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Abstract
Reconfigurable manufacturing systems constitute a newmanufacturing paradigm and are considered as the future of manufactur-
ing because of their changeable and flexible nature. In a reconfigurable manufacturing environment, basic modules can be
rearranged, interchanged, or modified, to adjust the production capacity according to production requirements. Reconfigurable
machine tools have modular structure comprising of basic and auxiliary modules that aid in modifying the functionality of a
manufacturing system. As the product’s design and its manufacturing capabilities are closely related, the manufacturing system is
desired to be customizable to cater for all the design changes. Moreover, the performance of a manufacturing system lies in a set
of planning and scheduling data incorporated with the machining capabilities keeping in view the market demands. This research
work is based on the co-evolution of process planning and machine configurations in which optimal machine capabilities are
generated through the application of multi-objective genetic algorithms. Furthermore, based on these capabilities, the system is
tested for reconfiguration in case of production changeovers. Since, in a reconfigurable environment, the same machine can be
used to perform different tasks depending on the required configuration, the subject research work assigns optimum number of
machines by minimizing the machining capabilities to carry out different operations in order to streamline production responses.
An algorithm has also been developed and verified on a part family. As a result of the proposed methodology, an optimized
reconfigurable framework can be achieved to realize optimal production of a part family. Finally, the proposed methodology was
applied on a case study and respective conclusions were drawn.

Keywords Alternative process plans . Multi-objective genetic algorithm . Reconfigurable manufacturing systems .

Reconfigurable process plans

1 Introduction

Reconfigurable manufacturing systems (RMS) have been rec-
ommended for the turbulent market conditions because of
their flexible and changeable nature. Due to the rapid change
in product’s design and market demands, there is a need of a
system that can adapt the varying requirements more efficient-
ly [1, 2]. RMS is by default designed around a part family
wherein customized flexibility is provided to manufacture all
parts within that family. In RMS, each part within a family
requires specific configurations which are adjusted by suitably
reconfiguring the machine tool’s configuration [3]. RMS al-
lows flexibility not only by inducing variety in part design but
also by modifying the system itself. Modularity, integrability,
convertibility, diagnosability, and customization are the key
characters of RMS that provide exact functionality and capac-
ity needed for manufacturing a given product [2]. Since
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manufacturing system is an adaptive system that allows its
components to tolerate the design changes up to a certain
extent, the changing design of products requires a mechanism
that can cater the changes accordingly. ElMaraghy [4]
highlighted the evolution of manufacturing systems over the
years and focused on the various challenges. In response to
these challenges, key drivers such as optimality, quality, waste
reduction, agility, and lean manufacturing were identified for
survival [5].

Scalability is one of the significant features for a
manufacturing system that can facilitate adding, removing,
or modifying different workstations or machines, and enable
the reconfigurability of the manufacturing system. The main
purpose of a scalable production system is to adjust the per-
formance measurement metrics such as throughput and
waiting time. Using modeling techniques for capacity plan-
ning such as system dynamics simulation and mathematical
programming is beneficial for finding a cost-effective solution
to handle the changes associated from different customer de-
mands. In the current literature related to capacity and scal-
ability planning for RMS, there is no specific way to find the
number of required machines with a single simulation model
run during different time periods [6].Moreover, scalability is a
systematic approach which adds or subtracts from the sys-
tem’s capacity to fulfill the market demand [7]. When produc-
tion time is low, parallelization of tasks leads to more machin-
ing cost. The need of the industry today is to have a more
reliable and effective system that can offer optimum machin-
ing in terms of cost and time. This could only happenwhen the
concept of co-evolution in the production system gets promot-
ed. Co-evolution of product design and production system is
basically a design for the production of product families and
its reconfiguration over several product generations [8].
Reduction in product cost and responsiveness can be observed
by customizing first the machining capabilities at product de-
sign stage and then the subsequent reuse of these capabilities
at reconfiguration stage. It is also necessary to identify the
maximum and minimum production capacity values among
all configurations [9].

In reconfiguration, both hardware and software modules
are involved which allow quick changeovers in functionality
and capacity of the production system. It is modified physi-
cally and logically, i.e., either by changing machine configu-
rations, machine layout, and material handling devices or
through suitable routing, scheduling, and planning [10].
Throughout the past years, organizations have been in search
of the best reconfiguration among a number of presented op-
tions to generate economical and distinctive configurations.
The use of intelligent algorithms has proved their application
handy in such situations [11]. Active research has been in
progress in RMS field for the development of changeability
enablers to adjust and rebalance the system configuration de-
pending upon the market requirements. The concept of

changeability allows the change enablers to sustain the life
cycle of a manufacturing system at different levels of any
industry. Changeability is considered as an umbrella that man-
ages the necessary foresighted adjustments on various levels
to respond to the change economically. It aids the manufac-
turers to have long-term competitiveness of companies. Both
flexible manufacturing systems (FMS) and RMS accommo-
date changeability to some extent. The main difference lies in
certain characteristics such as FMS gives generalized flexibil-
ity to switch between product variants unlike dedicated
manufacturing systems (DMS). Since DMS is concerned with
the production of specific parts, if specified part design is not
available, then manufacturing of part is not possible. On the
contrary, RMS is responsible for customizing flexibility and
evaluating exact capacity [12].

Responsiveness, in RMS, is required at different levels in a
manufacturing system in terms of changeability and scalabil-
ity [13]. The first level is the “factory level”wherein due to the
production variations, there is a need to modify the factory
layout to accommodate the changing demands. “Assembly
level” is the second area where process lines are transformable
with the change in product design and demand. Next is the
“process planning level” which is the major concern for com-
panies to manufacture products in a part family. One of the
major challenges for designers is to accommodate variations
in product design level and manufacturing level to have a
quick response in reaction to market fluctuations. Last is the
“manufacturing level” where to be competitive in a global
market, a manufacturing company must opt for a responsive
system that fulfills the present production demands and
reconfigures for the uncertain future demands. RMS has the
ability to reconfigure quickly with low reconfiguration effort
and at the same time having low cost. A modified
reconfigurable layout can contribute in achieving the desired
configuration by employing it on the assembly line and prod-
uct scheduling [14].

RMS consists of different elements that contribute toward
its sustainability including material handling, machinery, and
organizational staff. All these factors are the change enablers
having the tendency to reconfigure the system logically or
physically depending upon its constraints. This research work
is mainly concerned with machinery in which machine tools,
assembly, and factory facilities are to be taken care of. The
essential element is to identify the exact degree of changeabil-
ity needed so that the exact system configuration could fulfill
the desired performance. As a result, production planning be-
comes complex, quick, and reliable. The performance and
flexibility depends upon the suitable data for scheduling and
process planning. In order to achieve this performance, differ-
ent approaches have been discussed in literature. One of the
major solutions for increasing the changeability of a
manufacturing system is reconfigurable process planning
and control [15]. The emerging scope of RMS is due to the
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responsiveness at process planning level. Process planning
and control is actually an interface between the customer
needs and the manufacturing system. The desired perfor-
mance and efficiency of a manufacturing setup truly depends
upon the high-quality production data for both system and
product level. Planning data also incorporates the resources,
functionality, and scalability of a production system. It char-
acterizes the imperative changeability enablers for products
and manufacturing system evolution. Moreover, it cost-
effectively manages the change in product and modifies the
system accordingly. Since manufacturing process planning
aids in bridging the gap between design and manufacturing,
process planning plays a critical role in determining the
manufacturing cost, time, and system responsiveness [16].
Various process planning techniques lend themselves to
RMS, and like FMS, RMS is usually designed for a certain
part family but with wider scope. However, generative process
planning systems are better able to handle unplanned product
variations. Therefore, a hybrid reconfigurable process plan-
ning (RPP) system that is variant in nature yet capable of
generating process plans for parts with machining features
beyond those present in the current part family’s composite
part can best meet the current challenges [17]. In this ap-
proach, product family is identified closest to the new part
and the corresponding process plan is retr ieved.
Mathematical programming has been carried out for the gen-
eration of process plans that accounts for design and
manufacturing changes in different features of part [18]. To
determine the best location for the new added feature of a part
family, precedence graph is reconfigured by adding/removing
features iteratively to optimize the cost obtained. RPP helps in
reconfiguring the system during production changeovers due
to the dynamic nature and flexibility of RMS with minimal
effort to meet the changes in production requirements.

Consequently, keeping in view the global trends and
shorter manufacturing life cycles, the requirement of this era
is to map different change enablers and sustainability para-
digms of manufacturing systems. This has been taken as an
ultimate goal in the work presented here. The proposed meth-
odology is based on co-evolution model with two main objec-
tives: first, to analyze the need of reconfigurability, and sec-
ond, to exemplify how the reconfigurability can be carried out
by generating minimum machining capabilities. More specif-
ically, the goal is to present a generic approach for modifying
the system according to desired capabilities to manufacture
different features of the same part family. It has been carried
out by reconfiguring manufacturing system in which opti-
mized reconfigurable framework has been presented to mod-
ify the system according to production demands timely with
minimum production capabilities. Considering a master part,
applying multi-objective genetic algorithm (MOGA) on its
generated process plans and configurations (co-evolution
model) gives the global best individual. Moreover, the

proposed approach is generic since it generates optimal pro-
cess plans and machine configurations on co-evolution para-
digm. It also has the ability to cost-effectively reconfigure the
system. The presented algorithm can further manufacture the
part family with minimum production changeover time and
optimal machine capabilities. For systematic study, the re-
mainder of the paper has been arranged as follows:
Section 2 presents the concerned literature review; Section 3
shows the mathematical formulation; Section 4 presents the
proposed methodology along with the application on a case
study; Section 5 consists of results and analysis of the case
study; and finally, Section 6 discusses the conclusions drawn
and future work prospects.

2 Literature review

The globalization in the 1990s created intense competition in
manufacturing industries leading to variations in product de-
sign and shorter product life cycles. This makes the prediction
of future demands for any product difficult. To respond effi-
ciently to achieve required design changes, there is no need to
replace the entire system as the existing manufacturing capa-
bilities are shared across products and production generations.
Materials and technologies are here renewed frequently to
create required and new product features [19]. RMS has been
acknowledged as receptive toward capabilities and function-
alities due to its ability to accommodate the variations at prod-
uct design and manufacturing [2, 10]. This is achieved when
the design is based on two principles which in turn reduce the
cost and increase responsiveness. One is the design of a
manufacturing system for adjustable structures which allows
the system scalability to vary according to the production de-
mands and machine’s adaptability to manufacture products in
a part family. Second is the structure adjustment which incor-
porates adding machines and changing machine’s hardware
and software control. Manufacturing system is designed
around a part family having the customized flexibility desired
for the production of different features of the same part family
[20]. Hence, the core characteristics of RMSmust be incorpo-
rated in developing an adjustable and flexible setup for pro-
duction over part families.

RMS is an active research for more than a decade now. It
was first proposed by Koren et al. [21] and was claimed as the
only solution for the manufacturing industry to respond timely
and efficiently. Most of the research is also done on
reconfigurable layout considering performance measures to
achieve high responsiveness, selection of reconfigurable ma-
chines, and formation of part family. Co-evolution of product
families and assembly systems are introduced as a new prod-
uct development methodology for the joint design and recon-
figuration of assembly systems within and across product gen-
erations. The co-evolution methodology can also enable
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manufacturers to remain competitive as it maximizes the reuse
of product modules and reconfigurable systems to ensure that
manufacturing systems are effective for as many product gen-
erations as possible [22]. Moreover, process planning iden-
tifies how a product is to be manufactured according to the
design specifications satisfying different constraints and avail-
able resources. Process planning is a multi-decision activity
that determines both operation selection and operation se-
quencing. The former aspect is based on technological re-
quirements while the latter is related to machine selection for
producing a part satisfying the feature’s technological con-
straints [23]. It is basically a bridge between the design and
manufacturing. Changeability metric captures cost of changes
in the process plan and can be used for choosing one process
plan among alternate process plans. The plan having the least
changes is then finally selected [18]. The explained method-
ology here is appropriate for macro process planning in which
the optimum plan is explored while satisfying the precedence
constraints.

Furthermore, different approaches have been discussed
in literature in which scalability has been carried out
through process planning and machine configurations.
Since optimization techniques have gained significant in-
terest by researchers in order to search the best performance
value, a brief literature survey related to MOGA is also
included in this section. RPP represents important change-
ability enabler for products and manufacturing systems. In
RPP, two basic criteria are considered. In the first criterion,
part’s handling and re-fixturing time is minimized to get the
optimum process plan having the minimum value of
reconfigurability index. For the second criterion, change-
ability metric is introduced to evaluate reconfigured pro-
cess plans. Also, the changeability metric captures cost of
changes in the process plan. In addition, macro process
planning has all the information regarding product’s
manufacturing steps and its logical sequences provide
greater product variety and reduction in cost. Frequent
and unpredictable market variations trigger the changes in
the product manufacturing because the manufacturers keep
on evolving the innovative products to sustain in the global
market and stay competitive. These uncertain innovations
can be catered effectively by developing a reconfigurable
system at process planning level. An RMS approach was
proposed by Renna and Ambrico [24] on the performance
of classical cellular manufacturing. Different performance
measures including work in progress, manufacturing utili-
zation, and processing time were analyzed keeping in view
the production mix changes, demand ratio, fluctuations,
and machine processing time. Reconfigurable cellular
manufacturing and flexible cellular manufacturing are best
alternatives to cellular manufacturing. Cellular manufactur-
ing systems are best when demand and product mix are at
medium level.

In the literature, few methodologies have been presented
for part family formation. Kashkoush and ElMaraghy [25]
suggested a hierarchical clustering method to generate various
groups of product families that have similarity coefficient.
Group technology is a manufacturing philosophy in which
similar parts are identified and grouped together into groups
and families. Parts are grouped into families based on the
similarity of their processing requirements. Each family gets
a dedicated production facility, known as a production cell.
Typically, cells operate as switching flowlines, with switching
taking place between the productions of batches of different
part types. Frequent switching can then involve substantial
effort and time, known as setup time. RMS has advantage over
cellular manufacturing and group technology due to its flexi-
ble and customizable nature. In cellular manufacturing, the
rapid changes of markets force the manufacturing systems to
be able to react to demand changes. In scientific literature, the
periodic reconfiguration or robust design methodologies for
the cellular manufacturing systems that maintains a high per-
formance level when market changes occur is proposed.
Reconfigurable assembly system (RAS) is basically RMS
for assembly process. Another approach was proposed by
Goyal et al. [26] in which a similarity coefficient was pro-
posed on the basis of operation sequence. Considering alter-
native process plans, Rakesh et al. [27] proposed a modified
average linkage clustering algorithm.

Azab and ElMaraghy [17] presented a mathematical model
for reconfiguring macro-level process plans. To add validity in
the previous technique, Azab and ElMaraghy [28] applied
genetic algorithm (GA) to obtain an optimized process plan.
Most of the process planning issues in literature have been
solved using non-polynomial (NP)-hard approach since cal-
culus techniques are limited in assuring optimality. Shabaka
and ElMaraghy [29] developed a methodology to ensure the
generation of feasible process plans using real coded GA for
the first time in process planning as it has a large search do-
main compared to traditional GA. Chaube et al. [30] proposed
a technique of non-sorted GA (NSGA)-II in which non-
dominated solutions were sorted and plotted to generate opti-
mal machine configuration and optimal process plan. This
integrated approach also required the study of structural con-
figurations of different machining operations. One of the ma-
jor contributions in configuration selection was carried out by
Youssef and ElMaraghy [31]. Since reconfigurability is the
main factor on which the industrial future depends, the signif-
icance of reconfigurable machine tool (RMT) is undeniable.
RMT is a modular type of machine tool having core charac-
teristics like convertibility, integrability, and modularity [32].
These characteristics of RMS allow mass customization and
rapid response to the product design change. Moreover, ma-
chine kinematic configurations are generated from the set of
functional requirements and process plans in order to design
RMTs as stated by Moon and Kota [33]. Another approach,
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involving the machine configurations to generate the mini-
mum machine capabilities considering the concept of co-evo-
lution, was proposed by Shabaka and ElMaraghy [34]. This
approach is generic and can be used to generate machine con-
figurations in any manufacturing system since it can be ex-
tended in generating the reconfigurable machine structure for
part family rather than a single part. The co-evolution theory
further reveals that the product, process, and production sys-
tem are interlinked and have a direct impact on each other [8].
In addition, co-evolution of product design and production
system is basically a design for the production of product
families (having design or feature similarities) and its recon-
figuration over several product generations [35]. Reduction in
product cost and responsiveness can be observed by custom-
izing the machining capabilities at product design stage and
then reusing these capabilities at reconfiguration stage. Kumar
and Deb [36] carried out an analysis by minimizing weighted
function in case of a simultaneous setup and tool change. The
results not only gave the optimal solution for each parameter
but also optimized the overall effect. Elitist GA methodology
was also applied to generate optimal operation sequences in
setup planning.

Goyal et al. [37] proposed an approach for optimal as-
signment of machines in parallel setups through NSGA-II
and TOPSIS ranking theory. This approach led to the ma-
chine tool reconfiguration by adding or subtracting ma-
chine modules going through different performance mea-
sures. A quantitative model was also developed for RMS
scalability by Wang et al. [9] who calculated the number of
reconfigurations based on adjustment gradient. NSGA-II
technique has also been used by Bensmaine et al. [38] in
the selection of optimal machines from the set of candidate
machine configurations. In this research, work multi-
product case with a high degree of freedom can be consid-
ered as future work, and with the idea of co-evolution, the
machine configurations can be used for different product
designs over and over again, preserving the feasibility of
the system for a long period of time. Baqai [39] also pro-
posed a methodology to generate reconfigurable process
plans and its structural configurations simultaneously con-
sidering the precedence and topological and logical con-
straints. As setup planning plays a vital role in the integra-
tion of scheduling and process planning, it is closely relat-
ed to process plan generation and machine selection.
Mohapatra et al. [40] proposed the method to bridge the
gap between scheduling and setup planning by grouping
the machining features on the basis of tool approach direc-
tions (TAD), adopted NSGA-II, and fuzzy set theory to get
the Pareto optimal solution. In extension to this work, the
integration of process planning and scheduling was
achieved through an improved version of NSGA-II [41].
Three objective functions, makespan, cost, and idle time,
were considered on minimizing criteria to obtain the Pareto

fronts. A comparative study was also done between
NSGA-II, controlled elitist NSGA-II, and improved con-
trolled elitist NSGA-II. Further, it was observed that the
proposed algorithm-improved controlled elitist NSGA-II
outperformed the other two when efficacy and efficiency
were used as comparison parameters. A new methodology
was introduced by Azab et al. [12] based on control loop
for effective scheduling and planning for system reconfig-
uration. In this methodology, the inherent characteristics of
RMS are analyzed to implement desired changes at system
or machine level. Bensmaine et al. [42] proposed a new
approach to integrate the process planning and scheduling
simultaneously rather than as two separate functions.
Considering the multi-configuration nature of RMTs, a se-
lection index determined the candidate machine which was
capable enough to perform certain operations. Recently,
Azab and Naderi [43] proposed a methodology in model-
ing of large problems which included subfamily sequenc-
ing and parts in each subfamily to minimize the maximum
completion time using mathematical programming soft-
ware. Benderbal et al. [44] addressed the problem of ma-
chine selection in a reconfigurable environment and devel-
oped an approach for the selection of best performance
process plan using NSGA. The responsiveness is increased
based on flexibility of the designed system and generated
process plan which also caters the situation of unavailabil-
ity of particular machine. Two objectives, maximization of
flexibility index and minimization of completion time, are
considered. The main objective of this work was to evalu-
ate the flexibility of reconfigurable process plan for a part
family. Different machines were identified and allocated on
the basis of optimality criteria considering the available
tools and their configuration. A methodology was also pre-
sented for modularity assessment by Benderbal et al. [45]
in which three main objectives were targeted: maximiza-
tion of system, modularity, and minimization of system
cost.

RMS are built to effectively respond to market changes.
Although plenty of literature exists on the issues of RMS, a
wide scope of study is still required in all fields of RMS. In
order to have a reliable and efficient system, non-monetary
product performance measures can also be integrated for
balancing production line [46]. To balance the workload and
minimize production cost, a methodology combining the ca-
pacity control and production planningmethods was proposed
by Gyulai et al. [47]. This approach gave the feasible process
plans by considering the requirements for capacity in terms of
multivariate linear function which is an integral part of a math-
ematical model. Moreover, Zhang et al. [48] presented a
simulation-based approach related to remanufacturing
through scheduling and process planning to give optimized
framework. Considering process routes, the detailed process
scheduling was generated through computational experiments
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using NSGA. Furthermore, Hees and Reinhart [49] discussed
scalability planning through modeling simulation technique.
The required capacity in terms of machining was attained
using integrated model of discrete event simulation and re-
sources’ pool functions. One of the drawbacks of this ap-
proach was that it required more computational efforts and
expertise to get the optimum solution to meet the exact num-
ber of machines. Another mathematical approach was pro-
posed by Koren et al. [18] to minimize the total number of
machines and maximize system throughput by concurrently
reconfiguring and rebalancing the system to match new mar-
ket demand. This approach offered a set of principles for sys-
tem design for scalability and was validated for an industrial
case. The scalability process planning required simultaneous
changing of the system configuration and rebalancing of the
related reconfigured system. An optimal scalability-planning
problem, which is subject to realistic constraints, was then
formulated and solved using GA. This paper also extended
the work done by Wang and Koren [6] by applying the math-
ematical analysis to systems with buffers.

The concept of learning factories was proposed by
ElMaraghy et al. [50] wherein the methodology for product
family development was introduced to an existing learning
factory characterized by changeability factors. When a new
product was to be manufactured, the intelligent manufactur-
ing system initially assembled family desk with variants.
The learning factories vary based on required education
and research domain objective catering for the weights
and volumes of product variants. Navei and ElMaraghy
[51] also proposed an approach for determining the similar-
ities between the product families by analyzing the aim of
increasing the efficiency and speed of production. Master
operation sequence was retrieved for new variants. The
variant approach has advantage over generative approach
as there is no need to retrieve the process plan at every stage
and the generated master sequence has a similar operation
within variants of part family. This results in improving the
planning efficiency and variety of product design. The pro-
posed MIP algorithm further relies on available information
of existing variants. It does not consider new features/
components that may be present in new variants. This is
basically a potential approach for multiple alternative pro-
cess plans. In addition, Hassan et al. [52] proposed the
methodology for the determination of optimal configura-
tion of multiple part family orders. Machine configuration
was selected through NP-hard problem, but optimization
techniques can also be used to reduce computational efforts
and ultimately to obtain improved results. One of the im-
proved algorithms of machine configuration was proposed
by Hassan et al. [53] in which machine adaptive
retainability approach was proposed to select process plan
by comparing the previously employed process plan with
the proposed process plan considering kinematic

configurations. A model was proposed for the synthesis of
manufacturing systems by Abbas and ElMaraghy [54] to
reduce the cost of product variants by optimization of co-
platforming model. Total investment and testing of ma-
chines into manufacturing systems were minimized as part
of the objective function. Goyal et al. [55] also suggested an
approach that focused on creating a responsive index to
measure the responsiveness of RMTs. The responsiveness
of a RMT is proposed to be the average of operational ca-
pability and machine reconfigurability normalized values
because it is quite apparent that both metrics, i.e., opera-
tional capability and machine reconfigurability, directly in-
fluence the rapidity with which capacity and functionality
requirements can be handled on the machine level.

Mostly optimization of engineering designs are carried out
through evolutionary algorithms (EAs) which are character-
ized as stochastic global search methods inspired by natural
evolution. These algorithms do not need any gradient infor-
mation unlike other optimization methods. They make use of
design points to search an optimum solution rather than any
gradient information. Moreover, they are inspired from differ-
ent natural phenomena and make use of the best character of
that phenomenon. The EAs search for the global optimum
solution and possess extreme robustness which increase the
probability of getting the minimum global solution. For this
purpose, EAs are best suited for discrete optimization prob-
lems. These algorithms require high computational cost and
have poor constraint handling abilities [56]. Among all EAs,
GAs are most popular. Moreover, the natural evolution for
selecting the best solutions can be implemented only in the
presence of a certain measure. This measure could be an ob-
jective function which is a mathematical model of the fitness
evaluation criteria. The recombination operator exchanges the
characters of chromosomes among two parents, and random
mutation exchanges the genes at some location, rearranging
the order of genes in a chromosome. Recombination and mu-
tation are the two GA operators that extract the best and dom-
inating character of the parent chromosome to form the child
chromosome [57].

Conclusively, based on the expansive literature review
conducted and the over-arching aim of the research, it was
deduced that the application of MOGAs will make the ap-
proach more reliable for co-evolution of process planning
and machine configurations to generate optimal machine
capabilities since they preserve best solutions over the gen-
erations. Also, MOGAs give the best solution in process
planning problems. The purpose of this research work is to
propose a generic methodology for producing a variety of
parts through changeable and RMS. Scheduling issues and
the selection of optimal process plan have been discussed
many times in literature, but there is a lack of an optimized
framework to counter the changeability extent for produc-
tion changeovers in a part family while taking the
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machine’s kinematic configurations under consideration.
The proposed methodology will fill this gap through the
application of MOGA on a set of alternative process plans
and integrating machine configurations depending upon
the machine’s accessibility, simultaneously. The flexibility
in the system is attained due to the parameters selected for
process planning such as tool changeovers, configuration
changeover, and part rotation. These parameters are direct-
ly linked with the production cost and run time. The pre-
sented approach can be further modified according to the
demand and production environment on the basis of con-
sidered optimization parameters. Currently, all these pa-
rameters have been assigned equal weights, but preference
can be given to any one depending upon the production
scenarios. Finally, the proposed approach can give the in-
formation of all the machining requirements including
tools and its configuration by having the information relat-
ed to features and the associated technological and prece-
dence constraints.

3 Mathematical formulation

To carry out production in a part family or when a new part
arises and production is to be shifted from one part to another,
some major issues faced by decision makers are as follows:
Which new machines are required? Are the available ma-
chines sufficient for production? Does the setup require recon-
figuration? Is the available or proposed layout cost-effective?,
etc. Since the study is about RMS, the production is to be
carried out around a part family having operational similari-
ties. The nomenclature involved is given below:

OP = operation
NOP = number of operations
N = number of features to be added
i, j, k = indices for OP number of particular part [i, j, k,…,
NOP]
x, y = indices for OP number [x, y, …, NOP]
Opx = operation at ith position, and Opy = operation at jth
position in a particular sequence
TAD = tool approach direction for each operation

Designing a manufacturing system consists of two dif-
ferent tasks. The first task consists of determining the set of
machines to be involved in the production process, while
the second task concerns the definition of the selected ma-
chine’s layout. Considering a multi-product case, each ma-
chining feature of a given part is assigned a serial number
and a suitable machining operation is identified on the basis
of machining and geometrical requirements and the TAD
matrix capable of producing each operation depending on
the machine’s visibility. The design variables involved

which have a direct impact on the objective function [de-
scribed later in Section 4 (see Eq. 4) in detail] are given as
follows:

3.1 Design variables

A. Operation sequence (OS):

OS ¼ Op1;Op2;Op3…Opnop
n o

;

where Opiis the operation taking the ith position in the
sequence.

B. Tool approach directions (TADs)

TADs ¼ tad1;tad2;tad3;……::tadNOP
� �

;

where tadi is the TAD assigned to operation Opi.

C. Precedence group matrix (PGMS):

Operations are grouped based on precedence and techno-
logical constraints.

Op (x, y) is the precedence between Opx and Opy.
Tool change, setup change, and part rotation matrices are

used as input to find the optimal process plan and to select a
set of machines that are able to achieve all the necessary op-
erations to accomplish the desired product while minimizing
time and costs in terms of tool and configuration changeovers
incurred during the production. Suppose Opx and Opy are the
randomly generated sequence of operations, they will go
through tool change, setup change, and part rotation check.
For this, the data in matrix form is required. If the correspond-
ing value against the operations in matrix is 1, it means there is
change in tool, setup, and part rotation between operations,
and 0 means otherwise. Each machine comprises various
modules performing as different tools and providing different
operations of parts. Configuration changeover depends upon
the machine’s visibility for that particular operation.
Depending on the required product design, these modules
can be added or removed. The mathematical formulation for
the inputs and the constraints involved are given below:

3.2 Inputs

Mtool OpNi; j
h i

OpNi; j
h i

¼ Matrix showing the tool change

between operations.
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Msetup OpNi; j
h i

OpNi; j
h i

¼ Matrix showing the post/setup

change between operations.

Mrot OpNi; j
h i

OpNi; j
h i

¼ Matrix showing the part rotation

between operations

A. Tool change:

TOC ¼ ∑NOP−1
i¼1 1− 1−Mtool Op ið Þ; Op iþ 1ð Þð Þð½ �
Mtool x; yð Þ ¼ 1; x≠yj

0; x ¼ yj
� ð1Þ

B. Post/setup change:

Setupi ¼ ∑NOP−1
i¼1 1− 1−Msetup Op ið Þ; Op iþ 1ð Þð Þð½ �
Msetup x; yð Þ ¼ 1; x≠yj

0; x ¼ yj
� ð2Þ

C. Part rotation:

Roti ¼ ∑NOP−1
i¼1 1− 1−Mrot Op ið Þ; Op iþ 1ð Þð Þð½ �
Mrot x; yð Þ ¼ 1; x≠yj

0; x ¼ yj
� ð3Þ

3.3 Constraints

A. Precedence constraints for operations:

If Opx is performed before Opy;Prced Opx;Opy
� �

¼ 1:

If Opy is performed before Opx;Prced Opx;Opy
� �

¼ −1

If Opx ¼ Opy;Prced Opx;Opy
� �

¼ 0

B. Operations assigned only once:

Opi; j≠Opi;k ∀ j≠k where j; k∈NOP

4 Proposed methodology and case study

The proposed solution to the identified problem is based on
co-evolution model. Figure 1 demonstrates the output and the

Fig. 1 Reconfigurable framework

Fig. 2 Part A: Couvercle De Vileberequin (CDV)

Fig. 3 Part B: Corps de Pompe a Huile moteur (CPHC)

Fig. 4 Part C: Couvericle d’Abrdre (CAI)
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inputs of the proposed methodology. Already generated part
families have been used in this work. Operational data, prece-
dence constraints, and technological constraints are the inputs
required to produce alternative process plans (APPs).Machine
configurations are obtained from the combinations of TADs
and applying algorithm of system reconfiguration gives min-
imum machine capabilities. To achieve better performance
and better combinations, properly designed crossover mecha-
nism for GA is required. Many crossover mechanisms have
been developed such as uniform crossover, cycle crossover,
order-based crossover, partially matched crossover, etc. [57].
Position-wise crossover has been used in the proposed meth-
odology. The idea of selection is to prefer the best-fit individ-
uals and discard the weak ones. The minimization criteria are
set for the current problem to converge the system toward
minimum changes in tool and configuration changeovers

using real coded MOGA. The major difference of GAs from
other search techniques is its initialization of random solutions
called population and each individual in a population is a
chromosome representing the solution to the problem. These
chromosomes are evolved iteratively and are called genera-
tions. In each generation, the chromosomes having the best
fitness are selected and the weak individuals are discarded
from the population.

As a result of this framework, optimum machines are
obtained for a part family considering reconfigurable
setup. Furthermore, the proposed methodology has been
categorized into two stages. In the first stage, the algo-
rithm for generating and optimizing APPs and machine
configurations is presented while in the second stage,
best-fit solutions obtained for master part from GA are
compared with the APPs and configurations of other

Fig. 5 Proposed methodology
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parts to get the minimum machining requirements. The
proposed approach is hybrid variant approach having
few characteristics of variant and generative to carry
out production in a part family.

Best possible machines are assigned to all the parts belong-
ing to the same part family on the basis of minimum machine
capabilities obtained by reconfiguring the setup. The compar-
ison is carried out on the basis of the minimum difference
between the machine configurations of the new part and the
optimized configurations of master part available. Moreover,
machine configurations are generated corresponding to the
generated process plans considering tool orientation for a par-
ticular operation. Three parts are considered for the validation
of proposed methodology since they belong to the same part
family and are similar on the basis of operational similarity:
Part A—Couvercle De Vileberequin (CDV—shaft cover),
Part B—Corps de Pompe a Huile moteur (CPHC—engine
oil pump), and Part C—Couvericle d’Abrdre (CAI—interme-
diate shaft cover). The specifications for these parts are shown
in the Appendix. Part A is considered as the master part as
shown in Fig. 2. Parts B and C are shown in Figs. 3 and 4,
respectively.

Table 1 Ranking-based groups for Part A (CDV)

Number of operations Pre-operations Post-operations

OP1 [] [2,7,8,9,10,11]

OP2 [1] [7,8,9,10,11]

OP3 [] [4,12,13,14]

OP4 3 [12,13,14]

OP5 [] 6

OP6 5 []

OP7 [] 8

OP8 [1,2] []

OP9 [1,2,7] 10

OP10 [1,2] []

OP11 [1,2,9] []

OP12 [1,2] []

OP13 [3,4] []

OP14 [3,4] []

Alterna�ve Process
Plans, Machine
Configura�ons

GA parameters
(popula�onsize,
stoppingcriteria)

Ini�alize popula�on

Evaluate Fitness

Ranking and Selec�on of
BestFit in dividuals

Stopping
criteriamet?

End

Display
Results

GA (operators )
Crossover and Muta�on

Eli�sm (Reserve the Best Fit
Individuals)

Evaluate Final Fitness

NO

YES

Fig. 6 Algorithm for multi-objective genetic algorithm

Table 2 Tool approach directions

Precedence groups (PG) Operation (Op) Possible TADs

X − X Y − Y Z − Z

PG1 1 1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

2 1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

7 0 0 0 0 1 0

0 0 0 0 0 1

8 0 0 0 0 1 0

0 0 0 0 0 1

9 0 0 0 0 1 0

0 0 0 0 0 1

10 0 0 0 0 0 1

11 0 0 0 0 0 1

PG2 3 0 0 1 0 0 0

0 0 0 0 0 1

4 0 0 1 0 0 0

0 0 0 0 0 1

12 0 0 0 0 0 1

13 0 0 0 0 0 1

14 0 0 0 0 0 1

PG3 5 0 0 0 0 1 0

0 0 0 0 0 1

6 0 0 0 0 1 0

0 0 0 0 0 1
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Op�mal PPs,Mtad, 
pp_sc, pp_rot

Start

Setup check
is i=1?

Rota�on check is 
k=0 ?

Ini�liazing J=1

q= Concatenate the 
opera�ons �ll ‘i=0’

Is n=1?

n= count pp_rot �ll 
length of q

Mtad(opx) € -z or +z ? 

Assign Machine 
“m4”

J=J+1

J < no. of 
opera�ons

End

Assign Machine 
“m1”

Assign Machine 
“m2”

Assign Machine 
“m3”

Yes

No

Yes
No

Yes N

Yes No

N

Yes

Fig. 8 Algorithm for machine
assignment

Op�mal PP and K.C
for master part

APPs for other parts
of same part family

K.C (j) ~= TADs (k)

Check the op�mal k.C of master part with all possible
combina�ons of TADs against each alterna�ve PP

Counter=0 (counts theTool’s
orienta�on between op�mal

process plan and APPs)

Counter=
counter+1

I < length of master
PP

Q=min (counter)

Pick the corresponding process plan from
APPs

(best matched process plans for part
family are obtained)

is Q=1?

Check setup change
Sel=min(setup)

C
o

u
n

te
r=

 0

I=
I+

1

Else

Yes

No
Yes

No

Fig. 7 Algorithm for system
reconfiguration
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The proposed reconfiguration framework is shown in
Fig. 5 which is explained in the following subsections.
The implementation of the framework starts from process
planning algorithm which has been applied on all of the
three parts.

4.1 Co-evolution of process planning and machine
configuration

The inputs of the algorithm are the set of operations,
precedence relationship(s), constraints, tool change(s),

setup change(s), part rotation(s), and TAD matrix. The
tool change, setup change, and part rotation matrix for
Part A are shown in the Appendix for more insight.
APPs are generated from the proposed algorithm consid-
ering specific constraints such as precedence, datum,
geometrical, and technological constraints [33].
Precedence constraints are taken into account to get fea-
sible process plans since they determine which operation
needs to be performed before the other one to assist the
planner in taking the scheduling decision. Datum con-
straints account for those operations which can be per-
formed on the same machine with the same setup.
Geometrical constraints are used for reference purposes,
while technological constraints are incorporated where
any particular operation is inevitable to be performed
after a specific machining operation. These constraints
are to be satisfied while manufacturing any product. In
the proposed algorithm of process planning, the prece-
dence check is added to verify the precedence and tech-
nological constraints. The major step is the grouping of
operations on the basis of ranking. It gives pre- and post-
operations of a particular part as shown in Table 1.

As the optimal process plan and its corresponding con-
figuration is required for the master part (Part A), the appli-
cation of MOGA gave the optimal solution from local so-
lutions. The optimal search was further carried out by ap-
plying the classical MOGA which is referred to as the
weighted GA (WGA) in literature. In WGA, optimal

Table 3 Machine configuration for Part A: CDV

Features Operations Ops ID Machine configuration Tool
change

Setup
change

Part
rotation

Tool direction Spindle degree of freedom

X Y Z α β ϒ

PL 101 Rough milling Op3 0 1 0 − 90 0 0

PL 100 Rough milling Op1 0 0 − 1 0 0 0 × ×

FL 108 Drilling Op12 0 0 − 1 0 0 0

CY 103 Drilling Op7 0 0 − 1 0 0 0 ×

CY 102 Drilling Op5 0 1 0 0 180 0 × ×

CY 102 Reaming Op6 0 1 0 0 180 0 × ×

CY 103 Reaming Op8 0 1 0 0 180 0 × ×

PL 101 Finish milling Op4 0 0 − 1 0 0 0

PL 100 Finish milling Op2 0 1 0 − 90 0 0 × ×

CY 104 Drilling Op9 0 0 1 0 180 0 ×

CY 104 Reaming Op10 0 0 − 1 0 0 0 × ×

FL 106 Drilling Op11 0 0 − 1 0 0 0 ×

FL 109 Drilling Op13 0 0 − 1 0 0 0

FL 110 Drilling Op14 0 0 − 1 0 0 0

0 50 100 150 200 250 300 350 400 450 500
250

300

350

400

450

500

Generations

sessentiflaniF

Fig. 9 Fitness graph
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solutions can be controlled and the preference to any objec-
tive can be given by increasing its weight. However, it is
worthy to note that the solutions having equal weights of
the objectives offer least conflict. The advantage of this
technique is that it controls the dominance of one objective
over the other and converges the system toward Pareto op-
timum solution. Real coded GA has also been used to ob-
tain an optimized process plan and to ensure that the gen-
erated process plan conforms to the subjected precedence
constraints. A comparison between two optimization ap-
proaches, i.e., WGA and NSGA-II, was carried out in a
previous work [58]. The flow chart for the WGA is shown
in Fig. 6.

A machine’s structural configuration is generated on
the basis of a machine’s visibility to generate any partic-
ular feature of the part family. Different combinations of
TADs help in finding out the appropriate combination for
a particular process plan to carry out production with
minimum capabilities. In Table 2, different combinations
of TAD for Part A are shown against each operation
along with precedence groups. For example, Operation
1 (Op1) can be performed from X, Y, and − Z directions,
but the objective is to find the optimum direction. If Op1
is performed from + ve X direction of tool, Op2 with +
ve Y direction and Op7 from − ve Z direction, a five-axis
machine will be required to carry out these operations.

Table 4 Machine configuration for Part B: CPHC

Features Operations Ops ID Machine configuration Tool
change

Setup
change

Part
rotation

Tool direction Spindle degree of freedom

X Y Z α β ϒ

Pl 100 Rough milling Op1 0 1 0 − 90 0 0

Pl 109 Rough milling Op5 0 0 − 1 0 0 0 × ×

Pl 109 Finish milling Op6 0 0 − 1 0 0 0 × ×

Cy 110 Drilling Op13 0 0 − 1 0 0 0 × ×

Pl 100 Finish milling Op2 0 1 0 − 90 0 0 ×

Cy 107 Drilling Op7 0 0 − 1 0 0 0 × ×

Cy 110 Boring Op14 0 0 − 1 0 0 0 ×

Pl 101 Rough milling Op3 0 0 − 1 0 0 0 ×

Pl 101 Finish milling Op4 0 0 − 1 0 0 0 × ×

Cy 102 Drilling Op20 0 0 − 1 0 0 0 × ×

Cy 110 Reaming Op15 0 0 − 1 0 0 0 ×

Cy 102 Boring Op21 0 0 − 1 0 0 0 ×

Cy107 Boring Op8 0 0 − 1 0 0 0 × ×

Cy 102 Reaming Op22 0 0 − 1 0 0 0 × ×

Cy 103 Drilling Op23 0 0 − 1 0 0 0 × ×

Cy 107 Reaming Op9 0 0 − 1 0 0 0 × ×

Cy 103 Reaming Op24 0 0 − 1 0 0 0 × ×

Cy 108 Drilling Op10 0 0 − 1 0 0 0 × ×

Cy 108 Boring Op11 0 0 − 1 0 0 0 × ×

Cy 108 Reaming Op12 0 0 − 1 0 0 0 × ×

Cy 117 Drilling Op16 0 0 − 1 0 0 0 × ×

Cy 117 Boring Op17 0 0 − 1 0 0 0 × ×

Cy 118 Drilling Op18 0 0 − 1 0 0 0 × ×

Cy 118 Reaming Op19 0 0 − 1 0 0 0 × ×

Cy 112 Drilling Op25 0 0 − 1 0 0 0 × ×

Cy 113 Drilling Op26 0 0 − 1 0 0 0

Cy 114 Drilling Op27 0 0 − 1 0 0 0

Cy 115 Drilling Op28 0 0 − 1 0 0 0
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On the other hand, a single three-axis machine will be
required if all of the three operations are performed from
− ve Z TAD. Therefore, different combinations of TADs
help in finding out which combination is best suited for a
particular process plan to carry out production with min-
imum capabilities. And for the same reason, all combina-
tions are considered in analysis of the case study parts.

Fitness evaluation of the whole population generated was
based on the minimization of the fitness criteria (objective
function) as shown in Eq. 4:

f ¼ min ∑n
i¼1Ti w1þ ∑n

i¼1Si w2þ ∑n
i¼1Ri w3þ ∑n

i¼1dof i w4
� � ð4Þ

where Ti = tool change array, Si = setup change array, Ri = part
rotation array, dofi = spindle degree of freedom, n = total

Table 5 Machine configuration for Part C: CAI

Features Operations Ops ID Machine configuration Tool change Setup change Part rotation

Tool direction Spindle degree of freedom

X Y Z α β ϒ

Pl 100 Rough milling Op1 0 0 1 0 0 0

Cy 108 Drilling Op10 0 0 1 0 0 0 ×

Cy 107 Reaming Op9 0 0 1 0 0 0 × × ×

Cy 105 Drilling Op7 0 0 0 0 − 90 0 × ×

Cy105 Boring Op8 0 0 1 0 0 0 × ×

Pl 100 Rough milling Op2 0 0 1 0 0 0 ×

Cy 103 Drilling Op3 0 0 1 0 0 0 ×

Cy 103 Boring Op4 0 0 1 0 0 0 ×

Cy 104 Drilling Op5 0 0 1 0 0 0 × ×

Cy 104 Boring Op6 0 0 1 0 0 0

Table 6 Machine assignment to Parts A, B, and C

Part Machine ID Machine type Operations

A (CDV) M3 4-axis [OP3,OP1]

M4 5-axis [OP12,OP7,OP5,OP6,OP8]

M4 5-axis [OP4,OP2]

M3 4-axis [OP9,OP10,OP11,OP13,OP1]

B (CPHC) M2 3-axis horizontal [OP1]

M1 3-axis vertical [OP5,OP6,OP13]

M1 3-axis vertical [OP2,OP7]

M1 3-axis vertical [OP14]

M1 3-axis vertical [OP3,OP4,OP20]

M1 3-axis vertical [OP15]

M1 3-axis vertical [OP21,OP8,OP22,OP23,OP9,OP24,OP10,OP11,OP12,OP16,
OP17,OP18,OP19,OP25,OP26,OP27,OP28]

C (CAI) M2 3-axis horizontal [OP1]

M1 3-axis vertical [OP10,OP9,OP7,OP8]

M2 3-axis horizontal [OP2]

M1 3-axis vertical [OP3]

M1 3-axis vertical [OP4]

M1 3-axis vertical [OP5,OP6]
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number of alternative process plans, and w1–4 =weightages
of each parameter considered. The process gave best-fit pro-
cess plans along with their corresponding kinematic configu-
rations. Machine configurations are considered in the next
stage of the methodology.

4.2 System reconfiguration

To produce parts within the same part family, there is a need of
certain criteria based on which the production could be
switched from one part to another. The proposed algorithm
shown in Fig. 7 is used to reconfigure the setup according to
the production requirements. For Part A, optimal plan and its
optimal machine configuration are obtained and then com-
pared with all possible APPs and configurations of other parts
belonging to the same family. “Counter” saves the minimum
difference in configurations of both parts. If the minimum
values in “counter” are more than 1, minimum setup is
checked for; otherwise, the optimized process plan having
minimum change in configuration is extracted. Modification
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Fig. 10 Analysis of machine chosen

Fig. 11 Reconfigurable machining setup
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of setup is carried out based on the information obtained by
applying this algorithm. The results of this algorithm are illus-
trated later in the next section.

The assignment of operations on machines is carried out in
three steps. First, TAD and the type of tool required to carry
out the operation is identified which is the machine kinematic
configuration. In the second step, among the available ma-
chines, the set of machines capable of performing that partic-
ular operation are identified. This is done by identifying the
TAD offered by the machine and the available tools. Finally,
the machines and the appropriate configuration are assigned to
the particular operation of the sub-part.

Machines are assigned to manufacture different parts be-
longing to the same part family on the basis of information
obtained from the system reconfiguration algorithm (see
Fig. 8). Three-axis, four-axis, and five-axis machines are
assigned considering machine configuration required to pro-
duce a particular feature.

The developed methodology was applied on Parts A, B,
and C. As described earlier, Part A was taken as master part
and by the application of above stated algorithm, the system
was reconfigured to produce Parts B and C with optimum
capabilities.

5 Results and analysis

This section presents the optimized assignment of machines to
the operations using optimum machine capabilities. The opti-
mized process plan and kinematic configuration of Part Awas
obtained using Eq. 4. The individuals, i.e., process plans, after
evaluating the fitness were ranked. The ones having better
fitness were preferred for the next generation to produce chil-
dren, i.e., to make new combinations. The recombination op-
erator exchanged the characters of chromosomes among two
parents, and mutation randomly exchanged the genes at some
location rearranging the order of genes in a chromosome.
Recombination and mutation are the two GA operators that
extract the best and dominating character of the parent chro-
mosome to form the child chromosome. The generation ver-
sus fitness graph (see Fig. 9) shows the convergence of system
toward minimum fitness. Over the generations of 500, fitness
converges up to 275 for a population size of 50. Small popu-
lation size may result in premature convergence and large
population size takes unnecessary computational time. This
feature is set carefully and updated to increase randomness
and search region which guarantees the convergence of GA.
In the proposed approach, the objective of using MOGA has
been achieved by its application on process plans and machine
configuration considering a master part.

The optimized process plan and its machine configura-
tion (spindle rotates clockwise from its default position at
an angle of 90° about X-axis) for Part A are obtained

through MOGA and shown in Table 3. The application of
reconfiguration algorithm gave the optimal machining ca-
pabilities for Parts B and C. The optimal process plans for
Part B and Part C are given in Tables 4 and 5. The purpose
of RMS also satisfies here which is to provide the exact
capacity required. As the optimum machine configurations
are obtained for each operation, the machines can be
assigned according to these capabilities and process plan-
ning parameters. The machines assigned to Parts A, B, and
C are mentioned in Table 6.

Graphical representation of machine assignment is given in
Fig. 10. The reconfigurable setup as shown in Fig. 11 gives the
minimum machine capabilities required for manufacturing
parts within the part family.

6 Conclusions and future suggestions

The concept of reconfigurability in manufacturing system has
gained significant importance. To respond to the high-
frequency variations and to stay competitive, an industrial re-
quirement is to adapt the production system efficiently. The con-
cept of co-evolution was taken into consideration in this paper.
The machine configurations were generated for different features
of a part family corresponding to that of generated process plans.
This research work is concerned with the development of an
integrated approach for modifying the setup according to the
variations in product design. By the application of WGA on
co-evolution model, the system yielded global optimal.
Furthermore, the framework included optimum process plans,
optimum machines’ kinematic configurations, and reconfigura-
tion changeability extent. Reconfigurable process planning rep-
resents important changeability enablers for product and
manufacturing system evolution. It cost-effectively manages the
change in product and modifies the system accordingly. In the
proposed approach, the extent of reconfiguration was measured
which formed the basis for defining the process plans and ma-
chine configurations of other parts. This approach also helped in
carrying out production with optimized capabilities. In case of
random market demands and design variations, the proposed
approach is reliable as it determines the minimum and optimal
required capabilities to the corresponding operations of a part.
Moreover, the presented algorithm canmanufacture the part fam-
ily with minimum production changeover time and optimal ma-
chine capabilities. This work can be extended for multiple and
parallel setups. Extension of the same algorithm by increasing the
number of parts will add versatility in the system. Different
manufacturing costs, time andmachining specifications like spin-
dle speed, depth of cut, etc., can also be considered as part of the
future work.
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Appendix

Fig. 12 Part A: CDV

Fig. 13 Part B: CPHC

Fig. 14 Part C: CAI

Table 7 Operation Data for Part A: CDV

Features Operations Op ID TAD

PL 100 Rough milling 1 + x, + y, − z
PL 100 Finish milling 2 + x, + y, − z
PL 101 Rough milling 3 + z, + y

PL101 Finish milling 4 + z, + y

CY 102 Drilling 5 + z, − z
CY 102 Reaming 6 + z, − z
CY 103 Drilling 7 + z, − z
CY 103 Reaming 8 + z, − z
CY 104 Drilling 9 + z, − z
CY 104 Reaming 10 + z, − z
FL 106 Drill 11 − z
FL 108 Drill 12 − z
FL 109 Drill 13 − z
FL 110 Drill 14 − z
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Table 8 Operation Data for Part B: CPHC

Features Operations OP ID TAD

PL 100 Rough milling 1 + x, + y, − z
PL 100 Finish milling 2 + x, + y, − z
PL 101 Rough milling 3 − z

PL 101 Finish milling 4 − z

PL 109 Rough milling 5 + x, + y

PL 109 Finish milling 6 + x, + y

CY 107 Drilling 7 − z

CY 107 Boring 8 − z

CY 107 Reaming 9 − z

CY 108 Drilling 10 − z

CY 108 Boring 11 − z

CY 108 Reaming 12 − z

CY 110 Drilling 13 − z

CY 110 Boring 14 − z

CY 110 Reaming 15 − z

CY 117 Drilling 16 − z

CY 117 Boring 17 − z

CY 118 Drilling 18 − z

CY 118 Reaming 19 − z

CY 102 Drilling 20 − z

CY 102 Boring 21 − z

CY 102 Reaming 22 − z

CY 103 Drilling 23 − z

CY 103 Reaming 24 − z

CY 112 Drilling 25 − z

CY 113 Drilling 26 − z

CY 114 Drilling 27 − z

CY 115 Drilling 28 − z

Table 9 Operation data for Part C: CAI

Features Operations OP ID TAD

PL 100 Rough milling 1 + x, + y, − z
PL 100 Finish milling 2 + x, + y, − z
CY 103 Drilling 3 − z
CY 103 Boring 4 − z
CY 104 Drilling 5 − z
CY 104 Boring 6 − z
CY 105 Drilling 7 − z
CY105 Boring 8 − z
CY 107 Reaming 9 − z
CY 108 Drilling 10 − z
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Table 10 Tool change matrix for Part A

PL 100 PL 100 PL 101 PL 101 CY 102 CY 102 CY 103 CY 103 CY 104 CY 104 FL 106 FL 108 FL 109 FL 110

Operations ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PL100 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

PL100 2 1 0 1 0 1 1 1 1 1 1 1 1 1 1

PL101 3 0 1 0 1 1 1 1 1 1 1 1 1 1 1

PL101 4 1 0 1 0 1 1 1 1 1 1 1 1 1 1

CY 102 5 1 1 1 1 0 1 1 1 1 1 1 1 1 1

CY 102 6 1 1 1 1 1 0 1 1 1 1 1 1 1 1

CY 103 7 1 1 1 1 1 1 0 1 0 1 1 1 1 1

CY 103 8 1 1 1 1 1 1 1 0 1 0 1 1 1 1

CY 104 9 1 1 1 1 1 1 0 1 0 1 1 1 1 1

CY 104 10 1 1 1 1 1 1 1 0 1 0 1 1 1 1

FL 106 11 1 1 1 1 1 1 1 1 1 1 0 0 0 0

FL 108 12 1 1 1 1 1 1 1 1 1 1 0 0 0 0

FL 109 13 1 1 1 1 1 1 1 1 1 1 0 0 0 0

FL 110 14 1 1 1 1 1 1 1 1 1 1 0 0 0 0

Table 11 Setup change matrix for Part A

PL 100 PL 100 PL 101 PL 101 CY 102 CY 102 CY 103 CY 103 CY 104 CY 104 FL 106 FL 108 FL 109 FL 110

Operations ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PL100 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1

PL100 2 1 0 1 0 1 1 1 1 1 1 1 1 1 1

PL101 3 0 1 0 1 1 1 1 1 1 1 1 1 1 1

PL101 4 1 0 1 0 1 1 1 1 1 1 1 1 1 1

CY 102 5 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CY 102 6 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CY 103 7 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CY 103 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CY 104 9 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CY 104 10 1 1 1 1 0 0 0 0 0 0 0 0 0 0

FL 106 11 1 1 1 1 0 0 0 0 0 0 0 0 0 0

FL 108 12 1 1 1 1 0 0 0 0 0 0 0 0 0 0

FL 109 13 1 1 1 1 0 0 0 0 0 0 0 0 0 0

FL 110 14 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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