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Abstract Chatter is a self-excited vibration between the work-
piece and tool. In view of the non-stationarity of the chatter
signal, the synchrosqueezing transform (SST) is used to process
vibration signals during cutting, which can enhance the energy
ratio of chatter. In order to eliminate the interference of tooth
passing frequency and its harmonics, a time-frequency filtering
method is applied to filter these frequency components out.
Then, the vibration signal is reconstructed by inverse SST and
statistical indexes in time and frequency domains are calculat-
ed. The cutting tests are carried out to select statistical indexes
which are sensitive to chatter. The effectiveness of the proposed
method is verified with cutting tests, and the results show that
the chatter can be detected successfully before severe chatter
marks are left on the workpiece.
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1 Introduction

Chatter is the self-excited vibration of the tool-workpiece system,
affecting the improvement ofmachining precision and efficiency.
In the high-speed machining process of complex parts, the

damping effect in the cutting process is weakened, which makes
the chatter more likely to occur than the low-speed cutting [1, 2].
The chatter problem has become a bottleneck in restricting ma-
chining precision and efficiency [3–6]. In order to solve the prob-
lem of chatter in high-speed machining process, it is of great
theoretical significance and application value to study the early
chatter detection methods, which will effectively promote the
development of intelligent machine tool and manufacture [7].

The key issue of chatter detection is to process the online
measured signals and extract the sensitive indicators to reflect
the chatter occurrence. Therefore, how to choose the most appro-
priate method from a variety of signal processing methods and
extract the most sensitive features have been the focus of many
research. When the chatter occurs, the vibration of the tool-
workpiece system is strengthened in the time domain, so the
statistics feature in time domain is widely used for chatter detec-
tion. From another point of view, when chatter occurs, the fre-
quency components of the measured signals will change and
some new frequency components will appear near the natural
frequency of the system. Therefore, it is common to detect chatter
in the frequency domain according to the change of the frequen-
cy components [8, 9]. Due to the nonstationary properties of the
measured signals in machining processes, the signal processing
methods in time-frequency domain attract more attentions. The
information in both time and frequency domains can be com-
bined together to achieve better results. So far, the time-
frequency (TF) analysis method applied to machine chatter mon-
itoring mainly includes short-time Fourier transform (STFT)
[10], continuous wavelet transform (CWT) [11–13], wavelet
transform [14–18], empirical mode decomposition (EMD)
[19–21], and local mean decomposition (LMD) [22].

Due to the constraints of Heisenberg’s uncertainty princi-
ple, the time and frequency resolutions in traditional TF anal-
ysis are limited. Aiming at high resolution in TF plane,
Daubechies et al. [23] proposed a new time-frequency
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rearrangement method—synchrosqueezing transform (SST),
which greatly improves the time-frequency aggregation based
on the original time-frequency results. In our previous work
[24], the SST was used to analyze the sound signals recorded
with the microphone and a time-frequency representation is
obtained. The singular value decomposition (SVD) method
was employed to condense the TF matrix, and the first-order
singular value was calculated as the chatter indicator. In this
paper, the vibration signals are measured and then processed
with SST. In order to eliminate the interference of tooth pass-
ing frequency and its harmonics, a time-frequency filtering
method is applied and then, the filtered signal is reconstructed
by inverse SST. After that, statistical indicators in time and
frequency domains are calculated to detect chatter.

2 Signal preprocessing based on synchrosqueezing
transform

SST is mostly based on STFT or CWT as the preliminary TF
processing method, and an important characteristic of CWT is
that the time or frequency resolution is different in the high and
low frequency bands. Therefore, the TF distribution of the chatter
frequencies at different band positions will be different if CWT is

used for the initial TF processing. When SST is performed sub-
sequently, the frequency resolution of different bands is different,
and the effect of energy aggregation and rearrangement on the
theoretical center frequency will be also different. Considering
the feature extraction based on the whole TF distribution in the
later stage, if the index is extracted based on different frequency
bands, it may affect the uniformity of the benchmarks and cannot
guarantee the calculation and comparison in the same scale.
Therefore, the SST based on STFT is more suitable for chatter
detection because of its uniform time-frequency resolution.

2.1 Brief overview of synchrosqueezing transform

The principle and calculation method of STFT-based
synchrosqueezing transform are as follows.

For a given single component harmonic signalx(t) = A
cos(ω0t), the TF distribution of STFT Sx(u, ξ)is obtained from
the Plancherel theorem as Eq. (1).

Sx u; ξð Þ ¼ 1

2π
∫þ∞
−∞ x̂̂ ωð Þĝ̂ ω−ξð Þejωudω

¼ A∫þ∞
−∞ δ ω−ω0ð Þĝ̂ ω−ξð Þejωudω
¼ Aĝ̂ ω0−ξð Þe jω0u
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Fig. 1 The sketch of TF filtering
method based on SST. a The
original TF matrix Tx. b The TF
filterH. cThe TFmatrix Tc. dThe
filtered TF matrix Te
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where x̂ ωð Þ andĝ ω−ξð Þ are the Fourier transform of x(t)-
and a Gaussian window functiong(t − μ), μ is the time-
shifting variable, and ξ is the frequency shifting variable
ofg(t).

Then, the time-shift partial derivative of Sx(u, ξ)is calculat-
ed with Eq. (2).

∂uSx u; ξð Þ ¼ Aĝ̂ ω0−ξð Þe jω0u � jω0 ¼ jω0 � Sx u; ξð Þ ð2Þ

(a) The waveform in time domain

(c) The TF distribution before filtering

(b) The spectrum in frequency domain

(d) The TF distribution after filtering

Fig. 2 The result of TF filtering
method. a The waveform in time
domain. c The spectrum in
frequency domain. c The TF
distribution before filtering. d The
TF distribution after filtering

Table 1 Statistical characteristic quantity in time domain

Dimensional indicators Expression Dimensionless
indicators

Expression

Mean value

x ¼ 1
N ∑

N

n¼1
xe

Waveform index

SF ¼

X rms

Xa

Variance

σ2 ¼ 1
N ∑

N

n¼1
xe−xð Þ 2

Peak index
CF ¼ max xej j

X rms

Root mean square value

X rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

n¼1
x2e

s Impulse index
IF ¼ max xej j

Xa

Root square amplitude

X s ¼ 1
N ∑

N

n¼1

ffiffiffiffiffiffiffi
xej jp� �

2

Margin index
CLF ¼ max xej j

X s

Absolute mean amplitude

Xa ¼ 1
N ∑

N

n¼1
xej j

Skewness index

S ¼
∑
N

n¼1
xe−xej j3

N−1ð Þσ3

Peak-to-peak value Xp =max(xe) −min(xe) Kurtosis index

K ¼
∑
N

n¼1
xe−xej j4

N−1ð Þσ4
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If Sx(u, ξ) ≠ 0, the instantaneous frequency (IF) can be esti-
mated by Eq.(3).

ω0 ¼ ∂uSx u; ξð Þ
jSx u; ξð Þ ð3Þ

The above equation shows that the ratio of the partial de-
rivative of the STFT result to the STFT result itself can reflect
the intrinsic frequency information of the signal to be ana-
lyzed. This ratio is called the IF estimation operator, i.e., the
frequency shift operator~ωx, as shown in Eq. (4).

~ωx u; ξð Þ ¼ ∂uSx u; ξð Þ
jSx u; ξð Þ ð4Þ

The rearrangement formula is given as Eq. (5) and the
reconstitution formula is given as Eq. (6) according to the
reconstitution nature of STFT.

Tx;S u;ωð Þ ¼ ∫Sx u; ξð Þδ ω−~ωx u; ξð Þ
� �

dξ ð5Þ

x uð Þ ¼ 1

2πg 0ð Þ ∫Tu;S u;ωð Þdω ð6Þ

2.2 TF filtering method based on SST

Although new frequency components emerge in the spec-
trum of the signal in chatter state, the tooth passing fre-
quency and its harmonics dominate in the early stages of

Table 2 Statistical characteristics in frequency domain

Statistical
indicators

Expression Statistical
indicators

Expression

P13

P13 ¼ ∑
K

k¼1
se− 1

k ∑
k

k¼1
se

� �
2
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f k
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4se
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K
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f k−P16ð Þ4se
KP4
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f k

4se
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f k
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Fig. 3 The experimental setup Fig. 4 The experimental setup of FRF test
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transition. Thus, the chatter frequency components are
easily to be submerged. If the chatter indexes are only
extracted from the frequency spectrum, the changes of
indicators may not be obvious, lagging the detection time
of chatter. Therefore, the signal should be filtered, and the
forced vibration frequencies will be filtered out to elimi-
nate their interference on the extraction of chatter frequen-
cies. Thus, the weak chatter frequency and the relative
proportion of chatter components can be enhanced for
the subsequent indicator extraction.

In this paper, a TF filtering method based on SST is
presented. Some fixed frequency components are directly
filtered out from the time-frequency distribution to obtain
the remaining time-frequency information. The specific
algorithm for this TF filtering is described below:

(1) Construct a time-frequency filterH[m, n]with the
same size as the time-frequency matrix to be
filteredTx[m, n], where m and n represent the fre-
quency and time order numbers, respectively. In this
time-frequency filter, according to the location. In
this timefrequency filter, the TF zone R with the
center frequency fc and bandwidth 2d is constructed
according to the location of the selected frequency
components. The time-frequency coefficients in this

zone are 1 and the other time-frequency coefficients
outside are 0, as shown in Eq. (7).

H m; n½ � ¼ 1 m; n½ �∈R
0 m; n½ �∉R

�
ð7Þ

(2) Do multiplication of corresponding elements in the TF
matrixTx[m, n] and the TF filter H[m, n], as shown in
Eq. (8), which makes the TF coefficients in matrix Tx
correspond to the location of R multiplied by 1 and other
coefficients in matrix Tx are multiplied by 0. In this way,
only some specific frequency band components fc ± d in
Tx are reserved and the new TF matrix Tcis obtained:

T c m; n½ � ¼ Tx m; n½ �⊙H m; n½ � ð8Þ

where ⊙ means the multiplication of corresponding elements
of two matrixes with the same size.

(3) SubtractingTcfrom the original time-frequency matrixTxto
obtain a new time-frequency matrixTethat filters out the

(a) X direction (b) Y direction 

Fig. 5 FRFs of the STTsystem. a
X direction. b Y direction

Table 3 Experimental
parameters of four milling states Milling states Spindle speed

(r/min)
Feedrate (mm/
min)

Width of cut
(mm)

Depth of cut
(mm)

Stable milling 8500 1500 20 1

Chatter transition phase
I

8500 1500 20 2

Chatter transition phase
II

8500 1500 20 3

Severe chatter 8500 1500 20 5
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(a)TF distribution in stable milling (b) The filtered TF distribution in stable

milling

(c) TF distribution in transition phase I (d) The filtered TF distribution in transition

phase I

(e) TF distribution in transition phase II (f) The TF filtered distribution in transition

phase II
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frequency band fc ± d and retains other time-frequency
components, which is similar to the bandstop filter.

As shown in Fig. 1, the multiple frequency componentsf1, f2,
f3, and f4 are filtered out from the original TF distribution, and the
remaining time-frequency parts are retained for further analysis.

The vibration signal in stable cutting process and its
spectrum are shown in Fig. 2a and b, respectively, where
the basic frequencyfand its harmonic frequencies have
been marked out. The original milling signal is processed
by SST to obtain the unfiltered TF distribution as shown
in Fig. 2c. Then, a TF filter is constructed with a series of
TF zones where the basic frequencyfand its harmonic fre-
quencies are the central frequency and the filtering of TF

distribution is performed, as shown in Fig. 2d. It can be
found that the basic frequency and its harmonic frequen-
cies are nearly filtered, which proves the effectiveness of
TF filtering method.

3 Statistical indicators in time and frequency
domains

3.1 Time-frequency reconstruction of the signal

In comparison with the traditional time-frequency rearrange-
ment method, the SST only rearranges the coefficients in the
frequency direction, so it is reversible. The vibration signal
can be reconstructed after time-frequency filtering, which
can provide the basis for indicator extraction in time domain
and frequency domain.

The steps of reconstruction of SST are shown as follows:

1) For the measured signalx(t), the time-frequency distribution
Tx is obtained according to rearrangement algorithm of SST.

2) Time-frequency filtering is applied to TF distribution Tx,
so that the forced vibration components (i.e., tooth

�Fig. 6 TF distributions and the filtered TF distributions of four different
milling states. a TF distribution in stable milling. b The filtered TF
distribution in stable milling. c TF distribution in transition phase I. d
The filtered TF distribution in transition phase I. e TF distribution in
transition phase II. f The TF filtered distribution in transition phase II. g
TF distribution in severe chatter. h The filtered TF distribution in severe
chatter
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passing frequency and its harmonic frequencies) can be
filtered out and a new time-frequency matrix Te is
obtained.

3) Inverse transformation is carried out on time-frequency ma-
trix Te according to Eq. (6) to reconstruct a new signalxr(t).

3.2 Statistical indicators of the reconstructed signal in time
domain

After time-frequency filtering and reconstruction, the new
signal is mainly composed of noise components in the sta-
ble milling state. When chatter occurs, the amplitude in
time domain will increase rapidly in a short time. This
change can be quantitatively analyzed by the statistical
feature extraction of the signal in time domain.

The commonly used time domain statistical indicators
include dimensional indicators, such as variance, mean
square value, and peak-to-peak value, as well as non-
dimensional indicators, such as waveform indicators and
kurtosis indicators. Dimensional indicators have the ad-
vantage of reflecting the amplitude and energy changes
of the vibration signal in the time domain. For example,
the mean value can reflect the changing trend of the signal
center, and the peak-to-peak value can reflect vibration

intensity of the signal. However, the dimensional indexes
are easily to be affected by cutting parameters (cutting
speed, feed rate, etc.). The dimensionless indexes are gen-
erally calculated on the ratio of the dimension indexes,
which are not likely to be affected by the working condi-
tion and have little effect on the result when the measuring
point is slightly changed.

The commonly used statistical indexes in time domain are
shown in Table 1, where xe(n) represents the reconstructed
signal, and N is the data length (n = 1, 2,⋯,N).

3.3 Statistical indicators of the reconstructed signal
in frequency domain

The new time domain signal obtained by synchrosqueezing
reconstruction in the stable milling state is mainly composed
of noise components, and the frequency distribution is dis-
persed. When the chatter occurs, there will be new chatter
frequencies near the natural frequency of the system. The
position of main energy peak moves from high frequency to
low frequency in frequency spectrum, and finally concentrat-
ed on the chatter frequency. In addition, the main frequency
band becomes narrower as the degree of dispersion reduced.
Therefore, the change from stable cutting to chatter can be
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reflected by measuring the position of the main frequency
band and the degree of frequency dispersion.

The commonly used statistical characteristic indexes in fre-
quency domain are listed in Table 2, where se(k) is the fre-
quency spectrum of the reconstructed signalxe(n), Krepresents
the number of spectral line,k = 1, 2,⋯,K, and fk is the fre-
quency value of thekthspectral line. IndicatorsP16, P19, and
P20 reflect the position change of the main frequency band,
and indicatorsP13, P17, P21, P23, and P24 reflect the degree of
dispersion or concentration of a spectrum.

4 Experiments

The equipment setup is shown in Fig. 3. The experiment was
carried out in a three-axis vertical milling machine tool, and
the highest speed of the spindle (Kessler DMS 080) can reach

24,000 r/min. Two PCB piezoelectric acceleration sensors
with the sensitivity of 1000 mV/g, installed at the end of the
spindle, are used to collect the vibration signal during the
milling process. The experimental data are collected and
stored by the AVANTMI-7008 Econ data acquisition system.
Three kinds of tests were carried out, which are frequency
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Fig. 10 The vibration signals during cutting
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response function (FRF) test, statistical indicators selection,
and cutting tests under variable depth of cut.

4.1 Frequency response function test

As the chatter frequencies appear near the low-order natural
frequencies of the spindle-tool holder-tool (STT) system, it is
necessary to test the FRF of the STT system to obtain the
lower-order natural frequencies. The arrangement of the ex-
perimental equipment is shown in Fig. 4. The hammer is
Kistler 9722 with the sensitivity of 12.85 mV/N; two acceler-
ation sensors DYTRAN 3032Awith the sensitivity of 10 mV/
g are attached at the tool tip in the X and Y direction. Data
acquisition and analysis are carried out by the modal analysis
software of Econ data acquisition instrument, and the FRFs
are shown in Fig. 5.

From the FRFs in Fig. 5a, b, it is concluded that the lower-
order natural frequencies of the STT system in the X direction
are 703.8, 1243, and 2006 Hz, and the lower-order natural
frequencies in the Y direction are 725, 932, 1299, and
2028 Hz. Therefore, the sensitive frequency bands are defined
as C1 (700–950 Hz), C2 (1150–1400 Hz), and C3 (1900–
2150 Hz).

4.2 Statistical indicators selection

The statistical indicators in Section 3 are verified with cutting
tests to find the sensitive indicators. To simplify the problem,
four typical cutting tests (i.e., stable milling, transition phase I
of chatter, transition phase II of chatter, and severe chatter)
were carried out, in which the depth of cut are 1, 2, 3, and
5 mm, respectively. All the cutting parameters are listed in
Table 3.

The vibration signals are processed by the SST and TF
filtering. The TF distribution and filtered TF distribution are
shown in the Fig. 6. As the chatter becomes more severe, the
energy at chatter frequencies becomes higher.

The filtered TF distribution is reconstructed based on SST,
and the new time domain signal is obtained. Then, the statis-
tical indexes in time domain are calculated according to
Table 1, as shown in Figs. 7 and 8. Through the comparison
in different states, root square amplitudeXs and the root mean
square value Xrms, absolute mean amplitudeXa, and peak-to-
peak valueXpare selected as indicators in time domain, which
are sensitive to the chatter.

The statistical indexes in frequency domain are calculated
in accordance with Table 3, and the results are shown in Fig. 9.
P13, P17, P21, and P24 are selected as the chatter indicators in
frequency domain, which are more sensitive to the chatter
information.

4.3 Cutting tests under variable depth of cut

The cutting tests under variable depth of cut were carried out
to verify the effectiveness of the proposed method. The three-
edge cemented carbide end milling cutter was used in this
experiment, whose diameter is 10 mm. The workpiece is the
thin-walled plate of 7075 aeronautical aluminum alloy, which
is designed as right trapezoid to make the axial depth of cut
continuously increase from 0 to 10 mm. The spindle speed is
10,200 r/min, feed per tooth is 0.01 mm/z, and the cutting
width is 0.2 mm. The milling method is dry milling, and the
direction is down milling. The vibration signal in the cutting
process is shown in Fig. 10. From the signal in time domain, it
is difficult to tell when the chatter occurs.

The vibration signals were processed with SST and the TF
filtering method; the chatter indicators were extracted from the
reconstructed signal in time domain and frequency domain.
As the depth of cut increases, there is a transition from steady
to chatter in milling process. The threshold for chatter detec-
tion is set based on 3σ criterion, that is, the threshold interval
is[μ − 3σ, μ + 3σ], where μis the mean value of the chatter
indicator and σ is the standard deviation in stable milling state.
During the cutting process, the value of indicators keeps

(a) sX (b)
13
P

Fig. 11 The statistical indexes
changes with time. a Xs and b P13
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changing. If the indicator data is in the interval, the cutting
state is stable; otherwise, chatter occurs.

In order to shorten the length of the paper, only two statis-
tical indexes are shown, i.e., the root square amplitudeXsand
P13 in frequency domain, as shown in Fig. 11.

The microscope MZDH0670 was used to observe the sur-
face of the workpiece; the first obvious chatter mark in the
chatter transition zone appears at about 65 mm, as shown in
Fig. 12. Since the start time of cutting was 1.5 s and the feed
rate was 288 mm/min, the time at the first chatter marks was
about 15.04 s. Thus, the chatter was detected before severe
marks were left on the workpiece.

In addition, the milling chatter experiments under different
cutting width and feed per tooth were carried out respectively,
and the experimental data of each group were analyzed. It is
found that the proposed chatter detection method has good
applicability in dealing with different conditions.

5 Conclusion

This paper presented a chatter detection method based on
statistical indicators in milling process. The synchrosqueezing
transform was used to preprocess the vibration signals. After
the rearrangement of SST, the chatter energy aggregation was
improved. The TF filtering was used to filter out the tooth
passing frequency and its harmonics, which reduced the inter-
ference of these frequency bands and increases the proportion
of the chatter frequencies, making the early weak chatter sign
easier to be extracted. Eight statistical indexes were selected as
chatter indicators from the reconstructed signal after TF filter-
ing, including the root square amplitudeXs, the root mean
square value Xrms, absolute mean amplitudeXa, and peak-to-
peak valueXp in time domain, as well as P13, P17, P21, and P24

in frequency domain. The experimental results showed that
the chatter can be detected successfully before severe chatter
marks were left on the workpiece.
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