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Abstract
In milling process, chatter is one of the most unfavorable factors, which will reduce surface quality, limit tool life, accelerate tool
wear, and decrease machining efficiency. To solve this problem, a great deal of research has been done in milling dynamic
modeling and chatter suppression. In this paper, a new milling force calculation method considering helix angle and bending is
presented, in which the instantaneous cutting area is calculated in an improved way. The milling dynamic equations are
established based on the proposed model, and the stability limit is obtained with semi discretization method (SDM). Results
show that tool bending and helix play important roles in stability lobe diagram (SLD). Subsequently, the stability prediction is
verified in the milling experiment. Stability analysis can just provide the guidance for selection of milling parameters. In order to
get higher efficiency and larger stable region, the time-domain least mean square (LMS) adaptive algorithm is constructed and
implemented for chatter suppression in this article. For the sake of applying the method to experiments, the smart toolholder
equipped with piezoelectric stack actuators is designed and mounted to a three-axis milling machine. The experimental results
show that this method can suppress chatter effectively.
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1 Introduction

High-speed milling has been widely used in aerospace, auto-
mobiles, molds, and dies because of high efficiency and accu-
racy. However, as one of the most unfavorable factors, chatter
will reduce surface quality, limit tool life, accelerate tool wear,
and decrease machining efficiency. Tool life will decrease by
30 to 50% owing to chatter and even 70% with severe chatter
[1]. In order to solve this problem, more and more researchers
are attracted to milling dynamic modeling and chatter
suppression.

In 1907, Taylor et al. [2] started to study chatter and pointed
out that when the frequency of cutting force fluctuation is equal
to the machine working frequency, chatter will appear.
However, as late as the 1950s, Tobias et al. [3] and Tlusty

et al. [4] began to reveal that regenerative effect leads to chatter
occurance. Early studies about chatter mainly focused on the
turning process with one degree of freedom. It was not until
1995 that Altintas et al. [5] put forward the classical milling
dynamic model with two degrees of freedom and obtained the
stability limit using zero-order approximation (ZOA) method,
which was verified by numerical and experimental results.
However, in this model, some factors in practical production
process are neglected for simplicity, such as helix, runout, pro-
cess damping, curve toolpath, loss of contact, variable speed
effect, and so on. To make up the error from ignored factors,
plenty of scholars engaged in this research for more accurate
milling dynamic model. For example, Insperger et al. [6] ana-
lyzed the influence of tool helix on stability lobe diagram
(SLD), which show that there are some instability islands in
the flip region for helical mills. Runout effects were incorpo-
rated into the milling model by Schmitz et al. [7], which in-
cluded a discussion of the influence of runout on surface finish,
stability, and surface location error. Tang and Liu [8] built the
thin-walled plate milling model and analyzed the maximum
material removal rate. Tyler et al. [9] considered process
damping effect as exciting force and analyzed the process
damping stability prediction in milling. Balachandran et al.
[10, 11] adopted the numerical simulation to capture the
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interrupted nature of the milling process. Long et al. [12] ana-
lyzed the stability of up-milling and down-milling operations
with variable spindle speed. Taking effect of material removal
on modal parameters into account, Yang et al. [13] developed
an efficient method based on structural dynamic modification
for in-process workpiece dynamics. In consideration of tool
system deflection, Totis et al. [14, 15] put forward a newmodel
for facemilling cutter, which introduced a significant correction
to the predicted stability borders when the cutter diameter is
relatively large in comparison with tooling system overhang.
To the author’s knowledge, a helical end milling model consid-
ering tool bending with small diameter-overhang ratio is not
still developed to improve the prediction accuracy, which is
often applied to manufacturing of complex-profile products.
In this paper, the milling dynamic equations are established
based on tool bending and helix effect. Meanwhile, the stability
of equations will be analyzed. With these two common factors
included, the stability analysis of milling process will be more
accurate.

Stability analysis can provide the guidance for selection of
milling parameters (spindle speed and axial cutting depth);
however, it cannot guarantee the cutting parameters remain
constant. The original stable system may lose stabilization
owing to the time varying property of cutting process.
Active control is an effective method for chatter control,
which can satisfy the real-time requirements of the online
control system and realize high performance and high effi-
ciency cutting. Through integrating actuators [16]
(electrostrictive actuator [17], active magnetic bearing [18,
19], piezoelectric stack [20, 21], and so on) on spindle, the
active control system is able to change the dynamics property
of machine tool and afford additional forces to offset cutting
forces and increase the system stiffness so that the stable cut-
ting region can be expanded. For example, Niels and
Verschuren [22, 23] adopted the robust active control method
for chatter suppression, which can guarantee the robust stabil-
ity. Zhang et al. [24] proposed the model predictive control to
compensate the system uncertainty for chatter mitigation in
milling process with input constraints. Monnin et al. [20, 21]
adopted the optimal control algorithm for chatter suppression
using active spindle equipped with piezoelectric stacks. Rashid
et al. [25] adopted the palletised workholding for milling vibra-
tion control with filtered x-least mean square (X-LMS) algo-
rithm. Jia et al. [26] applied filtered X-LMS algorithm to turn-
ing chatter control with piezoelectric actuators. Using piezo-
electric patch as the actuator, Zhang et al. [27] applied
frequency-domain LMS active control method to milling pro-
cess and suppress chatter vibration energy almost by 50%.
Wang et al. [28] proposed the stiffness variation method for
chatter suppression, which succeeded in decrease the milling
forces by 70.63% and discussed the infulence of stiffness var-
iation parameters on the stability lobe diagram. Dohner et al.
[17] proposed the design of integrating actuators into spindle

and it worked. However, this would change the spindle struc-
ture and require huge costs. In this paper, the time-domain LMS
adaptive algorithm with low computational complexity, good
convergence, and better stability is employed to mitigate chat-
ter. In order to apply the algorithm to experiments, the smart
toolholder equipped with piezoelectric stack actuators is de-
signed and mounted to a three-axis milling machine for chatter
suppression, which need not change the spindle structure with
simple structures and fewer expenses.

In this article, the milling dynamic model is established
based on tool bending and helix effect and the stability anal-
ysis is completed. Besides, the time-domain LMS algorithm is
employed for chatter suppression using the smart toolholder
equipped with piezoelectric stack actuators. The remainder of
this paper is arranged as follows: In Sect. 2, the milling dy-
namic model considering helical end mills bending is intro-
duced in detail and SLD is obtained. In addition, the proposed
model is verified by milling tests. Section 3 constructs the
LMS adapt ive algor i thm for chat ter mi t igat ion.
Subsequently, the experimental verification using piezoelec-
tric stacks as actuators is presented. Finally, several conclu-
sions are drawn in Sect. 4.

2 Milling dynamic model with helical end mill
bending

2.1 Classical milling force model

As shown in Fig. 1, the milling process is simplified as a two-
DOF stiffness-mass-damping system [5, 29]. Compared with
the rigid workpiece, the milling tool can be assumed as
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Fig. 1 Schematic representation of milling process
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flexible in the x and y directions, where x represents the feed
direction and y is perpendicular to the feed direction. The
milling forces [Fx Fy]

T can be expressed by

Fx

Fy

� �
¼ ∑

N

j¼1

Fxj

Fyj

� �
ð1Þ

where N is the tooth number of milling tool and the
helix angle is 0 rad; Fxj and Fyj are the milling forces
of the jth tooth in the x and y directions, respectively.

According to Fig. 1, the Fxj and Fyj can be written as

Fxj

Fyj

� �
¼ −cos ϕ j tð Þ

� �
−sin ϕ j tð Þ

� �
sin ϕ j tð Þ
� �

−cos ϕ j tð Þ
� �

� �
Ftj

Fnj

� �
ð2Þ

where ϕj(t) = (2πΩ/60) × t + (j − 1) × 2π/N is the angular
position of the jth tooth, and Ω is the spindle speed
in rpm. Ftj and Fnj are the tangential and radial milling
forces of the jth tooth, respectively. According to the
Ref [5], the tangential Ftj and radial Fnj cutting forces
acting on the tooth j are proportional to the axial depth
of cut (a) and the instantaneous cutting thickness
(h(ϕj(t))), which means that the cutting forces are actu-
ally proportional to the instantaneous cutting area
(Sj(t) = ah(ϕj(t)))

Ftj

Fnj

� �
¼ Kt

Kn

� �
ah ϕ j tð Þ
� �

¼ Kt

Kn

� �
S j tð Þ

ð3Þ

where the cutting coefficients Kt and Kn are constants.
The instantaneous cutting thickness (h(ϕj(t))) can be
given by

h ϕ j tð Þ
� � ¼ g ϕ j tð Þ

� �
Δxsin ϕ j tð Þ

� �þΔycos ϕ j tð Þ
� �� � ð4Þ

where Δx = x(t) − x(t − T) and Δy = y(t) − y(t − T). (x(t),
y(t)) and (x(t − T), y(t − T))represent the dynamic dis-
placements of the tool at the present and previous tooth
periods, respectively. T = 60/(NΩ) is the tool passing
period. g(ϕj(t)) is a screen function and can be de-
scribed as

g ϕ j tð Þ
� � ¼ 1 ϕst < ϕ j tð Þ < ϕex

0 otherwise

�
ð5Þ

where ϕst and ϕex are the start and exit angles of the
tooth j, respectively. For up-milling, ϕst = 0 and ϕex =
arccos(1 − 2a/D), and for down-milling, ϕst = arccos(2a/
D − 1) and ϕex = 0, where a/D is the radial depth of cut
ratio.

Substituting Eqs. (2), (3) and (4) into Eq. (1) leads to the
classical milling force model with zero helix

Fx

Fy

� �
¼ ∑

N

j¼1
a� g ϕ j tð Þ

� � Ktscþ Kns2 Ktc2 þ Knsc
−Kts2 þ Knsc −Ktscþ Knc2

� �
x t−Tð Þ−x tð Þ
y t−Tð Þ−y tð Þ
� �	

ð6Þ

where s = sin(ϕj(t)) and c = cos(ϕj(t)).

2.2 The bending model of end mills

In milling process, the tool will be subjected to the cutting
forces so as to bend as shown in Fig. 2, especially for end
milling tool with small diameter-overhang ratio. This phe-
nomenon is also called cutter back-off in the practical produc-
tion process.

In Fig. 2, XOZ is the Cartesian coordinate, where the orig-
inal point O is located in the center of tool clamping position;
OX andOZ are along the milling tool radial direction and axial
direction, respectively. The axial cutting depth is a; the helix
angle, overhang, diameter, and teeth number of milling tool
are β, L, D, and N, respectively; the milling force is assumed
as a uniform force F, where the force at unit length is Q = F/a;
the elasticity modulus of the milling tool is E. Therefore,

according to the calculating formulas [30], the moment of
inertia of milling tool can be expressed as

I ¼ πD1
4

64
ð7Þ

where D1 is the equivalent diameter with D1 = 0.8D consider-
ing the effect of milling tool flutes [31].

According to the Euler beam model [30], the flexural dis-
placement and bending angle are respectively

Δx zð Þ ¼ Q L−zð Þ4
8EI

−
Qz2

24EI
z2 þ 6L2−4zL
� �

þ zþ a−Lð Þtan Q L−að Þ3
6EI

 !
; L−a≤z≤L ð8Þ
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θ zð Þ ¼ Δx
0
zð Þ ¼ tan

Q L−að Þ3
6EI

 !
−
Qz3

6EI
−
QzL2

2EI

þ QLz2

2EI
−
Q L−zð Þ3
2EI

; L−a≤z≤L ð9Þ

In order to estimate the effect of bending on milling
tool, the flexural displacement and bending angle can be
calculated with Eqs. (8) and (9). During calculation, the
detailed parameters are as follows: D = 10 mm, L =
75 mm, a = 10 mm, F = 200 N, and E = 225 Gpa. The
calculated results show that the maximum flexural dis-
placement and bending angle can reach 1.5 mm and
1.16°, which are large enough to have a certain influ-
ence on instantaneous cutting area calculation and mill-
ing stability prediction.

2.3 Milling dynamic model with tool bending
and helix effect

The milling forces can be calculated by the empirical for-
mulas [32], so the bending angle along the tool axial
direction can be obtained. The instantaneous cutting areas
at different heights are different due to the tool bending
and helix effect. In order to determine the instantaneous
cutting area, the milling tool is divided into Na slices
along the axial direction as shown in Fig. 2.

An infinitesimal section is taken out for analysis as seen in

F i g . 3 a , whe r e d z = Δa and Δa = a /Na ; dF ¼
dFtj dFnj½ �T is the infinitesimal milling forces including
tangential cutting force dFt and radial cutting force dFn,
which can be expressed as

dFtj

dFnj

� �
¼ Kt

Kn

� �
ΔS j z; tð Þ ð10Þ

where ΔSj(z, t) is the instantaneous cutting area of the jth
tooth at the height of z with tool bending as seen in
Fig. 3c and can be calculated by

ΔS j z; tð Þ ¼ Δa� hj z; tð Þ � cos θ zð Þð Þ ð11Þ

where hj(z, t) is the instantaneous cutting thickness of the
jth tooth at the height of z. In each infinitesimal section,
the helix angle can be approximately zero; therefore, hj(z,
t) can be given by

hj z; tð Þ ¼ g ϕ j z; tð Þ� �
Δxjzsin ϕ j z; tð Þ� �þΔyjzcos



ϕ j



z; t
��h i

ð12Þ
where Δxjz = xj(z, t) − xj(z, t − T) and Δyjz = yj(z, t) − yj(z, t
− T). (xj(z, t), yj(z, t)) and (xj(z, t − T), yj(z, t − T)) represent
the dynamic displacements of the jth tooth at the height of
z at the present and previous tooth periods, respectively.
T = 60/(NΩ) is the tool passing period. ϕj(z, t) indicates
the position of the jth tooth at the height of z, which can
be expressed by

ϕ j z; tð Þ ¼ 2πΩ=60ð Þt þ j−1ð Þ⋅2π=N−2 L−zð Þtanβ=D ð13Þ

where β and D are the helix angle and diameter of milling
tool, respectively. Therefore, the infinitesimal milling

forces dFx dFy½ �T in the x and y directions can be ob-
tained

dFx

dFy

� �
¼ ∑

N

j¼1

−cos ϕ j z; tð Þ� �
−sin ϕ j z; tð Þ� �

sin ϕ j z; tð Þ� �
−cos ϕ j z; tð Þ� �

� �
dFtj

dFnj

� �

ð14Þ

Fig. 3 (a) Infinitesimal section of milling tool (b) Infinitesimal chip
without tool bending (c) Infinitesimal chip with tool bending
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Fig. 2 The bending and helix model of milling tool
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Substituting Eqs. (10), (11), and (12) into Eq. (14) leads to

dFx

dFy

� �
¼ ∑

N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa Ktscþ Kns2 Ktc2 þ Knsc
−Kts2 þ Knsc −Ktscþ Knc2

� �
x j z; t−Tð Þ−x j z; tð Þ
y j z; t−Tð Þ−y j z; tð Þ
� �

ð15Þ

Accumulate the infinitesimal milling forces

dFx dFy½ �T layer by layer along the axial direction
and the total milling forces can be expressed as

Fx

Fy

� �
¼ ∑

Na

i¼1
∑
N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa Ktscþ Kns2 Ktc2 þ Knsc
−Kts2 þ Knsc −Ktscþ Knc2

� �
x j z; t−Tð Þ−x j z; tð Þ
y j z; t−Tð Þ−y j z; tð Þ
� �

ð16Þ

where s = sin(ϕj(z, t)), c = cos(ϕj(z, t)), z = L − i ×Δa, and i
means the ith infinitesimal section from bottom to top.

A basic milling model with two degrees of freedom is
shown in Fig. 1, which can be described by the following
equations

mx 0
0 my

� �
€x
€y

� �
þ cx 0

0 cy

� �
x˙

y˙

� �
þ kx 0

0 ky

� �
x
y

� �

¼ Fx tð Þ
Fy tð Þ

� �
ð17Þ

where the terms mx, y, cx, y, kx, y, and Fx, y are the modal mass,
damping, spring stiffness, and cutting forces in the flexible
directions of the system.

Substituting Eq. (16) into Eq. (17) gives milling dy-
namic equation with tool bending and helix effect

M€X tð Þ þ CX˙ tð Þ þKX tð Þ ¼ Kc X t−Tð Þ−X tð Þ½ � ð18Þ

where X(t) = [x(t) y(t)]T is the two-element position vec-
tor; M, C, and K are the 2 × 2 modal mass, damping,
and stiffness matrices. Kc is the dynamic cutting coeffi-
cients, which can be described as

Kc ¼ hxx tð Þ hxy tð Þ
hyx tð Þ hyy tð Þ
� �

ð19Þ

where hxx(t), hxy(t), hyx(t), and hyy(t) can be given by

hxx tð Þ ¼ ∑
Na

i¼1
∑
N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa Ktscþ Kns2
� � ð20Þ

hxy tð Þ ¼ ∑
Na

i¼1
∑
N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa Ktc2 þ Knsc
� � ð21Þ

hyx tð Þ ¼ ∑
Na

i¼1
∑
N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa −Kts2 þ Knsc
� � ð22Þ

hyy tð Þ ¼ ∑
Na

i¼1
∑
N

j¼1
g ϕ j z; tð Þ� �

cos θ zð Þð ÞΔa −Ktscþ Knc2
� �ð23Þ

2.4 Milling process stability analysis

Based on the Eq. (18) with semi discretization method (SDM)
[33], the proposed stability limit is obtained as the red line in
Fig. 4, while the black represents the original stability limit.
The simulation parameters are as follows: N = 3, Kt =

Fig. 4 Stability lobe diagram in
milling process

Int J Adv Manuf Technol (2018) 95:3665–3677 3669



600 Mpa, Kn = 200 Mpa, ωnx = ωny = 922 × 2π, mx =my =
0.03993 kg, ae/D = 0.05, a = 10 mm, damping ratio
ξx = ξy = 0.011, and up-milling is adopted. It can be known
that the proposed stable area is larger than the original espe-
cially around the peak, because dz × cos(θ(z)) with tool
bending is less than dz. From the figure, it can be also
known that the increases of SLD are different for dif-
ferent spindle speeds. The higher the critical stability
limits are, the more the critical stability limits increase.
It can be explained as the following: for the low critical
stability limits, the axial cutting depth is low so that the
milling forces will be small, which will cause the bend-
ing of milling tool to be little. Therefore, the SLD
change little in the low critical stability limits areas.
However, the larger milling tool bending within high
critical stability limits will increase the SLD obviously.

2.5 Experimental verification

In order to verify the influence of tool bending on SLD,
three kinds of tests, including impact tests, milling coef-
ficients identification tests, and cutting tests, are

implemented on a three-axis milling machine (VMC-
V5). A three-flute high-speed steel end mill, with
10 mm diameter, 45° helix angle, and 75 mm over-
hang, is adopted in the experiment. The workpiece ma-
terial is aluminum alloy 6061 with elastic modulus of
68.9 GPa, density of 2690 kg/m3, and Poisson’s ratio
of 0.33.

2.5.1 Impact tests and milling force coefficient identification
tests

The impact tests are implemented with a modal impact
hammer (PCB 086C01 with sensitivity 2.25 mV/N) and
a microaccelerometer (DYTRAN 3032A with sensitivity
10.00 mV/g) as seen in Fig. 5a. LMS SCADASIII data
acquisition system is used to acquire impact forces and
acceleration signals with sampling frequency 10,240 Hz.
The main modal parameters are analyzed by the
PolyMAX module, which are shown in Table 1.

The milling forces are measured by a Kistle 9129A
dynamometer for coefficients identification with solt
milling, spindle speed 5000 rpm, axial depth 1 mm,

Fig. 5 (a) The impact experiment
set-up (b) Milling force
measuring set-up

Table 1 Results of modal parameter identification

Modal
parameters

Modal
mass (kg)

Damp
ratio (%)

Natural
frequency (Hz)

x direction 0.01154 1.8072 1350.23

y direction 0.01199 0.7126 1349.15

Table 2 Results of force coefficient identification

Milling
force
coefficients

Tangential
(MPa)

Radial
(MPa)

Value 560.366 311.657
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and sampling frequency 6000 Hz under different feeds
per tooth as seen in Fig. 5b. With the identification
equations [31], the milling force coefficients are shown
in Table 2.

2.5.2 Cutting tests for SLD validation

With the modal parameters in Table 1 and cutting force
coefficients in Table 2, the SLD in this cutting condi-
tion can be obtained as seen in Fig. 6, where the radial
cutting depth is 0.5 mm and the feed per tooth is
0.05 mm/tooth. In order to verify the SLD, a series of
milling tests with different cutting parameters are per-
formed. The spindle speed increases from 4000 to
8000 rpm. At each rotating speed, the axial cutting
depth increases from 0.5 mm until strongly chatter oc-
curs. The acceleration signals are acquired by LMS
SCADASIII data acquisition system with sampling

frequency 10,240 Hz through the accelerometer (IMI
608A11 with sensitivity 100 mV/g).

In tests, three statuses appear, including stable, slightly
chatter and strongly chatter, where the axial cutting depth of
slightly chatter can be used as the critical limit. The accelera-
tion signals in the time and frequency domain under these
three statuses are shown in Fig. 7. Here, the spindle speed is
4500 rpm; therefore, the rotational frequency is 75 Hz. In
Fig. 7a, there are only the rotational frequency and its frequen-
cy multiplication, which means stable cutting. However, be-
sides the frequencies related to spindle speed, the chatter fre-
quencies arise as seen in Fig. 7b, c. The amplitude of chatter
frequency in Fig. 7b is much lower than that in Fig. 7c, which
can be used to distinguish the slightly and strongly chatter.

Based on the analysis of acceleration signals, the results are
shown in Fig. 6, the circle, triangle, and square represent sta-
ble, slightly chatter, and strongly chatter, respectively. From
Fig. 6, it can be known that the proposed method has better
accuracy for stability prediction in milling.

Fig. 6 Comparison between
experimental and predicted
stability lobes

Fig. 7 The acceleration signals in
the time and frequency domain. a
Stable. b Slightly chatter. c
Strongly chatter
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3 LMS adaptive algorithm for chatter active
control

The accurate prediction of SLD can just guide for cutting
parameters selection; however, it cannot guarantee that the
cutting parameters remain constant and the original stable sys-
tem may lose stabilization owning to the time varying prop-
erty of cutting process. In ordert to suppress chatter better, the
LMS adaptive algorithm is constructed and performed in this
section.

3.1 LMS adaptive algorithm

As seen in Fig. 8, the algorithm is really based on a filtering
method and the length of filter is assumed as M, where
X(n) = [x(n), x(n − 1),…, x(n −M)]T and W(n) = [w0,w1,…,
wM]

T are input vector and weight vector, respectively; d(n)
and y(n) are the ideal output and real output; e(n) is the error
output, which can be used as the control signal; and n stands
for current time.

The adaptive filter can make the output to track and
tend to be the ideal value. In chatter control, the output
is supposed to be zero, namely, d(n) is to be zero. From

Fig. 8, the real output can be written as

y nð Þ ¼ ∑
M

m¼0
wmx n−mð Þ ð24Þ

simplified as the matrix form

y nð Þ ¼ XT nð ÞW nð Þ ð25Þ

Therefore, the error e(n) is

e nð Þ ¼ d nð Þ−XT nð ÞW nð Þ ð26Þ

To minimize the error e(n), the LMS adaptive algo-
rithm is selected with many advantages, such as low
computational complexity, good convergence, and better
stability. With LMS adaptive algorithm, the weight can
be updated by

W nþ 1ð Þ ¼ W nð Þ−μ∇ nð Þ ð27Þ

where μ is the convergence factor. The larger μ is, the
faster convergence is. However, when μ is more than a
limited value, the iteration is diverging. ∇(n) is the error

Fig. 8 The adaptive filter

LMS
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Amplifier
Actuator

Voltage 

Signal

Machine

Control
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Vibration 
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+
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Resultant 

Force

Ideal 

Vibration

Fig. 9 Control block of chatter in
milling process
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gradient, which can be defined as

∇ nð Þ ¼

∂e2 nð Þ
∂w0
⋮

∂e2 nð Þ
∂wM

2
6664

3
7775 ¼ 2e nð Þ

∂e nð Þ
∂w0
⋮

∂e nð Þ
∂wM

2
6664

3
7775 ¼ −2e nð ÞX nð Þ ð28Þ

Substituting Eq. (28) into Eq. (27) leads to

W nþ 1ð Þ ¼ W nð Þ−μ∇ nð Þ
¼ W nð Þ þ 2μ⋅e nð ÞX nð Þ ð29Þ

Equation (29) is the iterative formula of weight vec-
tor W(n) in control process.

In milling process, due to the time varying character-
istics of parameters, it will be apt to chatter without
real-time control. In order to mitigate chatter better,
LMS adaptive algorithm is much needed to track the
varying vibration signals and then generate control sig-
nals to the actuators, which can produce control forces
to offset the cutting forces and increase the system stiff-
ness; thus, chatter can be suppressed.

The control block diagram is shown in Fig. 9. During con-
trol process, the machine vibration signals are used as the

Fig. 10 The setup of milling tests

Fig. 11 The schematic diagram
of smart toolholder
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input of LMS algorithm. The LMS adaptive algorithm can
process the machining vibration signals and then output the
control signals to the actuators over a power amplifier. Next,
the actuators provide the control forces to offset the inner
time-varying cutting forces. Finally, the resultant forces act
on the machine and cause the vibration signals. The four steps
build up a complete closed-loop control frame and can be
applied in engineering practices.

3.2 Experimental verification of LMS algorithm

3.2.1 Introduction of experimental setup

The experimental setup of the control process is made up of six
parts: the three-axis milling machine (VMC-V5) equipped with
smart toolholder, acceleration sensors (IMI 608A11 with sensi-
tivity 100 mV/g), data acquisition system, FPGA controller,
power amplifier, and piezoelectric stack actuators as shown in
Fig. 10, where the arrows indicate the direction of the signal or
data flow. In control process, the PXI-7853R FPGA is chosen as
the controller owing to its real-time performance. The LMS ac-
tive control algorithm is programmed by Labview and
downloaded to the FPGA controller. The piezoelectric stack
(80VS15, Pst) has the following detailed parameters: maximum
displacement 95 μm and maximum output force 2300 N. A
power amplifier (Pst E01 B4) is used to enlarge the control
signals from FPGA to the actuators. In order to display and
record the vibration signal, the data acquisition system, including
Dell N4110 and AVANT MI-7008, is used for data sampling
with sample frequency 10,240 Hz. In theory, the control forces
from piezoelectric stacks are supposed to be the opposite direc-
tion to milling forces, which can offset the milling forces and
increase the system stiffness for chatter suppression.

3.2.2 Introduction of the smart toolholder equipped
with piezoelectric stacks

In order to suppress chatter, the smart toolholder is designed
using piezoelectric stacks as actuators. The schematic diagram
of smart toolholder is shown in Fig. 11. The piezoelectric
stack actuators are used to produce the controlling forces for

Fig. 12 The designed toolholder

Toolholder

Fig. 13 The machining setup
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chatter suppression. The rolling bearing and ring are mounted
on the toolholder for transferring forces from piezoelectric
stacks to toolholder. The real toolholder and machining set
up are seen in Figs. 12 and 13.

3.2.3 Verification of control algorithm by contrast milling
tests

The contrast milling tests are implemented with control or not.
As seen Fig. 6, the parameters (5000 rpm, 3 mm) are located
in the strongly unstable region, which can be selected as the
milling parameters for chatter control. The radial cutting depth
is 0.5 mm and the feed per tooth is 0.05 mm/tooth.

The time domain acceleration signals during milling pro-
cess are as seen in Fig. 14, and the values of root-mean-square
are 27.4 and 15.1 m/s2, respectively, which means that the
proposed control method can reduce the milling vibration by
about 44.9%.

With the acceleration signals in the frequency domain as
shown in Fig. 15, the milling vibration is mitigated in a large
extent in the whole frequency range. Although the vibration
increases at some points, for example, 500, 733.7, and
916.7 Hz, it does not affect the whole reduction of vibration
amplitude at the most frequencies.

In addition to the vibration index, the surface quality of
finished parts is also selected to evaluate the machining

Fig. 14 The acceleration signals
in time domain

Fig. 15 The acceleration signals
in frequency domain

Fig. 16 The finished part surface
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quality as seen in Fig. 16, which shows that the surface quality
with control is better and verifies the effectiveness of the
algorithm.

4 Conclusions

In this study, the milling dynamic equations are established
based on the effect of tool bending and helix. In addition, the
time-domain LMS adaptive algorithm is constructed and im-
plemented for chatter suppression. According to the analysis
and experiment results, the conclusions are as follows: (1) The
milling tool, especially with the small diameter-overhang ra-
tio, will bend due to the cutting forces. The flexural displace-
ment and bending angle can be calculated with corresponding
formulas. (2) In milling dynamic model, the tool bending will
reduce the instantaneous cutting area, which will decrease the
cutting forces and enlarge the stable region. Besides, the tool
helix will cause the change in the angular position of tool teeth
along the axial direction, which will also influence the calcu-
lation of the instantaneous cutting area. (3) The stability with
tool bending and helix is analyzed using SDM, which is ver-
ified by a number of milling tests. (4) The smart toolholder
equipped with piezoelectric stack actuators is designed and
mounted to a three-axis milling machine, which can apply
the control algorithm to experiments. (5) The time-domain
LMS algorithm can suppress chatter effectively, which is val-
idated by the contrast milling tests with control or not.
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