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Abstract
The joining of materials with different or even competing properties is of high industrial interest regarding resource-
efficient production. Friction stir welding (FSW) has been employed to create high-quality joints of dissimilar material
combinations. Many studies report both metallurgical bonding and form-fit to be the relevant joining mechanisms. While
metallurgical bonding is driven by interdiffusion and occurs in almost every case, form-fit can only appear if the interface
is deformed. The hooks of the deformed interface cause interlocking; however, they also result in an increased stress
concentration. Hence, the hooking can either enhance or reduce the joint strength depending on their geometries. This study
demonstrates an approach to predict the morphology of the cross-sectional interfacial area of friction-stir-welded multi-
material joints. Image processing was used to convert cross sections of aluminum/copper lap joints into binary b/w images.
Using Gaussian process regression, a data-driven model of the interfacial area’s morphology was constructed based on
13 data sets. The applicability of the resulting Gaussian process model was tested for seven data sets by comparing the
algorithm’s morphological predictions with cross sections welded with test parameters that were not used for training. This
allows to estimate, which joining mechanism is relevant or dominant for the overall joint strength. The predicted results
agreed well with the actual cross sections. Recesses as well as hooks at the interfacial area were successfully predicted even
for a limited number of training data. To enhance the space of possible uses of the model for subsequent applications (e.g.,
simulation of fracture mechanics), more input parameters can be implemented into the model.

Keywords Friction stir welding · Gaussian process regression · Dissimilar materials · Image processing ·
Aluminum/copper lap joints

1 Introduction

Welding dissimilar material combinations is very challeng-
ing due to the different, sometimes competing, properties
of the materials [1]. When using fusion welding processes,
such as arc welding, the distinct formation of intermetallic
compounds (IMCs) can negatively influence the properties
of dissimilar joints [2]. Friction stir welding (FSW) has
proven to be suitable for joining combinations of dissimilar
materials [3]. Since FSW is a solid-state welding process,
joints with a minimal amount of IMCs can be produced. The
amount of IMCs can be further reduced by modified FSW
processes (e.g., ultrasound-enhanced FSW [4, 5]).
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Numerous studies proved a strong correlation between
the welding parameters, the morphology of the interfacial
area, and the characteristics of dissimilar material joints.
However, a model to predict the morphology as a result of
the welding parameters has not been developed: this is the
aim of this study. In the following, an overview of the most
influential welding conditions for the interface morphology
will be given for the most common material combinations
aluminum/steel, aluminum/titanium, and aluminum/copper.
Similar observations were also reported for dissimilar joints
of aluminum and magnesium [6–9] and of aluminum and
steel [10].

1.1 Influences on themorphology of the interfacial
area - general overview

The welding conditions highly influence the joint proper-
ties, which result from the IMC formation and the shape
of the interfacial areas for numerous dissimilar material
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joints. The morphology of the interfacial area is crucial for
the resulting joining mechanisms. If neither intermixing of
the materials nor deformation of the interfacial area occurs,
joining is achieved exclusively by metallurgical bonding. A
deformation of the interfacial area causes an enlarged join-
ing area, which enhances metallurgical bonding on the one
hand. On the other hand, the deformation enables form-
fit, which may support metallurgical bonding and increase
the overall strength of joints. The friction stir dovetailing
(FSD) aims to achieve an ideal combination of mechanical
interlocking and metallurgical bonding [11, 12]. However,
for lap joints, an unsuitable deformation reduces the joint
strength by magnifying the stress concentration and reduc-
ing of the upper sheet’s thickness. This was first reported
as the ”hooking effect” for dissimilar aluminum/aluminum
joints [13]. Reducing the deformation of the lower mate-
rial into the upper material by using a concave probe-tip
design results in an enhanced fatigue performance [14]. In
the following, a brief overview of the influence of weld-
ing parameters on the interfacial area (and the correlating
joint properties) for several friction-stir-welded dissimilar
material combinations is given.

Applying laser-assisted FSW (LAFSW) of aluminum
AA 5182 with steel ZStE340 in butt-joint configuration
was conducted in [15]. The authors observed a saw tooth-
shaped interfacial area and concluded that both mechanical
interlocking and metallurgical bonding were effective
joining mechanisms. The high shear strain and frictional
heating during FSW of aluminum AA6181-T4 with the
steels DP600 and HC260LA HSS in butt-joint configuration
caused the formation of IMCs and mechanical interlocking
of both materials on a microscopic scale [16]. The properties
of lap joints of aluminum Al 5054 and steel DP600 also
significantly depended on the tool penetration depths into
the lower steel sheet [17]. Restricting the material flow
to the steel sheet inhibited mechanical interlocking and
resulted in diffusion-based joining. A substantial increase
of the joint strength was observed for penetration depths of
about 0.2 mm, for which mechanical interlocking occurred
at the edges of the interfacial area.

Swirl-like structures at the interfacial area were reported
for butt joints of aluminum AA 2024-T3 and titanium
TiAl6V4 [18]. These structures were believed to strengthen
the joint by allowing for local micro-mechanical and
metallurgical bonding. Similar observations were described
in [19] for lap joints of aluminumADC12 and pure titanium.
Almost identical joint strengths were reported for lap joints
of aluminum LF6 with titanium TC1, despite the tested
samples had very different interface structures: on the one
side, a highly intermixed interfacial area, and on the other
side, an interfacial area with almost no deformation of the
lower titanium sheet [20, 21]. Similar results were observed

for varying the distance from the probe tip to the interface
and the rotational speed for joints of two combinations of
aluminum and titanium in lap-joint configuration [22]. The
highest joint strength was achieved when the probe tip was
close to, but not penetrating the titanium surface for lap
joints of aluminum AA 6060 and titanium Ti6Al4V [23].
In this case, no deformation of the interfacial area was
observed and the joining was based on a very thin IMC
layer. If the probe was plunged deeper into the titanium
sheet, the interfacial area was macroscopically deformed.
Although this could have provided additional form-fit, the
joint strength was reduced. The formation of IMCs at
the interfacial area was concluded to be also the primary
joining mechanism for butt joints of aluminum AA 6061
and titanium Ti6Al4V [24].

1.2 Influences on themorphology of the interfacial
area – aluminum/copper joints

Offsetting the probe relative to the butt-joint interface of
aluminum AA 6082-T6 and copper-DHP (R 240) strongly
influenced the morphology of the interfacial area [25].
However, no effect on the mechanical properties of the
joints was observed since increasing the tool offset caused a
reduction in IMC formation and also stirred copper particles
with a sharp geometry into the aluminum matrix, which
led to metallurgical discontinuities. A tunnel defect was
reported for butt joints of AA 1060 and commercially
pure copper when the copper sheet was positioned on the
retreating side [26]. A copper hook, which was stirred
into the aluminum matrix and was thought to possibly
provide additional mechanical bonding, was detected in
cross sections of butt-joined aluminum AA 2024 and
copper Cu10100 [27]. The material flow in lap joints
of aluminum AA 1060 and commercially pure copper
caused a movement of the interface into the lower sheet
[28]. The resulting interface morphology was asymmetrical
and cavities were observed for increasing feed rates.
Experiments with varying probe lengths for aluminum EN
AW-1050 H14 and copper EN CW024A R240 in lap-joint
configuration were conducted by [29]. The cross sections
showed no deformation of the interfacial area for the lowest
probe length. A deformed yet sound interfacial area with
little hooking was observed for medium probe lengths. The
highest probe lengths led to severe hooking and cavities.
The maximum joint strength was measured when the copper
sheet was only minimally penetrated. Detailed analyses of
the microstructure and the IMC formation, which are not the
focus of this study, are discussed, e.g., in [30–34] for butt
joints and in [35, 36] for lap joints of aluminum and copper.
A review on FSW of aluminum and copper was presented
in [37].
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1.3 Key findings of the discussed literature –
relevance of the considered approach

The following conclusions can be drawn from the studies
mentioned above:

1. The morphology of the interfacial area is dependent on
the welding conditions and strongly influences, which
joining mechanism is present and promoted.

2. Metallurgical bonding by interdiffusion is always pre-
sent and enhanced by an enlarged interfacial area.

3. Mechanical bonding by form-fit may occur as well and
can result in either an increase or a decrease in joint
strength, depending on the welding conditions.

Several approaches have been discussed to estimate the
formation and thickness of IMC layers, e.g., for alu-
minum/titanium joints [22, 23] and aluminum/copper joints
[38–41], as well as to control the thickness of the layers [42].
As mentioned above, a prediction of the morphology of
the interfacial area of friction-stir-welded dissimilar joints,
which strongly influences metallurgical and mechanical
bonding, has not yet been presented. The use of analyti-
cal or numerical models is quite difficult due to the high
complexity of the proposed task. Because of this, in this
study a data-driven Gaussian process (GP) is used to predict
the interface morphology. GP regression (GPR) has already
been used to model complex processes, such as nonlinear
systems [43] or dynamic systems [44], and dependencies of
welding processes [45–47]. It was proven that GPR models
can be used for real-time-prediction applications.

2Materials andmethods

This section provides information on the approach for
the prediction of the interface morphology in friction-stir-
welded dissimilar aluminum/copper lap joints. After giving
an overview on the chosen approach, the image processing
workflow used to prepare the cross-section images as
training data and the procedure of GPR will be discussed.

2.1 Approach

Figure 1 shows the cross section of a friction-stir-welded
aluminum/copper lap joint. As can be seen, the copper sheet
was deformed and hooks occurred on both sides of the stirred
area. The morphology of the interfacial area can be identified
clearly, if the image is converted into black and white (b/w)
space, where black corresponds to 0 (aluminum) and white
to 1 (copper), and copper particles within the aluminum
matrix are “filled” with aluminum. It is evident that the
morphology is not continuously differentiable and cannot
be modeled directly (e.g., via linear polynomial fitting).

(a)

(b)

Fig. 1 Exemplary cross section of a joint with hooks at the interfacial
area (a) and the corresponding binarized image (b)

The b/w image can also be interpreted as a 3D matrix
with the dimensions of (1) image width (x-coordinate), (2)
image height (y-coordinate) and (3) color values ranging
from 0 to 1 (z-coordinate). Each pixel has a defined x-
and y-coordinate and a color value, which can be described
by its dependency on the welding parameters by scattering
the image. The input values for modeling are the welding
parameters (rotational speed, feed rate, and probe-tip-to-
interface distance before welding) of each pixel. The output
values are the predicted color values of the pixels. In
the following, vectors are represented by bold letters and
matrices by capital letters. Amodel is considered to describe
the dependency between the welding parameters and each
pixel value. The model consists of a linear combination of
weights w and nonlinear basis functions φ(x), such that

y = f (x) + ε = wT φ(x) + ε. (1)

Here, y is the output value of one pixel (color value), x

the vector of the input values (welding parameters), ε ∼
N(0, σ 2

n ) the vector of random noise (normal distribution,
represented by N()) with zero-mean and variance σ 2

n and w

is a vector of parameters (coefficients) of the linear model.
By placing a probability distribution on the parameters w,
f (x) = wT φ(x) forms a GP. Often, this prior distribution
is chosen to be a zero-mean Gaussian prior with covariance
�p such that w ∼ N(0, �p). The aim of GPR [48] is then



1842 Int J Adv Manuf Technol (2019) 102:1839–1852

to infer the parameters w from measured data pairs (x, y).
GPs provide numerous advantages over other models:

– The parametersw are assumed to be distributed and there-
fore allow for the introduction of uncertainty as well as
statistical dependencies into the model.

– Compared to various other machine learning approaches,
such as, e.g., deep neural networks [49], GPs only
require a small amount of data.

– Evaluating a GP model not only results in the expected
model output y but also provides a confidence interval.

– The inference on data with Gaussian likelihood is fast
and tractable.

In order to achieve a convenient input-output mapping,
the following approach was performed in this study by
applying GPs:

1. Conversion of the cross sections into b/w color space
via image processing. This conversion also reduced the
complexity of the model.

2. Development of an algorithm based on GPs, which
can correlate welding parameters (rotational speed,
feed rate, and probe-tip-to-interface distance before

welding) with the color value of each pixel of an actual
(and virtual) cross section. Evaluating a GP model also
provides information on the variance of each pixel’s
color leading to a greyscale image, which could also be
interpreted.

3. Training of the prediction algorithm with converted
images of the cross sections from 13 joints, which were
welded with different parameter settings.

4. Validation of the algorithm by predicting the cross-
sectional images with 7 welding parameter settings,
which were not used for training.

2.2 Implementation

The image processing was performed using several pre-
implemented functions of the MathWorks MATLAB envi-
ronment. Figure 2 shows the workflow of the image pro-
cessing algorithm. The images of the cross sections (a) are
converted into a greyscale space (b). To reduce the color
complexity a further conversion into b/w color space is
applied (c). A threshold of 0.367 for interpreting greyscale
values as black or white showed the highest accuracy.
The pixels’ color values are then inverted to identify the

Fig. 2 Workflow diagram of
image processing to convert
cross-section images into b/w
color space
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boundary of the copper sheet’s area and fill it more effi-
ciently (d). White areas within the aluminum sheet with a
radius of less than 3 pixels are “opened” (and filled conse-
quently) (f). For this study, the complexity of the b/w images
used to train the GP was further reduced by removing unde-
fined areas or areas representing copper particles. To do this,
all areas made up with fewer white pixels than the largest
area (i.e., the copper sheet) were also replaced with black
pixels (g). However, copper particles could also be pre-
dicted in further studies by improving the image processing
algorithm.

2.3 Basics of Gaussian process regression

As already mentioned, the application of GPs for stochastic
modeling and machine learning tasks has been gaining in
popularity. A probability distribution of functions can be
defined by GPs. Therefore, models developed using GPR
provide not only the best function for matching input and
output data, but also allow for a probability distribution over
likely functions [50]. A brief introduction on the essentials
of GPR, as used for this study, will be given in the following
and is based on [51], where more detailed explanations
can be found. Note that Xh is the design matrix of all
column vector inputs xh for the total set of training data
Dh = (Xh, yh). In this study, xh will provide the
information of the rotational speed, the feed rate, and
the probe-tip-to-interface distance of each experiment.
Therefore, Xh will contain the parameter triples of xh in its
columns. The index “h” marks training data (“historical”) to
enhance readability. The posterior distribution p(w|yh, Xh)

for p data pairs (x, y) is described by Bayes’ theorem:

p(w|yh, Xh) = p(yh|Xh, w) · p(w)

p(yh|Xh)
. (2)

It is an updated belief of the parameter values w based on
the input data Xh and on the output data yh. The prior belief
for the model parameters is denoted by p(w). In this study,
a zero-mean Gaussian distribution with covariance �p such
that p(w) = N(0, �p) is assumed. Based on the input Xh

and the prior parameters w, the likelihood of the output yh

is represented by p(yh|Xh, w). Since ε in Eq. 1 is modeled
as a normal distribution, the likelihood for all p data pairs is

p(yh|Xh, w) = 1

(2πσ 2
n )

p
2

·

e
−

(
(yhwT φ(Xh)) 1

2σ2n
(yhwT φ(Xh))T

)
. (3)

The so-called marginal likelihood p(yh|Xh) is used for
normalization. Since p(w) and p(yh|Xh, w) are normal, the
normalization p(yh|Xh, w) does not change the mean and
the covariance of their product. Hence, it can be neglected

for the calculation of the mean and the covariance of the
posterior p(w|yh, Xh). To determine the distribution of
the (predictive) posterior for the function value f∗ at the
test input x∗, the joint distribution p(f∗, w|x∗, yh, Xh)

needs to be marginalized leading to the posterior predictive
distribution

p(f∗|x∗, yh, Xh) =∫
p(f∗, w|x∗, yh, Xh) dw =∫
p(f∗|x∗, w) · p(w|yh, Xh) dw. (4)

The result for the function value f∗ at the test input x∗
then is

p(f∗|x∗, yh, Xh) =
N(K(x∗, Xh) · [K(Xh, Xh) + σ 2

n I ]−1 · yT
h ,

K(x∗, x∗) − K(x∗, Xh) ·
[K(Xh, Xh) + σ 2

n I ]−1 · K(Xh, x∗)). (5)

K(Xh, Xh), K(x∗, Xh), K(Xh, x∗), and K(x∗, x∗) are
defined by K(A, B) = φ(A)T �pφ(B) for the inputs A

and B, where K(x∗, Xh) = K(Xh, x∗)T . The posterior
predictive mean can be extracted from Eq. 5 by

f∗ = K(x∗, Xh) · [K(Xh, Xh) + σ 2
n I ]−1 · yT

h (6)

and the posterior predictive covariance by

cov(f∗) = K(x∗, x∗) − K(x∗, Xh) ·
[K(Xh, Xh) + σ 2

n I ]−1 · K(Xh, x∗). (7)

The dependencies between points are described by the
covariance matrix K(A, B). This matrix can be constructed
using one of numerous kernel functions. In this study, the
squared exponential (SE) kernel function was used given by

K(A, B) = σ 2
n · exp

(
−‖A − B‖

2l2

)
. (8)

The bandwidth of the kernel l is a hyperparameter (as
well as the variance σ 2

n ), which has to be optimized to
adjust the model of each pixel. A high dependency for
spatially close points as well as an infinite differentiability
and a “smooth” progress are exemplary advantages of the
SE kernel function. Other commonly used kernels include,
e.g., periodic or linear kernel functions [52].

2.4 Model construction

As mentioned above, the inference on the test input data was
derived from the GP model to predict the color value of each
pixel. Hence, the color value itself is solely dependent on
the three welding input parameters rotational speed n, feed
rate v, and distance between the probe tip and the interface
before welding d. Figure 3 shows the workflow to determine
a model with optimized hyperparameters.
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Fig. 3 Workflow to determine a
model with optimized
hyperparameters for each pixel

The input and output vectors as well as the initial values
of the hyperparameters are used to build the covariance
function of Eq. 8. Combined with a prior (estimated mean
value) for a test input set x∗ the predictive Gaussian
output, consisting of the expected value and the standard
deviation, can be derived. If the predicted results do not
meet the actual pixels’ values with sufficient accuracy, then
the hyperparameters are optimized until the difference is
minimized. Otherwise, the model for the pixel is complete.

For optimization of the hyperparameters, the negative
logarithmic marginal likelihood from [51], which also
provides a solution for a computer-based calculation, given
by

log(p(yh|Xh)) =
−1

2
yT

h [K(Xh, Xh) + σ 2
n I ]−1yh

−1

2
log|K(Xh, Xh) + σ 2

n I | − n

2
log2π (9)

was minimized using the gradient-based Matlab function
f mincon(). The initial value for both hyperparameters
was 1 and 0.1 for the variance σ 2

n , which should account
for the deviation of the actual pixels’ color values in the
experiments. The prior was defined with a believed mean
value of 0 (so-called zero-mean prior), which addressed
the assumption that the cross section consists only of
aluminum, and consequently sets all pixels to be black.
This prior assumption was adjusted by the algorithm and
the probability of each pixel’s color value to be 0 or 1 was
derived.

2.5 Simplified task for model validation

The developed approach was validated for a simplified task
regarding the accuracy of the model. A 3 × 3 matrix Z was
defined for the simplified prediction task as

Z(x) =
⎡
⎣ 1 x5 0
1 − x x 1 − x

0 1 − x 0

⎤
⎦ (10)

for the training input vector

x =

⎛
⎜⎜⎜⎝
0.1
0.2
...
0.9

⎞
⎟⎟⎟⎠ (11)

This matrix was chosen arbitrarily since only values
varying between 0 and 1 should result as to be expected
for the afterward application. Another matrix meeting this
condition would have been also suitable. In this simplified
case, the columns of the design matrix are filled with the
entries of the input vector (hence is the transposed input
vector). The model was trained as described above and
tested for the test input x∗ = 0.65, leading to the reference
matrix

Z(0.65) =
⎡
⎣ 1 0.116029 0
0.35 0.65 0.35
0 0.35 0

⎤
⎦ (12)

Comparing the entries of the reference and the prediction
matrix

Z∗(0.65) =
⎡
⎣ 1 0.1160 0
0.35 0.65 0.35
0 0.35 0

⎤
⎦ (13)
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Fig. 4 Dimensions of the joint
configuration

after training with the data of Eq. 11 shows that the model
predicts them correctly at least to the fourth decimal place,
which proves the validity of the approach. The hyper-
parameters were adjusted automatically by the developed
algorithm and may vary for each training process. The
strong influence of the welding-parameter-related distance
between the training and the test data points in normalized
space was verified by applying test data points above 0.9.
An increasingly insufficient quality of the predicted values
was observed for test data points above 1.5.

3 Experimental results

Sheets of aluminum EN AW-1050 and copper CW008A
in lap-joint configuration were friction-stir-welded on a
Heller MCH 250 CNC milling machine. Both sheets were
dimensioned to 245 × 100 mm with a thickness of 4 mm

for aluminum (positioned on top, on the advancing side AS)
and 2 mm for copper (positioned on the retreating side RS,
see Fig. 4). The length of the weld seam was 215 mm and
the overlap was set to 40 mm according to [39].

The tool consisted of a shoulder with diameter 14 mm

and a conical probe with diameter 5 mm, which was manufac-
tured with three equally distributed flats and a right-hand
threading. The probe length was set with respect to the
constant shoulder plunge depth of 0.1 mm and a constant
tilt angle of 2◦ to ensure a defined probe-tip-to-interface
distance in the position-controlled mode (see Fig. 5).

Fig. 5 Welding parameters rotational speed, feed rate, and probe-tip-
to-interface distance

Table 1 lists the parameter sets for the rotational speed
and the feed rate, as well as the distance between the
probe tip and the interface before welding (positive values
in the direction of the copper sheet), which were used
for training. Furthermore, the averaged tensile shear forces
of three specimens are given for each experiment. The
specimens were located at distances of 62.5 mm, 122.5 mm,
and 182.5 mm to the starting edge of the sheets and cut
out perpendicular to the weld seam. The highest tensile
shear force was achieved for very “hot” welding conditions
(high ratio of rotational speed and feed rate) and a probe-
tip positioned close to the interface. In contrast, a “cold”
parameter set with a high distance between the probe tip and
the interface caused the lowest joint strength.

The cross sections were also cut out perpendicular to the
weld seam at a distance of 86 mm to the starting edge of
the joints. Note that in the following scale bars of predicted
cross sections are marked with a value set in brackets. As
can be seen from Fig. 6, joints with different morphologies
of the interfacial area were achieved. Hence, metallurgical
as well as mechanical bonding should occur depending on
the chosen parameter set. The lowest tensile shear force was
measured for experiment 6, where a medium recess and

Table 1 Training data sets and measured tensile shear forces

Exp.
no.

Rotational
speed

Feed
rate

Probe-tip-
to-interface
distance

Tensile
shear force

n in v in d in FS in

min−1 mm/min mm kN

1 800 100 −0.2 5.6
2 1800 100 −0.2 4.9
3 1800 300 −0.2 4.3
4 2800 300 −0.2 4.5
5 800 500 −0.2 2.8
6 800 100 0.0 3.7
7 1800 100 0.0 5.8
8 800 300 0.0 4.5
9 2800 300 0.0 5.2
10 2800 500 0.0 5.6
11 1800 100 0.2 5.1
12 1800 300 0.2 4.7
13 800 500 0.2 4.4
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(a)

(b)

(c)

Fig. 6 Cross sections with different morphologies of the interfacial
area and corresponding tensile shear forces for experiment 4 (a),
experiment 6 (b), and experiment 9 (c)

little hooking occurred. The joint strength is increased for
interfaces without hooking and almost no recessed copper
sheet. Here, the joining is based on metallurgical bonding
exclusively. Strong hooking in combination with a recess
cause the highest achievable joint strength for experiment 9
with hooks slightly tilted away from the tool and processing
area, respectively. The metallurgical bonding seems to be
supported by a significant increase of possibilities for form-
fit and therefore mechanical bonding. The according design
matrix is

Xh =
⎡
⎣ 800 1800 ... 1800 800
100 100 ... 300 500
−0.2 −0.2 ... 0.2 0.2

⎤
⎦ (14)

4 Results and discussion

In this section, the prediction quality of the model regarding
cross sections will be presented and discussed. The result for
one test data point is analyzed in detail and a set of results
is presented to evaluate the model’s overall quality.

4.1 Detailed analysis of one cross section

After the simplified modeling task exhibited the high
reliability of the developed approach, it was further tested on
one cross section regarding the model’s potential to predict
the morphological characteristics of the interface. In the
data set for the test data point, which will be discussed
in the following, the parameters were set as follows: n =
800 min−1, v = 500 mm/min and d = 0 mm (parameter
setting T5 in Table 2). This data point should be most
heavily influenced by nearby training data points. The
distance between the test data point and the i-th training data
point was derived solving

distance2 = (ntest − ntraining,i)
2

+(vtest − vtraining,i)
2

+(dtest − dtraining,i)
2 (15)

Hence, the data points of the experiments 6–10, whose
cross sections are shown in Fig. 7, should influence the test
data points most, especially experiment 8 with the closest
distance of 0.40.

The model provides greyscale images of the weight-
ed overlays of the trained cross-sectional images for a
proposed test data point (parameter set). Figure 8a shows
the predicted cross section resulting from the expected
value of each pixel. In the image displaying the expected
values, the color values of the pixels are near 0 for
aluminum in the upper part of the image and near 1 for
copper at the bottom of the image. The position of the
sheets is predicted correctly by the model. Furthermore,
hooking can be expected for the test parameter set. The
resulting image, after combining the expected value and
the first positive standard deviation, which marks the upper
boundary of the confidence interval, is shown in Fig. 8b.
The positive first standard deviation was used to obtain
the maximum difference to the pre-set prior belief (all
pixels are aluminum; color value 0). The black and white
areas of Fig. 8b explicitly define aluminum and copper
areas, respectively. The grey areas indicate the likelihood
of whether the pixel is black or white. An interface
morphology with hooking should occur for 68% of all test
samples. Summarizing, the result of Fig. 8a can be expected
for the test parameter setting, but an increased hooking may
also occur in 68% of all cases. In order to compare the
trained cross sections and the model results more easily, the
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Table 2 Test data sets and measured tensile shear forces

Exp.
no.

Rotational
speed

Feed
rate

Probe-tip-
to-interface
distance

Tensile
shear
force

n in v in d in FS in

min−1 mm/min mm kN

T1 2800 100 −0.2 5.6

T2 1800 500 −0.2 3.8

T3 2800 500 −0.2 4.4

T4 1800 300 0.0 4.6

T5 800 500 0.0 4.1

T6 1800 500 0.0 4.0

T7 800 100 0.2 4.7

image of the expected values was binarized into the b/w
color space, as illustrated in Fig. 9a. The actual cross section
for the test data set is given in Fig. 9b. As can be seen, the
predicted hooking was in good agreement with the actual
cross section with regards to the height and volume of the
copper hooks. Both cross sections also show a recess of
the copper surface, which is more distinct in the predicted
image. The pixels’ color values of both cross sections
revealed an agreement of 96% after converting the actual
cross section into b/w color space. Hence, the fundamental
aims of the presented modeling approach were achieved.

4.2 Overall predictive quality of themodel

In total, seven (7) test parameter settings were used to
evaluate the overall predictive quality of the developed
model. Since regression models tend to result in a reduced
quality at the boundaries of the used parameter range,
a special emphasis was placed on the modeling of the
boundary parameter sets (see Table 2). The resulting tensile
shear forces of the experiments for the test data sets range
from 3.8 kN to 5.6 kN , which is quite comparable to the
training data sets and proves that they are suitable for testing
the model quality. Again, the highest tensile shear force was

(a)

(b)

Fig. 8 Images of the expected values (a) and the first positive standard
deviation (b) for the prediction of the test parameter setting T5:
rotational speed n = 800 min−1, feed rate v = 500 mm/min and
distance between the probe tip and the pre-welded interface area
d = 0mm

measured for a data set causing tall hooks, which are tilted
slightly away from the process zone (test data set T1). The
lowest joint strength occurred for the data set T2, which
results in an undefined morphology of the interfacial area.

Figure 10 shows the actual cross sections in the first
column, the respective predicted images of the expected
values in the second column and the predicted images of the
first positive standard deviation in the third column.

The distinct morphologies prove that by using GPR the
cross sections can be predicted with a high accuracy. The
characteristic features in the images with expected values
correlate well to the actual cross sections, especially for
the parameter settings T1, T5 (as already discussed above),
and T6. Although the hooking of the predicted expected

Fig. 7 Binarized images of cross
sections for data points with the
closest distance to the test
parameter setting T5: rotational
speed n = 800 min−1, feed rate
v = 500 mm/min and distance
between the probe tip and the
pre-welded interface area
d = 0 mm
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(a)

(b)

Fig. 9 Images of the predicted (a) and the actual (b) cross section for
the test parameter setting T5: rotational speed n = 800 min−1, feed
rate v = 500 mm/min and distance between the probe tip and the
pre-welded interface area d = 0 mm

value does not match the actual one perfectly, the first stan-
dard deviation already shows the typical characteristics of
the morphology leading to high tensile shear forces. The
results for the parameter settings T4 and T7 are also pre-
dicted very well, with the exception of the hooking on the
left side. Recesses, which are not observed in the actual
cross sections, are predicted by the model for the images of
experiments T2 and T3. The first standard deviation of T2
implies that hooking may occur but is more unlikely than for
T1. Since the actual and predicted cross sections of T2 and
T3 are similar, the different joint strengths may result from
the different welding conditions and the influence of met-
allurgical bonding, respectively. Almost no grey areas can
be found for the predicted expected values and the predicted
standard deviation of experiment T4. This results from T4
being the center point of the parameter space, where the
model achieves the highest reliability for prediction. The
images of the first positive standard deviation show a 68%
probability for significant hooking for all parameter sets.
Since the greyscale colors range from near black to near
white, the threshold of the greyscale can significantly influ-
ence the interpretation of a given pixel as aluminum or
copper. For example, a threshold level near 1 reduces the
likelihood of misinterpreting copper as aluminum. However,
the misinterpretation of possible copper pixels (greyscale
values between 0 and threshold) is more likely. To this
effect, the adaption of the threshold for the conversion from

greyscale into b/w color space during image processing
could be a suitable reference (1 − 0.367 due to inversion
of b/w colors). An even more robust process to predict
each pixel’s value to be black or white can be achieved
by increasing the input training data, which significantly
reduces the overall variance of the model.

4.3 Use of themodel in subsequent applications

As described in the previous sections, a strong cause and
effect relationship between the welding conditions, the mor-
phology of the interfacial area, and the resulting joint
properties exists. The correlation between welding condi-
tions and joint properties (e.g., the tensile shear strength)
has already been discussed in numerous studies. The GPR
could be adapted to generate substantial predictive results
dealing with this topic by redefining and rearranging the
model’s in- and outputs and the workflow of the approach.
However, the approach of this study describes the dependen-
cies between the welding conditions and the morphology
of the interface. The discussed results serve as a proof of
concept of the model’s applicability on this specific task.
Several subsequent applications, which are part of future
research, can possibly be derived from the developed model
depending on the requested information:

– Shear loads on dissimilar joints cause stress concentra-
tion, delamination of (IMC) layers, and crack initiation
as well as crack propagation at the interface. The mor-
phology of the interface has a significant influence on
the mode of the joint collapse. Fracture mechanics can
be simulated, e.g., via cohesive zone models [53], which
are based on a phenomenological point of view. Here,
the morphology of the joint, which has to be simulated,
is one of the most important inputs. The approach of
this study enables to do an overall analysis of achiev-
able joint strengths with limited experimental effort. As
a consequence, identifying ideal welding conditions can
be accelerated and the processing costs are reduced.

– Already existing welding processes can be modeled with
the described approach and then be further optimized
with respect to changed specifications of an application.
For example, the processing time can be reduced by identi-
fying the data set leading to a comparable morphology
at a higher feed rate. Taking only the tensile shear force
into account for modeling may also lead to a data set
with similar joint strengths. However, the morphology
of the interface remains concealed and undesired effects
like stress concentration may occur. A combination of
both approaches leads to the most valuable result.

– Several dissimilar material combinations like aluminum
and titanium or aluminum and steel may cause severe
tool wear, if the probe tip penetrates the lower material.
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Fig. 10 Images of actual cross sections, expected values and first positive standard deviation for the test parameter settings

The approach of this study allows to identify a data
set, where almost no recess occurs. Therefore, both an
increase of the joint strength as well as a reduction of
the experimental effort with cost intensive materials like
titanium can be expected.

5 Improvements to themodel

Although the model already shows a high accuracy to
predict the cross sections, several improvements should be
considered:
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– The first challenge in accurately training the model is
capturing suitable images. The training images have to
be positioned accurately (in the same position) during
image capture to ensure that the pre-welding interface
and the rotational axis of the tool are congruent
for all training images. Otherwise, the pixels’ color
values could be interpreted (and trained) incorrectly.
Furthermore, it is vital that the metallographic cross
sections do not contain any impurities, scratches and
residues from polishing (e.g., for the experiments T2,
T3, and T6). These may be interpreted incorrectly
during image processing and negatively influence the
training of the model.

– The image processing converts actual cross sections
into b/w images. Hence, to identify the aluminum and
copper areas precisely, it is crucial that the algorithm
is adapted accurately to the characteristics of the actual
cross sections, for example, regarding the threshold
color values for the conversion from the greyscale to the
b/w color space.

– The model quality can be improved by providing more
data for training, including both further parameter
settings as well as additional cross sections of parameter
settings that were already used for training. This would
significantly shrink the confidence interval.

6 Conclusions

In this study, the proof of concept for an innovative approach
to predict the cross-sectional morphology of friction-stir-
welded aluminum/copper lap joints using image process-
ing and GPR was presented. A comparison of actual and
predicted cross sections shows a high correlation regard-
ing the welding-parameter-dependent characteristics (e.g.,
hooking, depth of recess), even for a limited number of data
available for training. The described approach shows an effi-
cient solution to customize the interfacial areas of friction-
stir-welded dissimilar lap joints. The welding conditions
can be tailored to distinct requirements without significant
effort on time and costs for experiments and subsequent
analysis of the cross sections. Since similar dependen-
cies between welding conditions and interface morpholo-
gies have been reported for laser offset welding [54], the
developed approach can also be applied to fusion welding
technologies leading to a process-independent understand-
ing of the influence of the interface morphology on the
joint characteristics. Several options to further improve
the quality of the predicted results were discussed. The
robustness of the model can be increased by considering
additional information to the input data. For example, the
input vector could be extended to include material specifica-
tions, further material combinations or different workpiece

dimensions. This would provide a large database to estimate
joint characteristics without the need to conduct exper-
iments. The resulting morphology of the cross-sectional
interfacial area can be derived from the predicted images
and included into FEM analysis to simulate shear ten-
sile tests. Assuming time-dependent values for the welding
parameters during processing, the model can be applied
for use in online monitoring of the morphology of the
interfacial area. Time-dependent values could include the
rotational speed in temperature-controlled FSW or the pin-
tip-to-interface distance in force-controlled FSW.
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