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Abstract Analytical and semi-analytical modelling of
manufacturing processes involving material removal are of
great interest to scientists and industrialists. With this type
of modelling, we are able to identify optimal cutting param-
eters based on geometric and thermomechanical quantities,
without having to carry out experimental trials or costly
simulations (thus saving time and reducing costs). Com-
pared with other machining techniques, milling involves
additional complexities arising from the variation in geo-
metric parameters in the machining configuration and in
kinematic parameters when operational. This paper presents
a new 3D modelling analysis applied to milling, which takes
into account phenomena generated by the three-dimensional
kinematics of the process. To complete this thermomechan-
ical approach to cutting, improvements have been made
to a basic model configuration. The model that has been
developed can now map strains, strain rates, stresses and
temperatures along the cutting edge, in the primary, sec-
ondary and tertiary shear zones. Forces and cutting moments
at the theoretical tool tip are estimated at a local then a
global scale, and compared with experimental results from
previous work.
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Nomenclature

xc , yc Coordinates of a point in the secondary
shear zone.

ap
′ Apparent depth of cut (m.min−1).

da depth of plastic deformation zone (mm).
f Feed rate (mm).
fz Tooth feed rate (mm.tooth−1).
ra Cutting edge radius (mm).
rβ Tool nose radius (mm).
α0 Clearance angle (◦).
φ Shear angle (◦).
γ0 Rake angle (◦).
δ.t2 Thickness of shear band in the secondary

shear zone (mm).
α.lc Length of shear contact along rake face

(mm).
Ps1 , Ps2 Surface power density above and below

stagnation point (W.m−2).
σeq,S′

1
, σeq,S′

2
Equivalent stress above and below stag-
nation point (MPa).

ε̇eq,S′
1

, ε̇eq,S′
2

Overall strain rate above and below stag-
nation point (s−1).

hm (θ1) , hm (θ2) Instantaneous cutting feed for two angle
positions θ1 and θ2 (mm).


T Temperature difference (◦C).
TSSZ Temperature in the secondary shear zone

(◦C).
Vchip Chip speed along to cutting edge (m.s−1).
Vc Cutting speed (m.min−1).
Vg Sliding speed of the chip along to cutting

edge (m.s−1).
VS Sliding speed in the primary shear zone

(m.s−1).
Vt Speed of material perpendicular to cutting

edge (m.s−1).
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Vz Speed of material parallel to cutting edge
(m.s−1).

Kth Thermal conductivity
(
W.m−1.◦C−1

)
.

a Thermal diffusivity
(
m2.s−1

)
.

dli Elementary length of heat source (m).
Ri and R′

i Distance between point M and primary
heat source and image respectively.

ϕ′
2 Density of heat flux (W.m−2).

1 Introduction

This study is based on previous 3D cutting modeling for
turning [1–3], drilling [4] and milling [5] processes. The
proposed modeling corresponds to an established sectional
machining configuration and generating a continuous chip
of a ductile steel part.

For the turning configuration, the thermomechanical
quantities (strains, strain rates, temperatures and stresses)
with a realistic consideration of the cutting edge radius and
the tool nose radius [3] have been determined by Toulouse
[1] and Laheurte [2] in order to determine all the cutting
actions (forces and moments). The definition of the thermal
cutting phenomena has been improved by Puigsegur [6]. In
the drilling configuration, a semi-analytical approach for the
modeling of cutting actions in the case of drilling has been
developed by Dargnat [4]. Comparatively to Zhang’s work
[7], the geometrical defects of the tool, the positioning and
orientation defects with respect to the spindle have been
integrated, which makes it possible to determine the radial
force regarding the forces measured experimentally. In the
milling configuration, the torsor of cutting actions at the tip
of the tool using an experimental approach to highlight the
presence and importance of the cutting moments have been
determined by Albert [5] similarly to Wojciechowski [8].
This approach has been extended by Wojciechowski [9, 10]
to the study of the influence of the tool cutting edge radius
on the cutting forces.

Karagüzel’s recent work [11] deals with analytical mod-
eling of combined turning and milling processes by deter-
mining instantaneous feed in three configurations: orthog-
onal, tangential and coaxial. The specific forces (cutting,
tangential and parallel to the tool’s axis) for each elementary
length of the cutting edge are a function of the instantaneous
feed which depends on the position along the cutting edge
and the specific pressures.

Based on the Engin’s works [13], Kaymakci [12] define
the kinematics of a straight-edge tool oriented in the turning
space. The cutting forces are determined in oblique cutting
configuration according to the specific cutting pressures. In
these works, the kinematics along the cutting edge is not
discretized and the contribution of the kinematics on the
inter-volumic interactions along the edge is not taken into

account. The additional movements of the chip generated by
the geometry and the kinematics are not taken into account
either.

For micro-milling application, Kang [14] determine the
cutting forces according to the instantaneous feed veloc-
ity and the normal and tangential cutting specific pressures.
The determination of the instantaneous feed is based on the
Fourier series, the third dimension is not considered and the
effect of the variation of kinematics along the cutting edge
is not taken into account. For the same application, Zhou
[15] propose a 3D cutting forces model according to the
instantaneous feed velocity. The instantaneous feed veloc-
ity is determined with an analytical model. These models
do not allow to take into account the 3D effect on the cut-
ting actions generating inter-volumic interactions along the
edge.

The milling process has a more complex kinematic def-
inition; this work is positioned in the continuity of the 3D
models previously discussed. To improve the modeling, the
3D interactions between the volume elements along the cut-
ting edge are determined by a volumic modeling of the
strains fields and strain rates in the three main cutting zones.
This study is also based on the kinematics and 3D models
presented in the previous works [16] and [17].

2 Trajectory of a volume element in the shear zones

Along the primary shear zone, the volume element mov-
es from the workpiece towards the chip. The large amount
of material displacement generates high strains and strain
rates along the thickness of the shear band. A material point
passing through the primary shear zone follows a hyperbolic
trajectory [4, 18]. The speed component parallel to the shear
plane is assumed to be constant. In order to take into account
the compression of the material against the rake face, the
model considers that each particle entering the secondary
shear zone follows a curvilinear trajectory, as shown in (Fig. 1).
In fact, along the tool-chip contact surface, the sliding speed
Vg is assumed to vary linearly starting with sticky contact
close to the tool tip and reaching a speed equal to that of the
chip (Vchip) [19]. This speed is assumed to vary linearly as
a function of Vchip with:

Vg = ξ.Vchip. (1)

In order to demonstrate the trajectory of a material point
entering the secondary shear zone (taking into account
friction at the tool-chip interface), we study a velocity com-
ponent carried by the −→

yc axis, perpendicular to the cutting
surface and varying linearly as a function of xc. The velocity
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Fig. 1 Trajectory of a volume
element in the secondary shear
zone

component carried by −→
yc is written as a function of a

dimensionless coordinate ξ , as follows:

Vyc(ξ) = (1 − ξ).Vs. cos(φ − γ0), (2)

where Vs is the sliding speed in the primary shear zone.
In the tertiary shear zone, the cross-section of the tool is

shown in the calculation scheme as the arc of a circle where
the two asymptotes are the clearance face and the rake face
(Fig. 2). The tertiary shear zone is described according to
the following parameters:

da : depth of plastic deformation zone,
ra : cutting edge radius,
α0: clearance angle.

The stagnation point is located where the difference
between surface power density on either side of this point is

Fig. 2 Trajectory of a volume element in the tertiary shear zone

at its minimum, as shown in (Fig. 3) and the following para-
graph. Along the cutting edge radius ra and for each position
S′, the two surface power densities at points S′

1 and S′
2 (mid-

dles of the two parts located on either side of this point) are
given by

Ps1 = σeq,S′
1
.ε̇eq,S′

1
.L1, (3)

Ps2 = σeq,S′
2
.ε̇eq,S′

2
.L2. (4)

The variation in distance L2, which determines the posi-
tion of the stagnation point along the cutting edge radius as
a function of the rake angle, is shown in (Fig. 4). Point S′

Fig. 3 Positions chosen to calculate surface power density in order to
optimize the stagnation point position
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Fig. 4 Variation in stagnation point position as a function of rake
angle

(
Vc = 60 m.min−1, f = 0, 2 mm

)

moves down the −→
ya axis, passing from positive to negative

rake angles.

3 Determining basic cutting actions

Due to the orientation of the tool and the kinematics of
the milling process [16], velocity gradients along the cut-
ting edge generate additional chip displacements in all three
directions and as a result, they also generate new force
components and cutting moments. In this study, we present
the overall procedure for calculating macroscopic cutting
actions, starting with a detailed description of each charac-
teristic zone. This cutting action torsor is calculated at the
tool tip as a function of basic forces along the cutting edge.

3.1 Determining strain fields and strain rates
in the shear zones

After defining a local coordinate system in each cutting
zone, for each direction of the coordinate system, the veloc-
ity field is determined as a function of the kinematic and
geometric parameters of the cut [17]. Maximum displace-
ments are calculated in the three directions of the cutting
zone and the spatial derivative of the displacement field in
the shear zones gives the strain tensor. Because of the great
strain on the material, the strain rate is not obtained by a
time derivative of the strain but by a spatial derivative of the
velocity field.

3.2 Study of elementary actions in the case of a square
tool

In the case of a square tool insert, two parts of the cutting
edge are defined: the first is linear, of length ap2 (Fig. 5) and
the second is the corner radius, of length ap1. The cutting
speed is considered equal to the average of the speeds at the
extreme points on each length element (from element 1 to
element n).

3.2.1 Study of the linear part of the edge

Along the linear part of the tool and for each length ele-
ment, changes in strain and strain rate along the edge are
determined using the approach proposed by Yousfi [17]. In
order to take into account the instantaneous variation in feed

Fig. 5 Distribution of forces
applied along the cutting edge
for a square tool
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Fig. 6 Tool angle positions studied

hm (θi) as the tool rotates, two angle positions θ1 and θ2

were chosen, corresponding to rotation angles of 135◦ and
90◦, respectively (Fig. 6).

The graphs in Fig. 7a, b show the change in equivalent
strain and overall strain rate along the cutting edge in the
secondary shear zone (SSZ). For the two angle positions,
there is virtually no variation in the equivalent strain along
the cutting edge (Fig. 7a) as the depth of cut is equal for
all elements. However, the overall strain rate for θ1 and θ2

decreases by 6% along the edge (starting with element 1 to
element 9).

From the strain and strain rate calculated in the secondary
shear zone, the force normal to the rake face in this zone can
be calculated from equivalent stress (5) using a Johnson-
Cook type of behavior law [20]. This stress is assumed to be
equivalent to stress normal to the rake face.

σeq =
(
A + B.εn

eq

)
.
(

1 + C.Ln
(

ε̇eq

ε̇0

))

.
(

1 −
(

Tave−T0
Tmelt−T0

)m)
.

(5)

where A is the yield strength of the material, B, n are coef-
ficients linked with the work hardening of the material, C

is a coefficient of sensitivity to strain rate and m is a coef-
ficient of sensitivity to temperature, Tmelt is the melting
temperature of the material, T0 the initial temperature of the
material. In order to calculate equivalent stress, the average
temperature (Tave) in the secondary shear zone is deter-
mined from the elementary cutting model using Komanduri
and Hou’s approach [21] and incorporating the speed of the
corresponding chip into each length element (6).

Tave( M) = ϕ′
2

π.Kth

∫ α.lc
0 e− (xc−li ).Vchip

2.a

.
[
K0.

(
Ri .Vchip

2.a

)
+ K0.

(
R′

i .Vchip

2.a

)]
.dli .

(6)

Fig. 7 Variation in a strain and b strain rate in the SSZ for each
element of the edge (tool with straight edge—9 elements)

The graphs in Fig. 8a represent the change in temperature
along the cutting edge for each length element. The aver-
age temperature in the secondary shear zone increases closer
to the tool tip. The temperature gradient decreases moving
from position θ1 towards position θ2. This variation is due to
greater heat propagation with θ2, generated by the increase
in the cross-section of the chip when changing from θ1 to θ2.

The force normal to the rake face in the secondary shear
zone decreases slightly along the straight cutting edge. This
small variation is because the discretization of the depth of
cut is constant for all elements.

3.2.2 Study of the rounded part of the edge

For the rounded part of the edge and in order to move closer
to a linear distribution of the velocity fields in the differ-
ent cutting zones [17], the cutting edge is discretized into
constant lengths dy4 (Fig. 9). This discretization produces
elements with different depths of cut api .

The strain fields and strain rates are determined by apply-
ing Yousfi’s approach [17] to each length element. The
graphs in Fig. 10a, b show the change in equivalent strain
and overall strain rate along this rounded part of the cut-
ting edge (in the secondary shear zone). For the two angle
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Fig. 8 Variations in a average temperature in the SSZ for each element
of the edge, and b force normal to the rake face

positions θ1 and θ2, equivalent strain increases dramatically
when moving closer to the generated surface (Fig. 10a) and

Fig. 9 Discretization of the rounded part of the cutting edge

Fig. 10 Variations in a strain and b strain rate in the SSZ for each
element of the edge (rounded tool—9 elements) for rε = 4 mm

this change is due to the geometry of the tool. The over-
all strain rate along the edge decreases, by 11% on average,
when moving closer to the machined surface (Fig. 10b).

The graphs in Fig. 11a show the change in average tem-
perature along the cutting edge for each length element. The
average temperature in the secondary shear zone increases
when moving closer to the generated surface of the work-
piece. This temperature gradient is due to the decrease in the
cross-section of the chip locally. The temperature gradient
decreases from position θ1 to position θ2, generated by the
increase in the cross-section of the chip (when moving from
θ1 to θ2).

The decrease in the cutting edge width api from element
1 to element 9 generates a substantial decrease in the force
normal to the rake face in the secondary shear zone which
tends towards 0. Instantaneous feed is higher in position θ2

and generates a greater force than that in position θ1.

4 Calculation of overall cutting actions
and validation of the model

4.1 Calculation of overall cutting actions

The elementary cutting action torsor applied in coordinate
system Rf , defined according to tool orientations κr , γ0 and
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Fig. 11 Variations in a average temperature in the SSZ for each
element of the edge and b force normal to the rake face

λs [16], on each length element of the cutting edge takes the
form

Pi

[
τi,WP →T

]
Rf

=
Pi

[ −→RWP →T −→MPi,WP →T

]
Rf

=
Pi

⎡

⎣
Fci,Pi

Fti ,Pi

Fzi ,Pi

0
0
0

⎤

⎦

Rf

,
(7)

using, WP for workpiece and T for tool.
In this study, we consider only local moments generated

by the kinematics and the geometry of the tool. Moments
generated by the behavior of the material are not dealt with
here [22]. Cutting forces and tangential forces in each zone
generate local moments which are dependent on the posi-
tion of each point in relation to the theoretical tool tip. For
the linear part of the cutting edge, the overall torsor at the
tool tip in coordinate system Rf equals the sum of the ele-
mentary torsors expressed in the same coordinate system,
and therefore becomes

P

[
τWP →T

]
Rf

=

P

⎡

⎢⎢⎢⎢⎢⎢
⎣

Fcf

Ftf

Fzf

Mxf

Myf

Mzf

⎤

⎥⎥⎥⎥⎥⎥
⎦

Rf

, (8)

with

−→
PP i =

⎡

⎣
0
0

d2iz

⎤

⎦

Rf

, (9)

and where

Fcf =
n∑

i=1
Fci,Pi

,

Ftf =
n∑

i=1
Fti ,Pi

,

Fzf =
n∑

i=1
Fzi,Pi

,

Mxf =
n∑

i=1
−d2iz(z).Fti ,Pi

,

Myf =
n∑

i=1
d2iz(z).Fci ,Pi

,

Mzf = 0.

(10)

In order to compare the results from analytical mod-
elling with the experimental results, the action torsor must
be expressed in the tool’s initial coordinate system (before
orientation). After transporting it to this initial coordinate
system Rini , this torsor takes the following form:

P

[
τWP →T

]
Rini

=

P

⎡

⎢⎢⎢⎢⎢⎢
⎣

Fc1

Ft1

Fz1

Mx1

My1

Mz1

⎤

⎥⎥⎥⎥⎥⎥
⎦

Rini

, (11)

where

Fc1 = cos(λs).Fcf + sin(λs).cos(κr).Ftf

+sin(λs). sin(κr).Fzf ,

Ft1 = sin(κr ).Ftf − cos(κr).Fzf ,

Fz1 = − sin(λs).Fcf + cos(λs). cos(κr ).Ftf

+cos(λs). sin(κr ).Fzf ,

Mx1 = cos(λs).Mxf + sin(λs).cos(κr).Myf ,

My1 = sin(κr ).Myf ,

Mz1 = − sin(λs).Mxf + cos(λs).cos(κr).Myf .

(12)

The same was done for the rounded part of the cutting
edge. In this case, the overall action torsor in coordinate

Table 1 Mechanical characteristics of 42CrMo4 and Johnson-Cook
parameters

Hardness (Hv) 260

Young’s modulus (GPa) 210

A 598

B 768

C 0.013

m 0.209

n 0.807
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Table 2 Cutting conditions

Test no. ap(mm) fz(mm.tooth−1) Vc(m.min−1)

1 1 0.1 50

2 1 0.1 150

3 1 0.2 150

4 2 0.1 150

system Rf represented at the theoretical tool tip is then

P

[
τWP →T

]
Rf

=

P

⎡

⎢⎢⎢⎢⎢⎢
⎣

Fcf

Ftf

Fzf

Mxf

Myf

Mzf

⎤

⎥⎥⎥⎥⎥⎥
⎦

Rf

, (13)

with

−→
PP i =

⎡

⎣
0

d1iy(y)

d1iz(y)

⎤

⎦

Rf

, (14)

and where

Fcf =
n∑

i=1
Fci,Pi

,

Ftf =
n∑

i=1
Fti ,Pi

,

Fzf =
n∑

i=1
Fzi,Pi

,

Mxf =
n∑

i=1
d1iy(y).Fzi ,Pi

. cos(γ0)

−d1iz(y).Fti ,Pi
,

Myf =
n∑

i=1
d1iz(y).Fci ,Pi

−d1iy(y).Fzi ,Pi
. sin(γ0),

Mzf =
n∑

i=1
d1iy(y). sin(γ0).Fti ,Pi

−d1iy(y).cos(γ0).Fci ,Pi
.

(15)

Fig. 12 Comparison of analytical and experimental forces

Table 3 Errors between simulated and experimental forces

Test no. 
Fx (%) 
Fy (%) 
Fz (%)

1 8 −20.6 9.2

2 4.5 −11 −15.1

3 3.3 −11.4 57,2

4 7.2 −10.3 17.5

Transporting the action torsor to coordinate system Rini

gives the following:

P

⎡

⎢⎢⎢⎢
⎣

Fc2
Ft2
Fz2
Mx2
My2
Mz2

⎤

⎥⎥⎥⎥
⎦

Rini

=

P

⎡

⎢⎢⎢⎢
⎣

cos(λs).Fcf + sin(λs).Fzf
Ftf− sin(λs).Fcf + cos(λs).Fzf

cos(λs).Mxf + sin(λs).Mzf
Myf− sin(λs).Mxf + cos(λs).Mzf

⎤

⎥⎥⎥⎥
⎦

Rini

.

(16)

On each element of the cutting edge, the elementary force
component Fzi,pi

is determined by projecting the result-
ing cutting forces. These are a function of the elementary
cutting forces calculated in the elementary cutting plane
(perpendicular to the edge) and of a sliding coefficient αz

defined as the ratio of the two respective speeds of the chip
Vcopi ,pi

and Vzi,pi
and parallel to the cutting edge (17).

tg
(
αzi

) = Vzi,pi

Vcopi ,pi

. (17)

4.2 Validation of the model

Results from the theoretical model developed in this study
are compared with the results of experimental milling
tests by Albert [5] on a square tool of uncoated car-
bide machining a 42CrMo4 steel (close to AISI 4142
steel) [23]. The Johnson-Cook behavior law (5) parame-
ters for the used material are given in the Table 1. The
cutting conditions tested are shown in Table 2. In Albert’s

Fig. 13 Comparison of analytical and experimental moments
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Table 4 Errors between simulated and experimental moments

Test no. 
Mx/O (%) 
My/O (%) 
Mz/O (%)

1 − 52 − 82.1 − 36.6

2 − 48, 15 − 78.3 − 12.5

3 − 75 − 74.3 − 25.7

4 − 65 − 44.6 − 12

work, the dynamometer measurement accuracy at its ori-
gin of the dynamometer, point O in a fixed reference, is
±50N on forces (Fx , Fy , Fz) and ±4Nm on moments
(Mx/O, My/O, Mz/O ).

For a cutting edge angle κr of 45◦, a rake angle γ0 of 6◦ and
a cutting edge inclination angle λs of 6◦, the experimental
and simulated cutting forces are shown in Fig. 12.

The comparison of the results from the model and the
experimental measurements shows a good correlation of the
cutting forces (Table 3), given their level and the scatter dis-
persion of the measuring apparatus. The deviations in force
for component Ft are greater than those for component Fc;
this difference indicates that a more detailed description
is needed of the true tribological phenomena at the tool-
material interface. Figure 13 shows the components of the
moment for the four tests from Table 2.

For the moment components, the comparison between
the simulation results and the experimental tests reveals
a considerable difference between the two approaches
(Table 4). This is due to the fact that only the moments cre-
ated by the velocity gradient generating the rotation of the
chip are taken into account, while the rotation of the mate-
rial in the shear zones [2] is not considered. Other studies
[1] and [22] suggest that new behavior laws may be able to
take into account the rotation of the material and the tribo-
logical phenomena at the tool-material interfaces. Thus, in
this case, the moments identified by this model represent,
on average, about 10% of the total cutting power.

5 Conclusion

This work represents a new approach to the calculation of
cutting actions (forces and moments) based on calculating
strains and strain rates in the main shear zones. The orienta-
tion of the tool in space creates strong stress gradients which
then directly influence the elementary cutting forces. A con-
siderable variation in strains and strain rates was calculated
between the two extreme points of the cutting edge, generat-
ing a significant difference between the stress fields. These
gradients generate a cutting force gradient between the vol-
ume elements and this results in the appearance of a tool
tip moment which contributes to total power consumption.
The moments determined here are generated by geometry

and kinematics and do not consider the rotation of the mate-
rial in the cutting zones or the tribological phenomena at the
tool-material interfaces. In order to calculate all moments
generated during cutting, a new behavior law will need to
be developed, which can take into account the rotation of
the material in the shear zones and the friction between the
material and the tool. This behavior on the part of the mate-
rial generates significant cutting moments which contribute
to the calculation of total power [3].
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