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and root mean square errors and graphically by residual plots.
To assess the reliability of the sample data, experiments are
performed using pre-FRRF equipment. The proposed analyt-
ical procedure is confirmed to be reasonable, and a statistical
formula for estimating the longitudinal curvature produced by
the FRRF process is established.

Keywords Flexibly reconfigurable roll forming . Response
surface methodology . Regression analysis . Experiments and
numerical simulations

1 Introduction

Flexible forming offers an alternative to labour-intensive pro-
duction methods. The technique can be used to simultaneous-
ly improve productivity and quality. Multi-point dieless
forming (MDF) is a representative example of flexible
forming and has been actively studied. Heo et al. showed that
the main advantage of MDF was its flexibility, which enables
the implementation of various shapes of the punches using a
single apparatus, thereby reducing the cost of the punch set
[1]. However, the technique has some disadvantages, which
include faulty forming characterised by wrinkling and dim-
pling. These problems were investigated by Quan et al. [2].
Another disadvantage of the technique is the limitation of the
forming area by the dimensions of the apparatus.

Wang et al. recently proposed a new concept of flexible
forming referred to as flexible rolling [3]. Flexible rolling
can be used to fabricate a multi-curvature shape using flexible
rollers. As Yoon et al. noted, the desired roller curvature in the
case of flexibly reconfigurable roll forming (FRRF) can be
achieved by appropriate adjustment of the curvature punches
[4]. FRRF utilises continuous rollers, and this eliminates the
dimpling problem. Furthermore, the forming size in the rolling
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Abstract Flexibly reconfigurable roll forming (FRRF) is a
sheet-forming technology that can be used to produce
multi-curvature surfaces by controlling the longitudinal strain
distribution. In FRRF, the shape of the formed surface is de-
termined by the curvature of the reconfigurable rollers and the
gaps between the rollers. Because FRRF technology is still
under development, a simulation model of the physical
forming process is conveniently used to investigate the effects
of the input parameters. To facilitate the investigation in the
present study, the response surface methodology is used to
develop a model for predicting the curvature produced in a
longitudinal blank. The input parameters are the sheet com-
pression ratio, the curvature radius in the transverse direction,
and the initial blank width. Samples are generated using a
three-level three-factor full-factorial design, and each convex
and saddle curvature is represented by a quadratic regression
model with two-factor interactions. The fitted polynomial
equations are verified numerically by the R-squared values
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direction is unlimited and the process is more economical
compared to MDF. FRRF is, however, still under develop-
ment, and it is very difficult to predict the forming results.
The development of a method for predicting the forming re-
sults would constitute an essential progress toward actual ap-
plication of the technology. It is actually possible to predict the
shape of the objective surface by FEM simulation before
performing a real forming experiment. However, the proce-
dure requires the simulation of every single case and this could
be time-consuming. The response surface methodology is
used to remedy this disadvantage. In addition, regression anal-
ysis is a statistical method that can be used to estimate an
output of interest to obtain a polynomial equation model of
the output as a function of the inputs. Regression analysis can
thus be used to obtain a statistical formula for correlating the
input forming parameters with the target curvatures. Myers
et al. published a book about the response surface methodol-
ogy [5], which is widely used in the materials and manufactur-
ing industries. Ganjigatti et al. also used regression analysis to
investigate the input-output relationship for metal inert gas
welding [6]. Furthermore, Çaydaş and Hasçalık posited that
the waterjet pressure significantly affected the surface rough-
ness [7]. In the present study, a regression model and an arti-
ficial neural network were employed. Bashah et al. investigat-
ed the use of a regression model to predict the effect of
springback on white-stamped automotive body parts [8].
The considered regression analysis model was developed for
flexible forming. Seo et al. also used regression analysis and a
neural network model to investigate the shape error of flexible
stretch forming [9].

In the present study, the curvature radius in the longitudinal
direction is considered as the dependent variable (that is, the
output parameter) of the regression analysis, with the indepen-
dent variables (that is, the input parameters) comprising the
compression ratio of the sheet, curvature radius in the trans-
verse direction, and width of the original blank. The response
surface methodology is used to predict the results of the FRRF
process by regression analysis.

2 Basic concept of FRRF

The basic principle of FRRF is strain control. The strain dif-
ference arising from compression variation between the centre
line and the edge line during the roll forming process produces
a length difference between the centre and the edge of the
blank, resulting in the formation of a curvature. The FRRF
PCT patent was submitted by Kang and Yoon [10]. The sche-
matic illustration of the FRRF process shown in Fig. 1 is
included in the patent of Kang and Yoon. The reconfigurable
rollers, which can be flexibly bent, are arranged on top of each
other. The blank is inserted between the upper and down rol-
lers, and the upper roller moves downward to compress it.

After the compression, the two rollers are rotated to roll the
formed sheet. The compression is the primary means of
forming a longitudinal curvature based on the difference be-
tween the strain distributions. For instance, when the strain at
the centre of the sheet is higher than that at the tip, the formed
longitudinal curvature would have a convex shape. The re-
verse case produces a longitudinal curvature with a saddle
shape. The translocation of the curvature adjustment rods is
used to vary the curvature of the reconfigurable rollers. The
schematic diagram of the flexible rollers and curvature adjust-
ment rods shown in Fig. 2 is also included in the patent of
Kang and Yoon.

The position of each roller is determined by the objective
curvature radius in the transverse direction, the compressive
strain difference between the centre and tip of the blank, and
the width (length in the transverse direction) of the original
blank. The basic position of each roller is first set based on the
objective curvature of the sheet in the transverse direction.
The final position of each roller is then calculated based on

Fig. 1 Schematic illustration of the FRRF process

Fig. 2 Schematic of reconfigurable roller and curvature adjustment rods
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the compressive strain. Generally, the compressive strain is
limited to 10% of the initial blank thickness owing to the
extreme difficulty of achieving higher strains. The ratio of
the compression at the tip of the blank to that at the centre is
used as the first main input parameters in the present study.
This is required to determine the compression at each of the
two points. The curvature radius in the transverse direction of
the blank is used as the second input parameter, and the third is
the width (length in the transverse direction) of the original
blank. In other words, the geometrical curve of each roller is
determined by the above three parameters, based on which the
position of the roller is then calculated. The three parameters
constitute the independent variables of the present regression
analysis.

3 FE simulation

3.1 FE simulation model

The initial blank is an Al 2024-T3 sheet of thickness
1 mm. The physical properties of the material are as fol-
lows: Young’s modulus = 73.1 GPa, Poisson’s ratio = 0.33,
and density = 2.78 g/cm3. The Hollomon’s nth work hard-
ening model σ ¼ Kεnð Þ is used to imitate the plastic be-
haviour of the material. The yield stress is 275 MPa, and
the ultimate tensile stress is 430 MPa. Table 1 summarises
the material properties of Al 2024-T3 that are used for the
FE simulation.

The numerical simulations are performed using the
FEM dynamic explicit solver of ABAQUS, a commercial
numerical analysis software. In order to implement the
reconfigurable roller, numerous rings are used as shown
in Fig. 3. Each ring is arranged in the tangential direction
of the curve which is calculated applying compression
ratio. All the rings are modelled as discrete rigid shell
elements (R3D4), and the blank is assumed to be a de-
formable eight-node linear brick element (C3D8R). To
consider the variation in the thickness direction of the
blank, four element layers are set in that direction. The

number of elements varies with the size of the sheet, be-
ing about 21,000–33,000, and the friction coefficient is
assumed to be 0.1. The numerical simulation comprises
two steps. In the first step, which is the compression step,
the flexible rollers are simulated by an array of multiple
rings, each of diameter 20 mm and width 2 mm. The
positions of the flexible rollers are set based on the ob-
jective shape, and the upper roller moves downward dur-
ing a compression process. In the second step, which is
the rotation step, the formed sheet is extruded by the ro-
tation of all the rings at the same speed. The complete
simulation model of the FRRF process is shown in
Fig. 3. As depicted in the figure, there are two major
boundary conditions, namely, compression down stroke
and rotation of the rings.

3.2 FE simulation cases

Table 1 Material properties of Al 2024-T3

Material property Value Unit

Young’s modulus 73.10 GPa

Poisson’s ratio 0.33 –

Yield strength 275.00 MPa

Ultimate strength 430.00 MPa

Density 2.78 g/cm3

Flow stress curve
(σ ¼ Kεn )

K 690 MPa

n 0.16 –

Fig. 3 FRRF simulation model
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The regression analysis requires the selection of the de-
pendent and independent variables. The dependent vari-
able in the present study is the curvature radius in the
longitudinal direction, and the independent variables are
the ratio of the compression at the tip of the blank to that
at the centre, the curvature radius of the original blank in
the transverse direction, and the initial width of the blank.
Each of the three independent variables is defined at three
levels for a full factorial design. In other words, a
three-factor three-level full-factorial design is employed.
The levels of the design variables are given in Table 2.
Because of the difficulty of compressing a thin sheet ma-
terial by more than 10% of its thickness, the maximum
compression is limited to 10%. In addition, considering
that the objective shape is visualised as clearly requiring
more than 5% compression, the minimum compression is
fixed at 5%. The limits of the other design variables are
selected based on the dimensions of the experimental ap-
paratus currently in production.



When the compression ratio exceeds 1.0, a saddle
shape is formed, whereas a convex shape is formed when
the compression ratio is less than 1.0. It is necessary to
consider two cases of each shape. The statistical data for

the saddle and convex shapes are given in Tables 3 and 4,
respectively. A total of 54 simulations are performed.

3.3 Results of FE simulation

Figure 4 shows the simulation results for case 1, which
has a saddle shape. To produce this shape, the compres-
sion at the tip should be higher than that at the centre.
As can be observed from Fig. 4a, the maximum stress is
about 345 MPa. Because the tip compression is higher
than the central compression, the former area is subjected
to a high stress. As in the stress distribution, the occur-
rence of high strain at the tip can be observed from
Fig. 4b. Figure 5 shows the simulation results for case
28, which has a convex shape. As opposed to the saddle
case, the compression at the tip in this case is less than
that at the centre. The maximum stress, as can be ob-
served from Fig. 5a, is about 358 MPa. In addition, as

Table 3 Statistical table for saddle shape

Number
of case

Compression
ratio X1

Curvature
radius of blank
X2 (mm)

Width of blank
X3 (mm)

Result
(mm)

1 5.0 500 100 Y1
2 5.0 500 125 Y2
3 5.0 500 150 Y3
4 5.0 700 100 Y4
5 5.0 700 125 Y5
6 5.0 700 150 Y6
7 5.0 1000 100 Y7
8 5.0 1000 125 Y8
9 5.0 1000 150 Y9
10 7.0 500 100 Y10
11 7.0 500 125 Y11
12 7.0 500 150 Y12
13 7.0 700 100 Y13
14 7.0 700 125 Y14
15 7.0 700 150 Y15
16 7.0 1000 100 Y16
17 7.0 1000 125 Y17
18 7.0 1000 150 Y18
19 10.0 500 100 Y19
20 10.0 500 125 Y20
21 10.0 500 150 Y21
22 10.0 700 100 Y22
23 10.0 700 125 Y23
24 10.0 700 150 Y24
25 10.0 1000 100 Y25
26 10.0 1000 125 Y26
27 10.0 1000 150 Y27

Table 4 Statistical table for convex shape

Number
of case

Compression
ratio X1

Curvature
radius of blank
X2 (mm)

Width of
blank X3 (mm)

Result
(mm)

28 0.2 500 100 Y28
29 0.2 500 125 Y29
30 0.2 500 150 Y30
31 0.2 700 100 Y31
32 0.2 700 125 Y32
33 0.2 700 150 Y33
34 0.2 1000 100 Y34
35 0.2 1000 125 Y35
36 0.2 1000 150 Y36
37 0.142857 500 100 Y37
38 0.142857 500 125 Y38
39 0.142857 500 150 Y39
40 0.142857 700 100 Y40
41 0.142857 700 125 Y41
42 0.142857 700 150 Y42
43 0.142857 1000 100 Y43
44 0.142857 1000 125 Y44
45 0.142857 1000 150 Y45
46 0.1 500 100 Y46
47 0.1 500 125 Y47
48 0.1 500 150 Y48
49 0.1 700 100 Y49
50 0.1 700 125 Y50
51 0.1 700 150 Y51
52 0.1 1000 100 Y52
53 0.1 1000 125 Y53
54 0.1 1000 150 Y54

Table 2 Levels of the design variables

Level of factor

Design variable (saddle shape)

Compression ratio (tip/centre) 5/1 7/1 10/1

Curvature radius (mm) 500 700 1000

Width (mm) 100 125 150

Design variable (convex shape)

Compression ratio (tip/centre) 1/5 1/7 1/10

Curvature radius (mm) 500 700 1000

Width (mm) 100 125 150
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opposed to the case of the saddle shape, the strain dis-
tribution is higher at the centre than at the tip (see
Fig. 5b). The curvature in the longitudinal direction is
the dependent variable and has to be determined. In the
present simulations, the curvature is calculated using a
three-point arc. Relative to the centre line, each point is
used as the starting point, centre point, and end point. To
facilitate understanding, Fig. 6 shows the curvature for
the general case. The measured curvatures are presented
in Table 5 with respect to the shape. These results are
used as the sample data for the regression analysis.

4 Regression analysis

4.1 Regression analysis model

It is confirmed that the compression ratio of the sheet,
the curvature radius of the original blank in the trans-
verse direction, and the width of the original blank af-
fect the dependent variable. The numbers of factors and
levels are both three. To determine the appropriate re-
gression model, it is necessary to investigate the main
effects of the independent variables and the interactions

(a) Stress distribution 

(b) Strain distribution 

Fig. 4 Results of numerical
simulation for saddle shape (stress
and strain distributions)
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among them. The main effect of an independent vari-
able is the mean change in the dependent variable

produced by a variation of that particular independent
variable. The interactions are the correlations among the
different independent variables. The main effects and
the interactions of the independent variables are deter-
mined using the MATLAB software. Figure 7 shows the
main effects of the different design variables, where X1

is the compression ratio, X2 is the curvature radius of
the original blank in the transverse direction, and X3 is
the width of the original blank. All the design variables
have mildly quadratic effects on the dependent variable.
Figure 8 shows the interactions among the design vari-
ables. Differences can be observed among the slopes of
the interaction graphs, indicating different degrees of
interactions among the design variables. The appropriate

(a) Stress distribution        

(b) Strain distribution 

Fig. 5 Results of numerical
simulation for convex shape
(stress and strain distributions)

Fig. 6 Centre line of general model for numerical simulation
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regression analysis model that is used in this study is as
follows:

y ¼ β0 þ β1X 1 þ β11X 1
2 þ β2X 2 þ β22X 2

2 þ β3X 3

þ β33X 3
2 þ β12X 1X 2 þ β23X 2X 3 þ β31X 3X 1 þ E ð1Þ

where y is the dependent variable, xi are the independent
variables, βi are the regression coefficients, and E is the
error value. After the determination of the regression
model, it is necessary to estimate the regression coeffi-
cients βi from the data obtained by the simulations.
Generally, the coefficients can be obtained by the method
of least squares, which is one of the most widely used
statistical estimation methods. The least squares method
is used to calculate the regression coefficients in Eq. 1
such that the sum of the error E values is minimised.

Hence, the function of the least squares method can be
expressed as Eq. 2, which can be simplified in matrix
form. This equation is cited by Myers et al. [5].

LSM ¼ ∑
n

i¼1
E2 ¼ ET ⋅E ¼ y−Xβð ÞT ⋅ y−Xβð Þ ð2Þ

where E, y, β, and X are as follows:

E ¼
E1
E2

⋮
En

2
64

3
75; y ¼

y1
y2
⋮
yn

2
64

3
75;β ¼

β1
β2

⋮
βn

2
64

3
75;X

¼
1 x11 x21 ⋯ xp1
1 x12 x22 ⋯ xp2
⋮ ⋮ ⋮ ⋱ ⋮
1 x1n x2n ⋯ xpn

2
664

3
775 ð3Þ

where n is the number of cases and p is the number of
independent variables in each interaction.

Table 5 Results of curvature measurement

Number of
case (saddle)

Longitudinal
curvature
radius (mm)

Number of
case (convex)

Longitudinal
curvature
radius (mm)

1 270.76 28 178.44

2 223.96 29 194.48

3 211.78 30 195.37

4 375.63 31 253.92

5 323.55 32 204.60

6 288.91 33 231.71

7 485.15 34 266.86

8 428.00 35 316.58

9 401.70 36 302.14

10 189.12 37 77.78

11 166.97 38 88.17

12 166.72 39 118.19

13 222.39 40 88.75

14 212.92 41 98.45

15 205.82 42 104.29

16 258.33 43 103.26

17 241.08 44 126.55

18 249.00 45 120.50

19 130.18 46 43.67

20 118.09 47 50.99

21 110.93 48 51.07

22 158.67 49 46.75

23 152.11 50 51.73

24 140.39 51 56.97

25 183.67 52 49.91

26 168.12 53 55.56

27 184.05 54 64.11

(a) Saddle shape

(b) Convex shape

Fig. 7 Plots of main effects of design variables
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Equation 3 is solved for the regression coefficients as fol-
lows:

β ¼ XT ⋅X
� �−1

XT ⋅y ð4Þ

There are 10 unknown coefficients in the present study, and
those estimated using Eq. 4 are presented in Table 6.

4.2 Goodness-of-fit test of regression model

A fit test is used to verify the regression model. First, it is
necessary to determine the coefficient of determination, name-
ly, the R-squared value, which is the yardstick for evaluating
the suitability of a regression model developed using actual
data. In other words, the R-squared value is a measure of the

(a) Saddle shape 

(b) Convex shape 

Fig. 8 Plots of the interactions of
the design variables

Table 6 Estimated
regression coefficients Regression

coefficient
(βi)

Value
(saddle
shape)

Value
(convex
shape)

β0 196.4367 116.0229

β1 −94.6344 −94.6400
β11 49.9766 29.7137

β2 53.9111 23.8259

β22 −10.1440 2.7678

β3 −16.4237 7.5338

β33 9.0889 −1.1406
β12 −33.4917 −25.1499
β23 0.9515 0.8446

β31 14.8591 0.4839

3378 Int J Adv Manuf Technol (2017) 91:3371–3384



variability of y accounted for by the regression variables of a
model. It is defined as follows:

R2 ¼ SSR

SST
¼ 1−

SSE

SST
ð5Þ

where SSR ¼ ∑ ŷi−yð Þ2, SST ¼ ∑ yi−yð Þ2, and

SSE ¼ ∑ yi−ŷið Þ2. SSE is the error sum of square, SST is the
total sum of square, SSR is the regression sum of square, y is
the average value of the data, yi denotes the actual data values,
and yi denotes the estimated data values. The root mean square
error (RMSE) is an intuitive and reasonable accuracy evalua-
tion metric, while the normalised root mean square error
(NRMSE) is used to evaluate the relative accuracy of the
regression model using Eq. 6.

NRMSE ¼
ffiffiffiffiffiffiffiffiffi
SSE

n

r
⋅

1

ymax−yminð Þ ð6Þ

In the case of the saddle shape, the R-squared value and
NRMSE are determined to be 0.9724 and 0.0423, respective-
ly, and the corresponding results for the case of the convex

shape are 0.9791 and 0.0443, respectively. As can be ob-
served, the R-squared values are nearly 1, which indicates that
the regression model fitted the data well. In addition, the
NRMSE values are almost 0, indicating very high accuracy
of the regression model. The regression model can thus be
considered appropriate.

It is also necessary to examine the precise difference be-
tween the actual data and the data estimated by the regression
model. This difference is known as the error. Figure 9a, b
shows the graphs of the observed curvature versus the
predicted curvature, and Fig. 10a, b shows the differences
between the original and estimated data, for the saddle and
convex shapes, respectively. As can be observed from the
figures, the trends of the estimations for both cases are
similar. To evaluate the accuracy of the estimation model,
the percentage errors are calculated. The maximum and
minimum percentage errors for the saddle cases are
determined to be about 18.8154 and 0.1201%, respectively.
However, most of the percentage errors for the saddle cases
are less than 10%, with the mean percentage error being

(a) Saddle shape

(b) Convex shape

Fig. 10 Difference between original and estimated data

(a) Saddle shape

(b) Convex shape

Fig. 9 Graph of observed versus predicted curvature
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6.1826%. The corresponding values for the convex cases are
almost the same; the maximum and minimum percentage
errors are respectively 22.7838 and 0.0448%, and the mean
percentage error is 6.5103%. This confirms the suitability of
the regression model and its usefulness for understanding the
general trend of the FRRF process. The model can thus be
used to predict the results of the process. Figure 11a, b shows
the residual plots for the saddle and convex shapes,
respectively. The observation of a definite pattern in a
residual plot indicates that there are some missing variables
in the regression model. However, no definite pattern is
apparent in Fig. 11, indicating that there are no missing
variables in the obtained regression model. The residual
means are also examined, and the values for the saddle and
convex shapes are determined to be respectively −2.477e−7
and 1.645e−15, which are almost 0. The results of the
goodness-of-fit tests for both cases are summarised in Table 7.

One of the most important assumptions of the response
surface methodology is that the error has a Gaussian

distribution with zero mean, and this is also assumed in the
application of the least squaremethod. It is therefore necessary
to examine the normality of the sample data. Figure 12 shows
the normality plots. In the saddle case, almost all the sample
data match the normal distribution. However, the normality
plot for the convex case contains some discrepancies for high
residual values. A frequency distribution histogram of some
sample data is used to ascertain the normality of the

(a) Saddle shape

(b) Convex shape

Fig. 11 Plot of residual

(a) Saddle shape

(b) Convex shape

Fig. 12 Normality plot

Table 7 Summary of results of goodness of fit tests

Summary of fit Saddle shape Convex shape

R-squared 0.9724 0.9791

Normalised root mean square
error (NRMSE)

0.0423 0.0443

Maximum percent error 18.8154 22.7838

Minimum percent error 0.1201 0.0448

Mean percent error 6.1826 6.5103

Mean residual −2.477e−7 1.645e−15
Variance of residual 6.7699 0.5483
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distributions. Figure 13a, b shows the histogram for each case.
As can be observed, both graphs are bell-shaped, which
indicates a normal distribution of the model results. The
curve in Fig. 13a has a perfect bell shape, while that in
Fig. 13b has a bell shape with long tails. This means that the
tails of the error distribution for the convex shape are longer
than those of a Gaussian distribution.

4.3 Random sample test

In Sect. 4.2, the suitability of the regression model was con-
firmed. However, to ascertain the applicability of the model to
other cases, a random sample test is also conducted. Random
sample data with the same limit as that of the previous simu-
lation are extracted using a Latin hypercube design. A Latin
hypercube design is suitable for a random sample test because
of its ability to evenly distribute random samples in the pa-
rameter domain. In the present study, 10 sample data are

selected randomly for each shape. The random sample data
as well as the simulation results (the curvature radii in the
longitudinal direction) are presented in Tables 8 and 9.
Figure 14a, b shows the graphs of the observed curvature
versus the predicted curvature, and Fig. 15a, b shows the
difference between the original and estimated data. As in the
previous section, the percentage errors are calculated. The
maximum and minimum percentage errors for the random
saddle case are respectively 13.0111 and 0.1990%, while the
corresponding values for the random convex case are
respectively 15.2905 and 0.8198%. The mean percentage
errors for the two cases are 5.7964 and 7.2577%,
respectively. Overall, the errors are similar to those of the
training sample data. This means that the estimations of the
model fit the random sample data quite well. In other words, it
is possible to use the regression model to predict the results of
an FRRF process.

The prediction interval of the regression model is also cal-
culated to enable proper prediction. A prediction interval is the(a) Saddle shape

(b) Convex shape

Fig. 13 Histogram about frequency distribution

Table 8 Statistical table for saddle shape in random sample test

Number
of case

Compression
ratio X1

Curvature
radius of blank
X2 (mm)

Width of
blank X3

(mm)

Result
(mm)

1 5.3862 532.6719 125.5861 232.80

2 9.2584 618.9142 121.3191 153.08

3 6.0976 573.2571 110.2278 228.09

4 5.6156 957.1309 119.0041 320.09

5 6.9804 839.6199 132.3784 231.49

6 8.4524 687.2206 102.2678 185.85

7 9.7514 724.5955 149.1757 163.80

8 7.6532 908.5602 144.3745 227.29

9 8.8882 771.0955 136.8794 171.37

10 7.2035 892.2177 107.5241 234.92

Table 9 Statistical table for convex shape in random sample test

Number
of case

Compression
ratio X1

Curvature
radius of blank
X2 (mm)

Width of
blank X3

(mm)

Result
(mm)

1 0.1634 691.8053 118.4494 152.72

2 0.1458 872.7915 130.8360 120.38

3 0.1363 998.8324 123.2790 106.05

4 0.1792 626.3874 149.3364 199.03

5 0.1205 569.8017 127.3827 73.32

6 0.1311 817.5872 141.6506 99.48

7 0.1030 901.0522 113.6458 53.99

8 0.1929 735.5269 108.0822 201.14

9 0.1135 794.8920 103.6930 62.90

10 0.1070 507.1187 136.9212 60.97
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interval within which a yet-to-be-observed response is predict-
ed to fall with a specified probability. The prediction interval
is determined using Eq. 7.

ŷ x0ð Þ−tα=2;n−p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂2 1þ x0

0 X
0
X

� �
x0

� �q
≤y0≤ ŷ x0ð Þ

þ tα=2;n−p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where x0= [1 x01 ⋯ x0p] and y ̂ x0ð Þ ¼ x0
0
b; σ̂

2 can be cal-

culated as the sum of the residual values, and tα/2 , n − p can be
determined using a t statistic table and the confidence level. A
confidence level of 95% is used in the present study, based on
which the value of tα/2 , n − p is determined to be 2.052 from a t
statistic table. The prediction interval is calculated using
10,000 samples generated by a Latin hypercube design. The
results are summarised in Table 10. The mean prediction in-
tervals for the saddle and convex cases are determined to be
45.4088 and 34.6544, respectively. The average residual of
the regression model for a given case is confirmed to be less
than the corresponding mean prediction interval.

5 Pre-FRRF equipment

To further verify the reliability of the above simulation results,
an experimental investigation is necessary. Unfortunately, the
development of the FRRF equipment is still ongoing, and this
makes an actual experimental investigation impossible at the
moment. However, a pre-FRRF equipment is used for the
practical feasibility verification of the FRRF process in this
study.

The employed pre-FRRF equipment utilises a fixed roller
support, which is capable of producing only one curvature.

(a) Saddle shape

(b) Convex shape

Fig. 15 Difference between original and estimated data of random
sample data

Table 10 Summary of prediction interval

Saddle shape Convex shape

Maximum prediction interval size 49.3814 37.7320

Minimum prediction interval size 44.0304 33.6651

Mean prediction interval size 45.4088 34.6544

(a) Saddle shape

(b) Convex shape

Fig. 14 Graph of observed versus predicted curvature
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(a) Convex shape 

(b) Saddle shape 

Fig. 18 Centre line profile of simulation and experiment

(a) Convex shape

(b) Saddle shape

Fig. 17 Shape comparison for simulation with experiment

Fig. 16 Configuration of pre-FRRF equipment
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The configuration and geometric specifications of the equip-
ment are shown in Fig. 16. The compression ratio
(tip-to-centre) used for the experiment are 7.5/2.5 and 2.5/
7.5, while the curvature radius and width of the blank are
1000 and 100 mm, respectively. The blank material is
Al2024-T3, which is the same as that used for the simulations.
The curvature comparison is done by numerical simulation on
ABAQUS using the experimental conditions. Figure 17
shows the experimental and simulation results for each shape,
from which very good agreement is visually apparent. It is,
however, necessary to measure the actual curvatures for pre-
cise comparison of the experimental and simulation curva-
tures for each case. For this purpose, the longitudinal curva-
ture profiles along the centre lines are extracted from both
results, with a 3D scanner employed for the experimental cur-
vatures. The extracted profiles for the convex-type and
saddle-type curvatures are shown in Fig. 18. As can be seen
from Fig. 18a, the centre-line profiles (A-A′) for the
convex-type curvature do not coincide perfectly, with the sim-
ulation producing a larger curvature radius compared to the
experiment. However, the overall profiles are similar. In the
case of the saddle-type curvature in Fig. 18b, the centre-line
profiles (B-B′) for the simulation and experiment are almost
the same.

The observed discrepancies between the simulation and
experimental results are within acceptable limits, and while
there is clearly room for improvement of the employed
pre-FRRF equipment, the experimental results further verify
the reliability of the developed regressionmodel for predicting
the curvature radius for FRRF.
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FRRF is investigated in this study to determine the ef-
fects of the input parameters on the forming results in
the longitudinal direction. The response surface method-
ology is used to develop a model for predicting the lon-
gitudinal curvature of a sheet metal shaped by the FRRF
process. The forming process is numerically simulated to
obtain sample data for regression analysis. The simula-
tion results verify the feasibility of forming saddle and
convex surfaces by FRRF, and the regression analysis of
sample simulation data is used to develop a model for
predicting the forming results. The polynomial regression
model is then used to derive an appropriate estimation
equation. To validate the regression analysis, a
goodness-of-fit test is conducted and the R-squared
values, NRMSE values, and residual data are examined.
The test results reveal good fit of the simulation data and
thus validate the regression model. To further verify the
simulation results, experiments are conducted using
pre-FRRF equipment. Good agreement is observed be-
tween the experimental and simulation results, although
this only basically verifies the reliability of the sample
data. The results of this study confirm the feasibility of
statistically predicting the curvature produced by an
FRRF process. Further study is planned for additional
experimental verification of the prediction model using
the actual FRRF equipment.
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