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Abstract

Due to the demands of Computer-Integrated Manufacturing (CIM), the Tool Condition Monitoring (TCM) system, as a major
component of CIM, is essential to improve the production quality, optimize the labor and maintenance costs, and minimize the
manufacturing loses with the increase in productivity. To look for a reliable, efficient, and cost-effective solution, various
monitoring systems employing different types of sensing techniques have been developed to detect the tool conditions as well
as to monitor the abnormal cutting states. This paper explores the use of audible sound signals as sensing approach to detect the
cutting tool wear and failure during end milling operation by using the Support Vector Machine (SVM) learning model as a
decision-making algorithm. In this study, sound signals collected during the machining process are analyzed through frequency
domain to extract signal features that correlate actual cutting phenomenon. The SVM method seeks to provide a linguistic model
for tool wear estimation from the knowledge embedded in this machine learning approach. The performance evaluation results of
the proposed algorithm have shown accurate predictions in detecting tool wear under various cutting conditions with rapid
response rate, which provides the good solution for in-process TCM. In addition, the proposed monitoring system trained with
sufficient signals collected from different positions has been proved to be position independent to monitor the tool wear
conditions.

Keywords Tool condition monitoring - Tool wear - Audible sound - Machine learning - Support vector machine

1 Introduction excessive tool wear may cause catastrophic tool breakage
and failure, which can lead to the loss of productivity, the
rejection of parts, and consequential economic loses. Thus,

an effective TCM is a vital demand to increase productivity

The application of intelligent manufacturing systems in the
machining industry has been significantly increased with the

profound technology advancements in the manufacturing in-
dustry. In the present scenario, industry tool changing proce-
dures are based on a conservative tool life estimation where
the theoretical value of tool life is not considered [1], thereby
resulting in avoidable changes in time and cost losses. The
cutting tool life is a function of wear progression as the wear
rate increases and reaches to failure thereby deciding the tool
life period. Tool wear is defined as the gradual change in shape
of the cutting edge during the machining process. The
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and hence competitiveness by maximizing tool life, minimiz-
ing downtime, reducing scrappage, and preventing damage.
Tool wear is a critical indicator describing the gradual fail-
ure of cutting tools, which is caused by a combination of
various thermos-mechanical mechanisms. The excessive tool
wear results in increased tool interface temperatures, ineffi-
cient chip formation and flow, unacceptable machining sur-
face finish quality, and shorter tool life. Generally, tools expe-
rience three stages of wear: break-in, steady state, and failure.
Break-in is a stage where the first few minutes of use as cut-
ting shape is established, whereas in steady state the cut qual-
ity gradually deteriorates with use, and finally, the failure stage
is a rapid deterioration that occurs as the tool reaches the end
of its useful life. It has been realized that crater wear, flank
wear, built-up edge, chipping, and breakage are the main
modes of tool wear [2], which are identified by their locations
and geometry. These types of wear affects the dimensional
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accuracy, surface quality of the finished component and even
process stability will be deteriorated. Therefore, tool wear
must be controlled and should be kept within the desired limits
for any machining process. For any machining system, reli-
able wear data can be used not only for scheduling tool chang-
es more efficiently but also for adaptive process control and
optimization.

Tool wear monitoring is a difficult task because many ma-
chining processes are nonlinear time-variant systems, which
makes them difficult to model and it is extremely hard to
measure the tool wear directly during the cutting process.
Tool condition monitoring has been extensively studied by
many researchers since the late 1980s to implement different
types of monitoring systems to detect the tool wear and failure
in advance to the occurrence of the actual event [3—5] by
adopting different sensor functions to collect information.
However, these attempts involving various sensing methodol-
ogies have different degrees of success in practical applica-
tions, and it has also been reported that utilization of insuffi-
cient reliability sensing methods under varying cutting condi-
tions limits the practical application of such systems.
Therefore, developing an automated tool monitoring system
is a process-orientated problem where the selections of the
sensory system and modeling approach are closely related to
different types of practical applications. Typically, the major
functions of the tool wear monitoring system include signal
acquisition, signal pre-processing and feature extraction, and
decision-making [6].

Typically, various measuring techniques are categorized into
direct and indirect approaches, based on the method of measure-
ment technique and complexity of the machining process [7].
The direct approaches consist of visual inspection, radioactive
isotopes, laser beams, and electrical resistance. These approaches
involve measurement of the corresponding process variables
through analysis by interrupting the process. Thus, these systems
are confined to laboratory techniques and the processes are com-
plex enough for usage in industrial applications. But, these ap-
proaches are considered to have a higher degree of accuracy and
applied in research labs to study the fundamental measurable
phenomena behind the cutting process.

The indirect approaches consist of systems that are flexible
and dependent upon secondary process parameters of the ma-
chining process. These process parameters are found to be opti-
mal for correlating the tool condition and especially in the appli-
cation for in-process TCM systems [8]. Usually, these ap-
proaches include dynamometers, accelerometers, current sensors,
and acoustic emission (AE) sensors and sound monitoring mi-
crophones. The dynamometer is based on the measurement of
cutting forces during the machining process, and it was found to
be the most reliable approach to monitor the tool condition [9].
This approach is focused on cutting forces, which are considered
sensitive to the frictional force that changes with the increase of
wear on the cutting tool thereby resulting in increased cutting
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force. However, this approach has its limitations in correlating
the cutting tool conditions within a restricted frequency range [7,
10, 11]. Besides, the high setup cost also restricts the wide appli-
cation of this sensor. Vibration monitoring is an approach based
on the variation in vibration amplitude concerning the progres-
sive flank wear during the machining process. This approach is
mainly seen in monitoring the surface roughness [8, 11], which
has shown a great potential in the tool condition monitoring field
[10, 12, 13, and]. But, by comparing with other indirect sensors,
this approach has found to be highly sensitive to the sensor
position and the machine speed range [14]. Current measurement
is another indirect approach commonly found in the development
of monitoring systems in the machining field. This method is
based on the principle proportionality between the torque of
DC motor in machine tool and cutting forces developed during
machining. Although many studies [ 15, 16] have been performed
to apply TCM systems, this approach has its own significant
limitation in collected information accuracy as the system is not
suitable for accurate sensing due to its relatively low sensitivity.
Acoustic emission is another prominent indirect approach based
on measuring the characteristics of acoustic (elastic) waves de-
veloped in solids during the machining process. This method was
found to be one of the most intense research focused area in the
development of monitoring systems for the machining field due
to the high sensitivity to cutting tool wear and failure coupled
with signals’ high response rate [17]. Studies conducted in the
past pointed out acoustic emissions during the metal cutting pro-
cess could be generated from various sources which exhibit dif-
ferent signal characteristics since the mechanisms by which AE
is produced in these occasions are fundamentally different [18,
19]. Although some research works have recommended the use
of AE sensors instead of dynamometers for tool wear diagnosis
[20], other researchers argue that the use of AE sensors as an
indicator of tool wear is inappropriate because they are more
sensitive to noise and variations in cutting conditions than to
the condition of the tool itself [21].

Audible sound monitoring is another indirect approach in
developing TCM systems for the machining process by ana-
lyzing audio waves generated during the machining process.
One of the earliest works conducted based on this measuring
technique was performed by Weller [22] to correlate the fea-
tures of audio signals with tool conditions from good to the
failure state. In the following study conducted by Delio et al.
[23], chatter in the drilling process has been studied using
audio signals. In addition to the above correlation studies,
there has been considerable research conducted based on au-
dio signals with the application of advanced analyzing tech-
niques for better correlation accuracy. Advance analyzing
techniques like Singular Spectrum Analysis (SSA) and
Singular Value Decomposition (SVD) analysis have been ap-
plied in several studies to extract the information regarding
tool conditions [24, 25]. Sound monitoring approach has also
been studied in a sensor fusion approach for a better
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correlation between the tool condition and acquired informa-
tion. For example, a study conducted by Tangjitsitcharoen
et al. [26] involves a combination of cutting force, vibration,
and acoustic emission measurements coupled with sound
measurement to investigate the correlation between acquired
information and tool wear. Although these studies using audi-
ble sound signals have shown significant monitoring accura-
cy, there have been other studies [27, 28] that concluded that
the application of this method in the industrial floor is imprac-
tical due to high ambient noises.

Besides the various approaches with a single sensor men-
tioned above, the sensory fusion approach which combines
two or more types of sensors can predict the tool state more
accurately by more obtained features. The success of sensor
fusion depends on which types of signals are good candidates
for a given machining outcome and which extracted features
and in which way they must be complemented [29]. This type
of systems involves a complex setup and requires huge invest-
ments in installing and maintenance.

In a literature review conducted above for various sensing
approaches for TCM, the audible sound monitoring approach
seems most practical to be applied to an in-process TCM sys-
tem. The prime nature of this approach has been used by expe-
rienced machinists on the shop floor to determine the tool con-
ditions. The principle benefits of this approach compared to
others are the compactness of setup and the non-intrusive nature
which are the primarily focused features for any in-process
monitoring systems. Even though the limitations of this ap-
proach implicitly state that the accuracy of information collect-
ed is relatively low, with the application of advanced analyzing
techniques and decision-making models, the accuracy of this
method can be improved dramatically. Anderson [28] has pat-
ented a method for an in-process monitoring system that can be
practical on the industrial floor, in which, he considered audible
sound monitoring with a novel methodology to determine the
tool conditions based on frequency bands.

Signal pre-processing and feature generation module is an
important stage before analyzing the correlation of tool con-
dition with the sensing method. This process involves
extracting the features that correlate best with the actual tool
conditions, and there have been various techniques and
methods considered in the past for this process [6]. In this
study, frequency domain analysis as a feature generation mod-
ule was used to extract required features.

For the TCM system, the decision-making is a critical func-
tion that involves monitoring tool condition with the help of
features developed from the signal processing scheme.
Generally, the signals generated from the sensing methods
are nonlinear in relation with the tool condition [18]. Thus,
an effective model is required to correlate these types of non-
linearity relationships, which typically involves complex
mathematical techniques. Commonly used decision-making
models in TCM systems are fuzzy classifiers and neural

networks [30]. However, these methods have limitations,
which requires complex data for the better correlation between
tool conditions and collected signals.

In the past decade, there have been many studies involving
the development of TCM systems with the application of ad-
vanced techniques that have been evolved recently in the field
of machine learning. This type of technique observes the non-
linear correlation based on the patterns in data, through which
develops a mathematical model and iterates the process for
better correlation until the model predicts correlation with
high possible accuracy. Application of these techniques has
shown promising results in process monitoring of machining
systems through both direct and indirect sensing approaches.

A study which belonged to the above stated advanced tech-
niques [31] presented a hybrid SVM-Bayesian Network (BN)
for predicting the thermal error. This study is based on nonlinear
deformation of the machine tool resulted from the flow of heat
through the machine structure which is caused by varying tem-
peratures in a machine environment. The proposed decision-
making model provides a more generalized prediction model
than the conventional method of directly mapping error and
temperature irrespective of operating conditions. In other re-
searches carried out as in [32, 33], tool wear has been classified
using SVM based on manufacturing considerations and pro-
posed a new performance evaluation function for TCM. With
this approach, a tool is replaced or continued not only based on
the tool condition alone but also the risk of the cost incurred due
to the underutilized or overused tool.

Apparently, it is evident from past studies that the applica-
tions of machine learning techniques in TCM are less ex-
plored. In consideration of audible sound monitoring as a
sensory approach for compact setup and best cost/benefit ra-
tio, there have been very limited applications of machine
learning techniques as a decision-making model for the
TCM system. In general, noise as the major influential disad-
vantage of sound monitoring in machining applications has
made this type of TCM system to be less studied in the past.
However, this disadvantage can be overcome by using ma-
chine learning techniques, such as the SVM approach.
Meantime, considering the better generalization ability of
SVM than Artificial Neural Networks (ANN) and other
methods with a limited number of samples [34] and the diffi-
culties to obtain sufficient machining data, SVM has many
advantages for feature recognition in tool condition monitor-
ing. With this approach, a tool needs to be replaced or contin-
ued not only based on the tool condition alone but also the risk
of the cost incurred due to the underutilized or overused tool
[29]. The robustness and complexity of the SVM classifica-
tion concept would likely be an advantage in training and
developing the system to be able to work effectively in the
presence of noise.

This study mainly focuses on the development of an intel-
ligent TCM system through audible sound monitoring
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approach in end milling using machine learning techniques,
which is known to perform effectively in detecting tool wear
and failure. To realize this objective, tool wear of end mill
tools is classified into different classes in terms of flank wear
thickness. A series of experiments are conducted using the six
wear class tools under a wide range of cutting conditions (feed
rate and cutting speed) for the end milling process. The emit-
ted sound signals during each cut are collected and further
analyzed by a developed TCM model using machine learning
methods. The performance of the proposed algorithm is ana-
lyzed by evaluating the confusion matrix and another perfor-
mance metrics.

One of the major challenges in the application of this type
of sensory system is to position the sensor in a precise location
for effective and reliable signal acquisition. In addition, the
sensor would be susceptible to faults due to environmental
conditions, such as coolant and chips, when the position is
too close to the source of signals. In this study, the developed
system 1is trained to be able to perform the wear monitoring
irrespective of locations of the sensors. Furthermore, the var-
iation of prediction accuracy with respect to a number of sen-
sors is also investigated in this study.

2 Tool wear classification

Tool wear is a gradual process under severe shear and friction-
al forces during the cutting process. Per the standard ISO 8688
parts 1 and 2(ISO 1989), the flank wear observed on the clear-
ance face of the end milling tool is the major tool wear pattern
considered in this study. The measurements of flank wear are

Fig. 1 Types of flank wear: VB /
uniform flank wear, VB 2 non-
uniform flank wear, VB 3
localized flank wear (ISO 8688)

ponay §
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classified into three different types: uniform flank wear
(VB1), non-uniform flank wear (VB2), and localized flank
wear (VB3), as shown in Fig. 1. In this research work, the
uniform flank wear has been found to be predominant in most
of the observations.

In this study, the cutting tools used for experiments are un-
coated high-speed steel end mill tools with two flutes and
3/8 in. in diameter. To characterize the tool wear, the cutting
tool conditions were classified into six different classes with
respect to various thickness ranges of flank wear lands on
cutting edge of tools. Per the standard ISO 8688, the flank
wear thickness was calculated by averaging different measure-
ments within the cutting zone from the cutting edge tool cor-
ner to the distance of axial depth of cut on the cutting edge as
shown in Fig. 2. For each test, the cutting tool was cleaned to
remove dirt and chips before measuring the flank wear thick-
ness. Table 1 summarizes the specification of each tool con-
dition class according to the average flank wear thickness. The
tool wear was observed using an optical microscope, and
through which images of the wear regions were captured
and displayed in Fig. 3.

3 Design of experiments

The experiments were conducted on a numerically controlled
TRACK K3 EMX conventional milling machine under dry,
end milling conditions. All the experimental runs were per-
formed as side milling operations with up-milling (conven-
tional milling) configuration. Workpiece used in this study is
a 6061 aluminum bar with dimensions (6” x 2" x 1.25") in

fe-
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Fig. 2 Observed wear range on cutting edge

inches for all the experiments. For the sound signal collection,
three professional EO-200 condenser microphones were posi-
tioned at 8, 12, and 15 in. away from the cutting zone in
different angles as shown in Fig. 4. Microphones were con-
nected through a multi-channel audio interface device
(Steinberg UR44) which was further connected to a computer
for sound signal acquisition. The whole experimental system
is illustrated in Fig. 5.

To ensure the developed monitoring system can success-
fully detect the tool conditions irrespective of cutting condi-
tions, in this study, cutting conditions were selected over a
wide range of cutting speed and chip load within the capability
of the milling machine. More specifically, for each tool con-
dition class, five spindle speeds were chosen, and for each
spindle, three different feed rates were selected to perform
the experiments. Overall, 15 cutting cycles were performed
for each tool condition class that totaled up to 90 cutting cy-
cles for the whole experiment. Both the radial depth of cut
(0.1875 in.) and the axial depth of cut (0.2 in.) were kept
constant throughout all the experiments. The cutting tool
was prepared for each wear class corresponding to the wear
width assigned to the respective class. After each cut, the
cutting tool was measured again to ensure the progression of
wear within the specified wear thickness range. According to
this method, advancement of wear width of the tool is avoided
within the wear class.

Table 1 Tool wear classification

Serial no. Tool condition class Thickness range (pm)
1 Good 0-20

2 Light wear 20-40

3 Average 40-70

4 Advanced wear 1 70-100

5 Advanced wear 2 100-150

6 Failure > 150

4 Diagnosis approach for TCM using SVM

The capability of the developed TCM system mainly depends
upon three basic elements. Firstly, with the experimental
methodology proposed in the previous sections, the dataset
of audio signals, corresponding to six wear levels, was devel-
oped. Then, it was followed by a pre-processing step where
collected audio signals were converted into samples and the
samples were transformed into frequency domain using the
Fast-Fourier Transformation (FFT) method, through which
the features essential for the decision-making system were
extracted. Finally, SVM was used as a decision-making model
to correlate the characteristics of signals with the features of
tool wear.

4.1 Audio signal collection

Audio signals for each cutting cycle have been collected
through three microphones. The length of the signal was con-
sidered from the start of the actual material removing until the
point where the cutting tool edge left the workpiece. The
sound signals were collected with a sampling frequency of
44.1 kHz. As shown in Table 2, the sound signals collected
for all the cutting cycles were labeled with corresponding wear
classes and tabulated with different timestamps, different cut-
ting conditions, and different positions. This table served as an
input data recognition file for the algorithm. From this file,
algorithm categorized every sound signal features into the
corresponding wear class and other related conditions. In this
study, a total of 270 samples of sound signals with corre-
sponding experimental data have been collected and utilized
for the development of the proposed tool wear prediction
model.

4.2 Pre-processing of sound signal

The collected sound signals are transformed into a digital for-
mat which is non-stationary and often overlaps with other
various sound sources, whose waveforms and arrival times
are unknown. In general, TCM systems for machining applies
signal processing as a pre-processing procedure to extract the
physical parameters of interest that best correlate with the
exact tool wear. Many signal processing methods have been
proposed to extract the features from sound signals for mon-
itoring systems [35]. In this study, the collected sound signals
in time domain were cut into window length of 1 s as each
sample to analyze the data in samples. In order to generate
features through the frequency domain analysis technique,
samples were processed through FFT algorithm based on
Discrete-Time Fourier Transformation (DTFT). For this study,
an only absolute value of Fourier transformation was extracted
as features, and these features serve as inputs to the proposed
decision-making model. In order to overcome the preset
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Fig. 3 Exemplary tool wear (a)
classes: a good, b light wear, ¢

average wear, d advanced wear 1,
e advanced wear 2, and f failure

PR PR TR R R R R R R

resolution problem of the DTFT, the Wavelet Transform (WT)
will be used in the future studies.

Figure 6 shows frequency spectrums of the sound signals
that belong to same cutting conditions for six tool wear levels.
The frequency scale of the spectrum was plotted in logarith-
mic scale to focus on the low-frequency range where the sig-
nals retain more tool wear information. From the figures, it is

-\‘ M|C'3 " = =

Fig. 4 Experimental setup of the proposed system
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evident that the amplitudes of multiple frequencies constitute
correlate to the tool wear condition, which requires an ad-
vanced decision-making model to represent these intricate
correlations.

| Computer

Audio Interface

Fig. 5 Schematic diagram of the experimental layout
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Table 2 Input data sheet of
experimental data

Fig. 6 Frequency spectrums of
pre-processed data samples a
good, b light wear, ¢ average
wear, d advanced wear 1, e
advanced wear 2, and f failure

Tool condition

Cutting speed (sfpm)

Feed rate (ipm)

Microphone no.

Good

Good

Good

Light wear
Light wear
Light wear
Average
Average
Average
Advanced wearl
Advanced wearl
Advanced wearl
Advanced wear2
Advanced wear2
Advanced wear2
Failure

Failure

Failure

176.8
176.8
176.8
167.0
167.0
167.0
147.4
147.4
147.4
137.5
137.5
137.5
127.7
127.7
127.7
196.5
196.5
196.5

9.0
9.0
9.0
8.0
8.0
8.0
7.0
7.0
7.0
12.0
12.0
12.0
9.0
9.0
9.0
24.0
24.0
24.0

W N~ W NN~ W KN~ W N~ W~ W~

Table 2 is an overview of actual datasheet with only a few data points per each class are displayed
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4.3 Support vector machines

SVM classification is a supervised binary classifier meth-
od. Given a training set, the algorithm constructs a hyper-
plane which maximizes the margin between two input
classes.

The representation of SVM in mathematical terms can
be explained by considering a binary classification prob-
lem with labels y € {—1, 1} and features x. In addition to
that, parameterizing the linear classifier with weights w
and bias b, from which the linear classifier can be written
as:

e { +1;(w"x; +5) =0

~1;(w'xi +b) < 0 M)

Equation (1) can be generalized for all training samples as
shown in Eq. (2), and it also can be defined as a linear dis-
criminant function g(x) as shown in Eq. (3):

yi(w'xi + b) (2)

gx)=(w'xi+b) =0 (3)

The goal of this method is to find a hyperplane
which maximizes the margin or the distance from the
nearest data point to the hyperplane, which requires
finding w, b while maximizing M=1 / ||w|. To find a
solution while minimizing ||w|| subject to constraints in
Eq. (2), a quadratic optimization problem which can be
solved using a Lagrange duality:

min,, 55 ||wlls.ty; (w'xi +b)by,2,3,...n
(4)
To form the Lagrange, constraints are written as:

v(w) =-y;(w'xi +b) +1<0 (5)

The Lagrangian for optimization is written as:
n
L(w,b,a) = 5| W’ll= ¥ aily;(w'xi + b)—1] (6)
i=1

where «, is the Lagrange multiplier and «;>0. To find the
dual form, the first step is to minimize L(w, b, o) with respect
to w, b (fixing o) which can be found by setting derivative of L
with respect to w to zero which is given in Eq. (7) and with
respect to b which is given in Eq. (8):

VaL(w,b,a) = w= ¥ api(x) = 0 (7)

i=1
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M=

VeL(w,b,a)) = Y ajy; =0 (8)

i=1

The remaining support vectors we have are a; # 0,; hence,
the solution becomes:

w= i ayi(x) = ¥ ai(x) 9)
i=1 ieSV

Also, b can be found by substituting w in y,(w’x; + b) — 1 =
0 where ieSV.

In the above discussion, it has been assumed that data
must be linearly separable, which is not the case in most
situations. Using kernels, nonlinear data can be mapped
into higher dimensional space to make them linearly sep-
arable. In this study, Gaussian radial basis function is used
as the kernel.

The discussion above deals with binary classification
where the class labels take only two values. In our current
problem, however, six wear classes were involved, for which,
requires an application of multi-classification strategy. The
following section describes the methodology followed by ap-
plication of the SVM technique in condition monitoring for
the proposed tool wear classification.

4.4 SVM in tool condition monitoring

In machine condition monitoring and fault diagnosis, SVM is
employed for recognizing special patterns of the features gen-
erated from acquired sensory signals, and then the patterns are
classified with respect to the type of complications in the
machine. Based on the input data vectors that consist of rep-
resentations of tool wear types observed during cutting, SVM
is adapted to recognize these patterns. Usually, each tool wear
type produces special features of acquired signals, which are
considered as patterns. SVM is motivated to represent these
patterns in a high dimension with an appropriate nonlinear
mapping using a kernel function to separate data from two
or more categories by a hyperplane.

In this study, the modeling process started by reading the
data into an array, after which the signals were labeled with
corresponding tool wear levels, cutting conditions and time
stamps based on input data recognition file. The labeled sig-
nals with the period from the beginning to the end of the cut
were trimmed into 1-s window length as samples of data.
Further, each sample was converted from time domain to fre-
quency domain using the FFT technique and considered as
input features to the decision-making model. A random pat-
tern shuffling module was developed to randomize the data
features order in the array, and the dataset was divided into a
70% training set and a 30% testing set, which are standard
training and testing percentage values in machine learning
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techniques for an optimal performance of the classifier [36].
Based on the training data, the decision-making model can
develop a model knowledge function known as a classifier
over the patterns of data features with respect to labels using
SVM. The generated classifier model was validated by the
testing data samples to evaluate the performance of the clas-
sifier in predicting the tool condition of the test samples.

5 Results and discussion
5.1 Evaluation of prediction accuracy

Based on the proposed TCM system, tool wear predictions of
each class can be analyzed by the evaluation of the confusion
matrix. A confusion matrix, also known as error matrix, is a
particular kind of contingency table that is derived to evaluate
the performance of a machine learning algorithm [37]. This
type of matrix is displayed in a specific table layout in which a
total number of samples is arranged in two dimensions, true
(actual) and predicted, with an identical set of classes in both
dimensions, shown in Fig. 7. The performance analysis of the
confusion matrix of the proposed algorithm involves mainly
evaluating misclassification (error) percentage and precision
percentage of each wear class as tabulated in Table 3.

In Table 3, the precision percentage is obtained by dividing
the predicted number of samples over the actual number of
samples for the corresponding wear class. Error percentage,
also called as misclassification percentage, can be calculated
by dividing the total false predictions by the sample size in
each specified class, and the sample size is the number of
predictions of each class from the confusion matrix. From
Table 3, wear classes average and advanced wear 1 were

Confusion matrix

Good -
Light |- R 9
Y
° Average | - §
=2 “
= %
$  Advanced Wear1 | |., 4 £
=4 Q2
= 5
Advanced Wear 2 |- . - 3

Failure | _!

—’'

& © & L@
& ¢ & N
¥ st\ b& &

& &
&
S

v.

Predicted label

Fig. 7 Comparison of tool wear class prediction with actual wear class
using confusion matrix

Table 3 Performance analysis of algorithm for each class

Wear class Precision (%) Error (%)
Good 99.4 0.6

Light 97.5 2.5
Average 90.7 9.2
Advanced wear 1 924 7.6
Advanced wear 2 98.5 1.5
Failure 97.0 3.0

found to be most affected by false predictions compared to
other classes. It has also been found that most of the misclas-
sifications in the average wear class were predicted as good,
and most of the misclassifications in the wear class of ad-
vanced wear 1 were predicted as light wear. The main reason
for those errors is associated with the fact that the pre-
processing methods applied are not sufficient to filter the
noise, and those were classified into the respective signal char-
acteristic wear range, thereby the chosen pre-processing
methods must be improved or in need of effective methods
for better accuracy in signal conditioning.

5.2 Performance evaluation of prediction in the time
domain

For the furthermore performance evaluation of the proposed
algorithm, a concatenation of randomly selected sound signals
under different cutting conditions from all six wear classes
that belong to the test data set was run through the algorithm
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Fig. 8 Tool state prediction a time domain signal composed of the sound
signals collected from good to failure cutting tools under random cutting
conditions, b prediction results from the proposed machine learning
approach
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to observe the accuracy in multi-wear classification in the time
domain. The results of the above-specified process have been
plotted as shown in Fig. 8.

In the above figure, a time domain signal of the input
concatenation signal consisting of six wear classes from
good to failure classes consecutively is shown first, follow-
ed by the identification results of all six wear classes. From
Fig. 8b, results show that the proposed algorithm has pro-
vided accurate prediction in the progression of wear class
from one to another most of the time, besides some slight
misclassifications in the transitions between adjacent wear
classes. In addition, as shown in Fig. 8a, although there is
no clear relationship between the amplitude of the signals
and the tool wear classes in the time domain due to the
influences of different cutting conditions, the program still
can predict the tool wear accurately. It can be seen that,
after being trained with enough signals, the developed pro-
gram can realize the function to detect the tool wear classes
irrespective of cutting conditions.

5.3 Study of microphone positioning

For the effective TCM system, one of the major concerns is
the influence of the sensor position on the prediction accuracy.
The specific requirements for the sensor position will signifi-
cantly restrict the wide application of the monitoring system.
In order to address this issue, this study used three micro-
phones with different distances and angles, as shown in
Fig. 2, with respect to the cutting zone to collect audible sound
signals. Different datasets were labeled into Mic-1 to Mic-3
with sound signals collected by the corresponding micro-
phones. By varying the position and the number of micro-
phones for training and testing the program, the prediction
accuracies for three combinations of datasets have been set
as shown in Table 4.

Firstly, within every set, the prediction accuracy varies with
different combinations between the training dataset and the
testing dataset. Among Set-3 with the same training dataset,
the testing dataset Mic-3 collected from the farthest place from
the cutting zone displayed a higher accuracy due to reasons
that the noise will be minimized by the longer distance be-
tween the microphone and the machine and there is no work-
piece material between the microphone and the cutting zone to
block the signals. The same trend has been followed in Set-2.
Therefore, it is shown that the position of the microphone
really influences the prediction accuracy to a certain extent.
However, this positional error can be minimized by having
more training data from different locations as described below.

Generally, from Set-1 to Set-3, the prediction accuracies of
the developed program can be improved by increasing the
number of datasets for training, which can be explained by
the fact that training the program with more datasets collected
from different positions can help separate the target signal
features from the disturbances caused by the sensing position.
However, this improvement of the prediction accuracy be-
comes insignificant as increasing the number of datasets.
Besides the average value, the variation of the prediction ac-
curacy also decreases from Set-1 to Set-3 as shown in Table 4.
It is seen that the influence of the position for collecting the
signals on the prediction accuracy can be reduced by using
more training datasets collected from different positions.
Expectedly, with adequate training, the system has proved that
the developed monitoring system is not affected by positional
variation within a specific range and independent of a number
of sensors.

6 Conclusion

Tool wear monitoring remains to be a critical research field in
developing intelligent monitoring systems to prevent cutting

Table 4 Position invariant

prediction results Combination sets

Training dataset”

Testing dataset Prediction accuracy (%)

Set-1 Mic-1 Mic-2 90.6
Mic-2 Mic-1 90.6
Mic-3 Mic-1 92.0
Mic-1 Mic-3 92.0
Mic-2 Mic-3 89.1
Mic-3 Mic-2 89.1
Set-2 Mic-1, Mic-2 Mic-3 96.1
Mic-2, Mic-3 Mic-1 95.0
Mic-1, Mic-3 Mic-2 93.8
Set-3 Mic-1, Mic-2, Mic-3 Mic-1 96.0
Mic-1, Mic-2, Mic-3 Mic-2 95.1
Mic-1, Mic-2, Mic-3 Mic-3 97.0

#Mic-1/2/3 represents the dataset of sound signals collected by the corresponding microphone

@ Springer



Int J Adv Manuf Technol (2018) 95:3797-3808

3807

tool failures and cutting process anomalies beforehand to min-
imize production losses. This study focused on proposing a
tool wear monitoring system with the application of machine
learning techniques in an end milling process using audible
sound signals. The results of the proposed work have shown a
promising prediction accuracy, especially in tool wear pro-
gression. Essentially, the key concept in the proposed tool
wear monitoring model is to identify the possibility to corre-
late the audible sound signals to the tool wear conditions using
machine learning techniques for decision-making. This study
highlights two important aspects: the development of a sys-
tematic methodology to set up the cutting experiments, nota-
bly allowing the proposed sensing approach for a better com-
parison of generated features in sound signal to correlate with
the tool wear and application of SVM approach as a classifier
for the prediction of tool wear. Additionally, this study explic-
itly proposes a new methodology for analyzing the sound
signals irrespective of the type of noises associated with the
signal to monitor and predict the condition of the tool.

The main shortage of this study was found to be the insuf-
ficient pre-processing which involves signal conditioning.
The signal conditioning methods used in this study are of
basic methods in digital signal processing which have shown
less capability in noise separation that has led to misclassifi-
cation in some cases. Thus, a sophisticated pre-processing
method is required in predicting the tool wear with maximum
accuracy. The future study in this approach involves two as-
pects. Firstly, other sophisticated machine learning techniques
such as Convolution Neural Networks (CNN) and Recurrent
Neural Networks (RNN) that can perform signal separation to
isolate the actual signal from the machine and other environ-
mental noises will be implemented. Secondly, the proposed
model and experimental methodology will be applied in fur-
ther complex applications, non-uniform material hardness ma-
terial machining, and application of coated cutting tool
monitoring.
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