr

∂μ
¼ e−

β2r
2

σr

ffiffiffiffiffiffi
2π

p ∂g μð Þ
∂μ1

;⋯;
∂g μð Þ
∂μ j

;⋯;
∂g μð Þ
∂μ20

" #T
ð44Þ

∂Rs

∂Cov xð Þ ¼
dRs

dβr

∂βr

∂σ2r

∂σ2
r

∂Cov xð Þ

¼ −
μS

2σ3r

e−
β2r
2ffiffiffiffiffiffi
2π

p diag
∂σ2

r

∂σ2
1

; ⋯
∂σ2r
∂σ2j

; ⋯
∂σ2r
∂σ220

" # ð45Þ

where μj and σj (j = 1, 2,⋯, 20) are mean value and standard
variance of jth parameter (see Table 3).

Considering both parameter mean value and variance, a
global sensitivity index is defined as

ε j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ j

‖κmax‖

 !2

þ σ j

‖σmax‖

 !2
vuut ; j ¼ 1; 2;⋯; 20 ð46Þ

where κ j ¼ ∂Rp

∂μ j
, σ j ¼ ∂Rp

∂Cov x jð Þ. κmax and σmax are the maxi-

mum sensitivity of mean value and variance among all the
parameters.

Based on Eq. (37) to Eq. (39), the parameter sensitivity of
PaQuad PM is computed and shown in Table 5 and Fig. 9. In
summary, ATP imposes great effects to the elastodynamic

Fig. 9 Global sensitivity and
parameter sensitivity to mean
value and variance

Table 5 Parameter sensitivity of first-order natural frequency

κj σj(×10
−3) εj κj σj(×10

−3) εj

dsc 0.0024 0.1057 0.0017 dsj 0.0684 − 1.0789 0.0483

lsd1 − 0.0005 − 0.003 0.0004 lsj 0.0011 − 1.1146 0.0008

hsd1 0.0006 0.1566 0.0004 lip1 0.0018 − 0.0772 0.0013

bsd1 − 0.0006 0.0005 0.0005 hip1 0.0107 4.8707 0.0076

lsd2 0.0082 − 0.0909 0.0058 bip1 0.0123 − 0.2166 0.0087

hsd2 0.0041 − 0.0892 0.0029 lip2 0.0884 − 0.006 0.0625

bsd2 0.0148 − 0.0737 0.0105 hip2 1.4142 − 1.0022 1

lb 0.0019 0.1608 0.0013 bip2 0.1063 − 0.0094 0.0752

hb 0.0073 − 0.0519 0.0052 dhj 0.3499 − 0.5964 0.2474

bb 0.0449 − 0.3417 0.0318 lhj 0.0007 0.2139 0.0005
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performance, especially central screw and in-part 2 that directly
link to the end-effector. Comparatively, PRS limbs aremore rigid
and hence have little influence to the natural frequency. For the
sensitivity to mean values, diameter of central screw in H joint
(dhj), parameters of in-part 2 (lip2, hip2, and bip2), diameter of S
joint (dsj), and width of fixed bar (bb) have larger values than the
rest of the parameters. Herein, hsd2 is the maximum, indicating it
has the most significant influence to the natural frequency.

For the sensitivity to parameter variance, the top parame-
ters are hip1, hip2, dsj, lsj, dhj, and bb. Considering both param-
eter mean value and variance, global indices show that bb, dsj,
lip2, hip2, bip2, and dhj are the major parameters that would
greatly affect the natural frequencies. By increasing the values
of these parameters, the resulted natural frequency is expected
to increase. Therefore, they can be chosen as the design pa-
rameters in the future optimization.

6 Conclusions

Aiming at the optimal design of a PM-ATP named as PaQuad
PM, this paper carries out the elastodynamic modeling by KED
method and parameter sensitivity analysis by RSM method and
reliability sensitivity indices. Conclusions are drawn as follows.

(1) The PaQuad PM is divided into four levels, i.e., beam ele-
ment, parts, substructure, and the whole mechanism.
Differential motion equation of lower level is assembled
to formulate the model of upper level. Through this layer-
by-layer modeling method, multiple parts and joints within
ATP can be considered explicitly. The proposed
elastodynamic modelingmethod can also be applied to oth-
er types of PMs.

(2) Natural frequencies are regarded as the dynamic perfor-
mance indices. Simulation by finite element software
and experiments by LMS dynamic test system are imple-
mented to verify the elastodynamic model of PaQuad
PM. Although the results from the three methods are
slightly different, the changing tendency and modal are
the same. The analytical model is confirmed.

(3) RSM models are investigated to get explicit polynomial
functions between natural frequency and parameters of
PaQuad PM. The coupling effects among parameters can
be evaluated. Parameter sensitivity indices are defined
based on the differentiation of performance reliability
to the parameter mean value and standard variance. The
statistic features of parameters are considered; hence, the
obtained parameter sensitivity is comprehensive.

Elastodynamic modeling is the basis of formulating objec-
tive functions while the parameter sensitivity analysis deter-
mines the design variables. They are both necessary prepara-
tions for the optimal design which is the future work for the
development of the PaQuad PM.

Appendix

The transformation matrices of the element frames in translation
substructure with respect to fixed frameO − xyz are computed as

JiE1 ¼ E12�12 012�6½ �; JiE2 ¼ 012�6 E12�12½ �
JiE3 ¼ E12�12 012�12½ �; JiE4 ¼ 012�6 E12�12 012�6½ �

JiE5 ¼ 06�6 E6�6 06�12

06�18 E6�6

� � ðA� 1Þ

And the relations of connecting nodes in translation sub-
structure can be written in matrix form as

Bip1 ¼

06�26

E6�6 06�20

03�26

01�6 E1�1 01�19

02�26

2
66664

3
77775

Bip2 ¼

06�7 E6�6 06�13

E1�1 01�2 −
ph
2π

01�9
ph
2π

01�12

02�1 E2�2 02�23

01�13 E1�1 01�12
02�4

012�14

E2�2

E12�12

02�20

2
6666664

3
7777775

ðA� 2Þ

The transformation matrices of the element frames in bar
substructure are expressed as

JiE1 ¼ E12�12 012�42½ �; JiE2 ¼ 012�6 E12�12 012�36½ �;
JiE3 ¼ E6�6 06�48

06�18 E6�6 06�30

� �
; JiE4 ¼ 06�12 E6�6 06�36

06�24 E6�6 06�24

� �
;

JiE5 ¼ 012�18 E12�12 012�24½ �; JiE6 ¼ 06�18 E6�6 06�30

06�30 E6�6 06�18

� �
; JiE7 ¼ 06�24 E6�6 06�24

06�36 E6�6 06�12

� �
JiE8 ¼ 012�30 E12�12 012�12½ �
JiE9 ¼ 06�30 E6�6 06�18

06�42 E6�6 06�6

� �

JiE10 ¼ 06�36 E6�6 06�12

06�48 E6�6

� �
ðA� 3Þ
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The connecting relations of nodes within ATP can be cal-
culated as

B9P1 ¼

E6�6 06�34

01�25 cosγ1 −sinγ1 01�13

01�25 sinγ1 cosγ1 01�4 −l1 01�8

01�28 l1sinγ1 l1cosγ1 E1�1 01�9

01�28 cosγ1 −sinγ1 01�10

01�28 −sinγ1 −cosγ1 01�10

01�31 E1�1 01�8

2
666666664

3
777777775
;B9P2 ¼

06�6 E6�6 06�28

01�26 −E1�1 01�13

01�25 E1�1 01�1 −l2 01�12

01�26 E1�1 01�1 l2 01�11

01�29 −E1�1 01�10

01�28 E1�1 01�11

01�27 E1�1 01�12

2
666666664

3
777777775

B9P3 ¼

06�12 E6�6 06�22

01�25 −cosγ1 sinγ1 01�13

01�25 −sinγ1 −cosγ1 01�4 −l3 01�8

01�28 −l3sinγ1 −l3cosγ1 E1�1 01�9

01�28 −cosγ1 sinγ1 01�10

01�28 −sinγ1 −cosγ1 01�10

01�31 E1�1 01�8

2
666666664

3
777777775
;B9P4 ¼

06�18 E6�6 06�16

01�26 E1�1 01�13

01�25 −E1�1 01�1 −l4 01�12

01�24 E1�1 01�3 −l4 01�11

01�29 E1�1 01�10

01�28 −E1�1 01�11

01�27 E1�1 01�12

2
666666664

3
777777775

B9P6 ¼

01�30 E1�1 01�9

01�25 −sinγ1 −cosγ1 01�13

01�25 cosγ1 −sinγ1 01�13

01�31 E1�1 01�8

01�28 −sinγ1 −cosγ1 01�10

01�28 cosγ1 −sinγ1 01�10

2
6666664

3
7777775
;B9P8 ¼

01�24 E1�1 01�15

01�25 sinγ1 −cosγ1 01�13

01�25 cosγ1 −sinγ1 01�13

01�39 E1�1

01�28 −sinγ1 −cosγ1 01�10

01�28 cosγ1 −sinγ1 01�10

2
6666664

3
7777775

B9P5 ¼ 06�24 E6�6 06�10½ �

B9P7 ¼

06�32 E6�6 06�2

01�30 E1�1 −
phc
2π

01�6
phc
2π

01�1

01�25 −sinγ1 −cosγ1 01�13

01�25 cosγ1 −sinγ1 01�13

01�38 E1�1 01�1

01�28 −sinγ1 −cosγ1 01�10

01�28 cosγ1 −sinγ1 01�10

01�24 E1�1 01�15

01�25 −sinγ1 −cosγ1 01�13

01�25 cosγ1 −sinγ1 01�13

01�39 E1�1

01�28 −sinγ1 −cosγ1 01�10

01�28 cosγ1 −sinγ1 01�10

2
666666666666666666664

3
777777777777777777775

ðA� 4Þ
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where l1, l2, l3, and l4 are the length of elements in R1, R2, R3,
and R4. phc is the pitch of central screw.

The converting matrices of PaQuad PM are as
follows.

A1 ¼ 03�50 E3�3 03�203

03�216 E3�3 03�37

� �
;A2 ¼ 03�93 E3�3 03�160

03�222 E3�3 03�31

� �
;A3 ¼ 03�136 E3�3 03�117

03�228 E3�3 03�25

� �

A4 ¼ 03�179 E3�3 03�74

03�234 E3�3 03�19

� �
;D1 ¼ E11�11 011�245½ �;D2 ¼ 011�11 E11�11 011�234½ �

D3 ¼ 011�22 E11�11 011�223½ �;D4 ¼ 011�33 E11�11 011�212½ �;D9 ¼ 040�216 E40�40½ �

D5 ¼

042�44 E42�42 042�170

03�5 E3�3 03�248

01�86 E1�1 01�169

02�9 E2�2 02�245

03�5 E3�3 03�248

01�86 E1�1 01�169

02�9 E2�2 02�245

2
666666664

3
777777775
;D6 ¼

042�87 E42�42 042�127

04�16 E4�4 04�236

01�129 E1�1 01�126

01�21 E1�1 02�234

04�16 E4�4 04�236

01�129 E1�1 01�126

01�21 E1�1 02�234

2
666666664

3
777777775

D7 ¼

042�130 E42�42 042�84

03�27 E3�3 03�226

01�172 E1�1 01�83

02�31 E2�2 02�223

03�27 E3�3 03�226

01�172 E1�1 01�83

02�31 E2�2 02�223

2
666666664

3
777777775

D8 ¼

042�173 E42�42 042�41

04�38 E4�4 04�214

01�215 E1�1 01�40

01�43 E1�1 02�212

04�38 E4�4 04�214

01�215 E1�1 01�40

01�43 E1�1 02�212

2
666666664

3
777777775

ðA� 5Þ

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

1. Morozov A, Angeles J (2007) The mechanical design of a novel
Schönflies-motion generator. Robot Com-Int Manuf 23(1):82–93

2. Altuzarra O, Sandru B, Pinto C, Pentuya V (2011) A symmetric
parallel Schönflies-motion manipulator for pick-and-place opera-
tions. Robotica 29:853–862

3. Sun T, Song Y, Gao H, Yang Q (2015) Topology synthesis of a
1T3R parallel manipulator with an articulated traveling plate. J
Mech Robot 7(3):310151–310159

4. Nabat V, Rodriguez MO, Company O, Krut S (2005) Par4: very
high speed parallel robot for pick-and-place. Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’05), Alberta, Canada, 1202–1207

5. Krut S, Company O, Benoit M, Ota H, Pirrot F (2003) I4: a new
parallel mechanism for SCARA motions. Proceedings of IEEE
International Conference on Robotics and Automation (ICRA’03),
Taipei, Taiwan, 1875–1880

6. Xie F, Liu X (2016) Analysis of the kinematic characteristics of a
high-speed parallel robot with Schönflies motion: mobility, kine-
matics, and singularity. Front Mech Eng 11(2):135–143

7. Qi Y, Sun T, Song Y, Jin Y (2015) Topology synthesis of three-
legged spherical parallel manipulators employing lie group theory.
P IMech Eng C-J Mech Eng Sci 229(10):1873–1886

8. HuoX, Sun T, SongY, Qi Y,Wang P (2017) An analytical approach to
determine motions/constraints of serial kinematic chains based on
Clifford algebra. P IMech Eng C-J Mech Eng Sci 231(7):1324–1338

9. Zhang D, Wang L, Lang SY (2004) Parallel kinematic machines:
design, analysis and simulation in an integrated virtual environ-
ment. J Mech Des 127(4):580–588

10. Qi Y, Sun T, Song Y (2018)Multi-objective optimization of parallel
tracking mechanism considering parameter uncertainty. J Mech
Robot 10(4):0410061–04100612

11. Wu J, Chen X, Wang L (2016) Design and dynamics of a novel
solar tracker with parallel mechanism. ASME/IEEE T Mech 21(1):
88–97

12. Bi ZM, Wang L (2009) Optimal design of reconfigurable parallel
machining systems. Robot Com-Int Manuf 25(6):951–961

1598 Int J Adv Manuf Technol (2019) 102:1583–1599



13. Gao Z, Zhang D, Ge Y (2010) Design optimization of a spatial six
degree-of-freedom parallel manipulator based on artificial intelli-
gence approaches. Robot Com-Int Manuf 26(2):180–189

14. Sun T, Xiang X, Su W, Wu H, Song Y (2017) A transformable
wheel-legged mobile robot: design, analysis and experiment.
Robot Auton Sys 98:30–41

15. Zhang D, Wang L, Gao Z, Su X (2013) On performance enhance-
ment of parallel kinematic machine. J Intell Manuf 24(2):267–276

16. Sun T, Zhai Y, SongY, Zhang J (2016) Kinematic calibration of a 3-
DoF rotational parallel manipulator using laser tracker. Robot Com-
Int Manuf 41:78–91

17. Sun T, Liang D, Song Y (2018) Singular-perturbation-based non-
linear hybrid control of redundant parallel robot. IEEE T Ind
Electron 65(4):3326–3336

18. Wang L, Xi F, Zhang D (2006) A parallel robotic attachment and its
remote manipulation. Robot Com-Int Manuf 22(5–6):515–525

19. Song Y, Qi Y, Dong G, Sun T (2016) Type synthesis of 2-DoF
rotational parallel mechanisms actuating the inter-satellite link an-
tenna. Chin J Aeronaut 29(6):1795–1805

20. Song Y, Gao H, Sun T, Dong G, Lian B, Qi Y (2014) Kinematic
analysis and optimal design of a novel 1T3R parallel manipulator
with an articulated travelling plate. Robot Com-Int Manuf 30(5):
508–516

21. Yang S, Sun T, Huang T, Li Q, GuD (2016) A finite screw approach
to type synthesis of three-DoF translational parallel mechanisms.
Mech Mach Theory 104:405–419

22. Qi Y, Sun T, Song Y (2017) Type synthesis of parallel tracking
mechanism with varied axes by modeling its finite motions alge-
braically, J Mech Robot 9(5):054504–1–054504–6

23. Huo X, Sun T, Song Y (2017) A geometric algebra approach to
determine motion/constraint, mobility and singularity of parallel
mechanism. Mech Mach Theory 116:273–293

24. Yang S, Sun T, Huang T (2017) Type synthesis of parallel mecha-
nisms having 3T1R motion with variable rotational axis. Mech
Mach Theory 109:220–230

25. Sun T, Yang S, Huang T, Dai JS (2017) Away of relating instanta-
neous and finite screws based on the screw triangle product. Mech
Mach Theory 108:75–82

26. Sun T, Song Y, Li Y, Zhang J (2010) Workspace decomposition
based dimensional synthesis of a novel hybrid reconfigurable robot.
J Mech Robot 2(3):310091–310098

27. LiangD, SongY, Sun T, DongG (2016) Optimum design of a novel
redundantly actuated parallel manipulator with multiple actuation
modes for high kinematic and dynamic performance. Nonlinear
Dynam 83:631–658

28. Sun T, Song Y, Li Y, Liu L (2010) Dimensional synthesis of a 3-
DOF parallel manipulator based on dimensionally homogeneous
Jacobian matrix. Sci China-Technol Sci 53(1):168–174

29. Cao W, Ding H (2018) A method for stiffness modeling of 3R2T
overconstrained parallel robotic mechanisms based on screw theory
and strain theory. Prec Eng 51:10–29

30. Sun T, Song Y, Yan K (2011) Kineto-static analysis of a novel high-
speed parallel manipulator with rigid-flexible coupled links. J Cent
South Univ Tech 18(3):593–599

31. Bi ZM, Wang L (2012) Energy modeling of machine tools for
optimization of machine setup. IEEE T Aotum Sci Eng 9(3):607–
613

32. Wu G, Caro S, Bai S, Kepler J (2014) Dynamic modeling and
design optimization of a 3-DoF spherical parallel manipulator.
Robot Auton Syst 62:1377–1386

33. Liang D, Song Y, Sun T, Jin X (2018) Dynamic modeling and
hierarchical compound control of a novel 2-DOF flexible parallel
manipulator with multiple actuation modes. Mech Sys Sign Proc
103:413–439

34. Bi ZM, Wang L (2012) Optimization of machining processes from
the perspective of energy consumption: a case study. J Manuf Syst
31(4):420–428

35. Krefft M, Hesselbach J (2005) Elastodynamic optimization of par-
allel kinematics. Proceedings of the 2005 IEEE International
Conference on Automation Science and Engineering, Edmonton,
Canada, 357–362

36. Liang D, Song Y, Sun T, Jin X (2017) Rigid-flexible coupling
dynamic modeling and investigation of a redundantly actuated par-
allel manipulator with multiple actuation modes. J Sound Vib 403:
129–151

37. Yao J, Gu W, Feng Z, Chen L, Xu Y, Zhao Y (2017) Dynamic
analysis and driving force optimization of a 5-DoF parallel manip-
ulator with redundant actuation. Robot Com-Int Manuf 48:51–58

38. Liang D, Song Y, Sun T (2017) Nonlinear dynamic modeling and
performance analysis of a redundantly actuated parallel manipulator
with multiple actuation modes based on FMD theory. Nonlinear
Dynam 89(1):391–428

39. Zhao Y, Gao F, Dong X, Zhao X (2011) Dynamics analysis and
characteristics of the 8-PSS flexible redundant parallel manipulator.
Robot Com-Int Manuf 27:918–928

40. Alessandro C, Rosario S (2014) Elastodynamic optimization of a
3T1R parallel manipulator. Mech Mach Theory 73:184–196

41. Stojanovic V, Nedic N (2016) Joint state and parameter robust es-
timation of stochastic nonlinear systems. Int J RobNonCon 26(14):
3058–3074

42. Filipovic V, Nedic N, Stojanovic V (2011) Robust identifica-
tion of pneumatic servo actuators in the real situations. Forsch
Ingenieurwes 75(4):183–196

43. Fan C, Zhao G, Zhao J, Zhang L, Sun L (2015) Calibration of a
parallel mechanism in a serial-parallel polishing machine tool based
on genetic algorithm. Int J Adv Manuf Technol 81(1–4):27–37

44. Lian B, Sun T, Song Y (2017) Parameter sensitivity analysis of a 5-
DoF parallel manipulator. Robot Com-Int Manuf 46:1–14

45. Sun T, Song Y, Li Y, Xu L (2011) Separation of comprehensive
geometrical errors of a 3-dof parallel manipulator based on Jacobian
matrix and its sensitivity analysis with Monte-Carlo method.
Chinese J Mech Eng (English Edition) 24(3):406–413

46. Chen Y, Xie F, Liu X, Zhou Y (2014) Error modeling and sensitiv-
ity analysis of a parallel robot with SCARA (selective compliance
assembly robot arm) motions. Chinese J Mech Eng 27(4):693–702

47. Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A,
Pokomeda K (2014) Application of response surface methodology
and artificial neural network methods in modelling and optimiza-
tion of biosorption process. Bioresour Technol 160:150–160

48. Jin R, Chen W, Simpson TW (2001) Comparative studies of
metamodeling techniques under multiple modeling criteria. Struct
Multidiscip O 23:1–13

Int J Adv Manuf Technol (2019) 102:1583–1599 1599


	Elastodynamic modeling and parameter sensitivity analysis of a parallel manipulator with articulated traveling plate
	Abstract
	Introduction
	Mechanism description and inverse kinematics
	Elastodynamic modeling
	Differential motion equation of beam element
	Differential motion equation of substructures
	Translation substructure
	Bar substructure
	ATP substructure

	Dynamic model of PaQuad PM

	Natural frequencies
	Case study
	Simulation and experiment

	Parameter sensitivity
	RSM model
	Parameter sensitivity indices

	Conclusions
	Appendix
	References


