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Abstract Linear toolpath is generated by commercial
computer-aided manufacturing (CAM) systems and it is most
popular in computer numerical control (CNC) systems.
Considering the discontinuity between two neighbor linear seg-
ments, corner feedrate is restricted and axis accelerations and
jerks always exceed the given limitations, leading to low effi-
ciency and poor accuracy, respectively. To overcome these two
drawbacks, a novel curvature-smooth optimal transition algo-
rithm and a jerk-continuous feedrate-scheduling scheme with
axis jerk limitations are proposed in this paper. Firstly, based on
the theoretical feedrate constraints with bounded axis accelera-
tions and jerks, a quintic B-spline curve is adopted to generate
curvature-smooth toolpath. To improve machining efficiency,
corner feedrate is regarded as the optimal objective to deter-
mine the transition B-spline curve. Afterwards, considering the
curvature-smooth toolpath, a corresponding five-phase jerk-
continuous feedrate profile is provided to achieve higher ma-
chining precision. Finally, compared with curvature-
continuous toolpath in simulations and experiments, the pro-
posed algorithms can bound the axis kinematic parameters as
expected and have advantages on improving machining preci-
sion especially under high kinematic limitations.

Keywords Quintic B-spline . Smooth curvature . Optimal
transition algorithm . Axis jerk limitations . Jerk-continuous
feedrate scheduling

1 Introduction

Parametric toolpath has been considered to be superior in ma-
chining efficiency and quality [1]. However, the shortcomings in
accurate interpolation and suppression of feedrate fluctuation
still exist [2, 3]. Thus, linear toolpath is still widely adopted in
practical CNC systems [3] and it is significant to improve the
performance for linear toolpath. Since corners of linear toolpath
only have C0 continuity, the velocity must be confined lowly.
Consequently, frequently accelerating and decelerating contrib-
ute to the reduction in machining efficiency. Moreover, the ac-
celeration and the jerk at corner points would also oscillate,
resulting in serious vibration and poor surface texture. In order
to deal with the problems, most researchers propose local corner
transition and global curve-fitting methods to raise the toolpath
smoothness and reduce contour error. Compared to curve-fitting
methods [4–6], corner transition replaces corners with circular
and parametric trajectory locally. Thus, it is high-efficient and
transition error-constrained, making it widely implemented in
CNC systems. Additionally, spline transition has the potential
to fulfill continuous curvature and curvature derivative, which is
significant to enhance geometric continuity. Thus, spline transi-
tions, including Bezier and B-spline curves, are more popular
than circle methods [7].

Du et al. [8, 9] utilized two symmetrical cubic Bezier
curves and optimized the toolpath with curvature variation
energy (CVE). Moreover, in order to obtain smoother
toolpath, Fan et al. [10] applied two quartic Bezier curves to
obtain G3 continuous toolpath, and the advantages of G3 con-
tinuity were elaborately compared with G2 continuity.
Subsequently, the transition algorithm was improved to obtain
better characters [11] while the toolpath continuity is reduced
to G2. Sencer et al. [12] employed one quintic Bezier curve to
blend the corners and gained G2 continuity. The peak curva-
ture was determined by offline numerical simulations and the
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relations to corner angle were found and applied directly. Sun
et al. [13] and Zhang et al. [14] presented a spline curve to
obtain higher machining efficiency and better quality.
However, the geometric continuity was not analyzed. To ob-
tain smooth linear and circular segments, Pateloup et al. [15]
proposed a non-uniform cubic B-spline while the curvature
only can be calculated by simulation methods. Furthermore,
Walton et al. [16] used quintic PH curves to blend sharp cor-
ners with theoretical curvature extreme; however, this method
did not aim at CNC machining areas. Moreover, only tangen-
tial jerks, instead of axis jerks, are bounded in literatures
[9–17], which cannot ensure machining quality especially in
high kinematic limitations.

With the linear segments after smoothing, the next stage is to
design a feedrate profile and schedule it along the transition
toolpath. In this process, researchers have developed various
methods including jerk-limited [18] and jerk-continuous
acceleration/deceleration (ACC/DEC, AD) feedrate profiles.
Zhao et al. [9] and Sun et al. [13] applied a polynomial jerk-
limited feedrate-scheduling scheme in real-time CNC interpola-
tor and a look-ahead method was also presented. In order to
improve machining efficiency, Jahanpour et al. [19] proposed
an S-shaped feedrate planning. Furthermore, Fan et al. [20] de-
signed a time-optimal 15-phase AD profile with jerk-continuous
feedrate and the superiority of the proposed profile was discussed
over jerk-limited ones. In order to obtain a smoother AD profile,
Lee et al. [21] andWang et al. [22] proposed an offline feedrate-
scheduling scheme and the continuous jerk was ensured by the
trigonometric feedrate profile. Moreover, Huang et al. [23] uti-
lized sine series to obtain optimal feedrate profile and the ma-
chining efficiency was slightly improved compared to Lee’s
method [21].With the feedrate profile, Dong et al. [24] presented
a generalized time-optimal bidirectional scanning algorithm with
computational efficiency and robustness. Therefore, this scan-
ning method is generally adopted in recent studies [9, 11].

In this paper, linear segments are improved to a G3 contin-
uous toolpath and the deduced corner feedrate constraints are
utilized to optimize the corner feedrate to achieve better ma-
chining efficiency. Afterwards, feedrate scheduling with con-
tinuous jerk is provided. The reminder of this paper is orga-
nized as follows. A B-spline curve transition algorithm is pre-
sented to generate a G3 continuous toolpath in section 2, and
the middle control point is adjusted to obtain optimal corner
feedrate considering axis jerks. Section 3 provides a novel
jerk-continuous feedrate-scheduling scheme with axis jerk
limitations, and a five-phase feedrate scanning is adopted. In
section 4, the simulations and experiments are conducted to
validate the proposed algorithms and the comparisons with
previous methods are given in machining efficiency and
contouring performance. Finally, the conclusions are given
in section 5.

2 B-spline transition algorithms

2.1 B-spline curve

In order to generate a smooth toolpath, a quintic B-spline with
nine control points is utilized between two adjacent linear
segments. As shown in Fig. 1, i ts knot vector is
[0 0 0 0 0 0 0.5 0.5 0.5 1 1 1 1 1 1]. The control points P0,
P1, P2, P3 and P5, P6, P7, P8 lie on two linear segments, re-
spectively, which means that the transition curve is tangential
to two linear segments; hence, the toolpath isG1 continuous at
least. Considering the symmetry and local preserving property
of B-spline curve, the control point P4, on the transition an-
gular bisector, is adjustable to achieve better geometrical fea-
tures. Based on de Boor-Cox algorithm, the quintic transition
segment is defined parametrically as follows:

r uð Þ ¼ ∑
8

i¼0
Ai uð Þ Pi; u ∈ 0; 1½ � A4 ¼ 8u4 5−8uð Þ; u∈ 0; 0:5½ �

8 1−uð Þ4 8u−3ð Þ; u∈ 0:5; 1½ �
�

A0 ¼ 1−2uð Þ5; u∈ 0; 0:5½ �
0; u∈ 0:5; 1½ �

�
A5 ¼ 8u5; u∈ 0; 0:5½ �

8 1−uð Þ3 31u2−27uþ 6
� �

; u∈ 0:5; 1½ �
�

A1 ¼ 10u 1−2uð Þ4; u∈ 0; 0:5½ �
0; u∈ 0:5; 1½ �

�
A6 ¼ 0; u∈ 0; 0:5½ �

40 1−uð Þ2 2u−1ð Þ3; u∈ 0:5; 1½ �
�

A2 ¼ 40u2 1−2uð Þ3; u∈ 0; 0:5½ �
0; u∈ 0:5; 1½ �

�
A7 ¼ 0; u∈ 0; 0:5½ �

10 1−uð Þ 2u−1ð Þ4; u∈ 0:5; 1½ �
�

A3 ¼ 8u3 31u2‐35uþ 10
� �

; u∈ 0; 0:5½ �
8 1−uð Þ5; u∈ 0:5; 1½ �

�
A8 ¼ 0; u∈ 0; 0:5½ �

2u−1ð Þ5; u∈ 0:5; 1½ �
�

ð1Þ

In Fig.1, θ is half the angle between two adjacent linear
segments and ex, ey, ez are the unit orthogonal vectors along

the spatial coordinate axes. For convenience, we assume d0 :
d1 : d2 : d3 : dΔ = 1 : k0 : k1 : k2 : kΔ and denote λ i = d0

876 Int J Adv Manuf Technol (2018) 95:875–888



sec θ〈e1, ei〉, μi = d0〈en, ei〉, i = x, y, z, where e1 = PtranPstr/
‖PstrPtran‖ and en = (e1 + e2)/‖e1 + e2‖ stand for the unit vector
of linear segments and the transition angular bisector, respec-
tively; hence, the control points yield:

P4¼Ptrans þ kΔ ∑
i¼x;y;z

μiei

P3¼Ptrans þ ∑
i¼x;y;z

λiei

P2¼Ptrans þ 1þ k0ð Þ ∑
i¼x;y;z

λiei

P1¼Ptrans þ 1þ k0 þ k1ð Þ ∑
i¼x;y;z

λiei

P0¼Ptrans þ 1þ k0 þ k1 þ k2ð Þ ∑
i¼x;y;z

λiei

ð2Þ

Thereafter, the toolpath continuity is discussed, and for
convenience, the first and second derivatives of curve and
curvature are denoted as:

ru ¼ dr
du

; ruu ¼ d2r

du2
;κu ¼ dκ

du
;κuu ¼ d2κ

du2
ð3Þ

Since there is only one double multiple-knot, r(u) has C3

continuity at u ∈ (0, 0.5) ∪ (0.5, 1) and C2 continuity at P4. In
order to ensure C2 continuity at junction points P0 and P8,
normal vector must be zero, which can be achieved in the
following equation:

ruuju¼0 ¼ 0
ruuju¼1 ¼ 0

�
⇒k2 ¼ k1 ð4Þ

For a 2DB-spline curves, dr=ds ¼ T
!

and d2r=ds2 ¼ κN
!
,

where T
!
; N
!

are the unit tangential and the normal vector and
κ is the curvature; hence,

d3r

ds3
¼ dκ

ds
N
!þ κ

dN
!
ds

¼ dκ
ds

N
!−κ2 T

! ð5Þ

In order to guarantee G3 continuity, the continuity of cur-
vature derivative is needed and it is expressed as follows:

dκ
ds

¼ dκ
du

=
ds
du

¼ κu

ruj j ð6Þ

Considering Eq. (1), dκ/ds|u = 0 = 0 and dκ/ds|u = 1 = 0 are
qualified. When u = 0.5, the curvature derivative is calculated
below:

dκ
ds

����
u¼0:5−

¼ −
96 kΔ−k0 þ 1ð Þ

25d20tan
3θ

dκ
ds

����
u¼0:5þ

¼ 96 kΔ−k0 þ 2ð Þ
25d20tan

3θ

9>>=
>>;⇒k0 ¼ kΔ þ 1 ð7Þ

Obviously, dκ=ds u¼0:5− ¼ −dκ=dsj ju¼0:5þ , and considering
G3 continuous, dκ=ds u¼0:5− ¼ dκ=dsj ju¼0:5þ is required; thus,
k0 = kΔ + 1 can be concluded.

All in all, the toolpath is G3 continuous and the undeter-
mined transition parameters are kΔ, k1.

2.2 Feedrate constraints

After transition, the linear segments are improved to the mixed
trajectory of linear and spline segments, and the corner
feedrate should be constrained to satisfy the acceleration and
jerk limitations. In this case, the feedrate constraints are ana-
lyzed as follows.

The tangential velocity, acceleration, and jerk are denoted
as v, a, j, respectively, and the arc length is assumed as s.
Then, the vector forms of velocity, acceleration, and jerk are
shown as follows [10]:
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v ¼ v
dr
ds

a ¼ a
dr
ds

þ v2
d2r

ds2

j ¼ j
dr
ds

þ 3av
d2r

ds2
þ v3

d3r

ds3

ð8Þ

For the G3 continuous toolpath, since the first, sec-
ond, and third curve derivatives about arc length are
continuous, continuous jerk can be obtained. In addi-
tion, according to Eq. (5), the kinematic parameters
can be re-expressed as:

v ¼ v T
!

a ¼ aT
!þ v2κN

!

j ¼ j−v3κ2
� �

T
!þ 3avκþ v3

dκ
ds

� �
N
! ð9Þ

To analyze the corner feedrate limitations, the
feedrate at the corners is considered as a constant value,
and the tangential acceleration and jerk at corners are
equal to zero. Based on that, the kinematic parameters
can be simplified:

v ¼ vt T
!þ vnN

!¼ v T
!

a ¼ at T
!þ anN

!¼ v2κN
!

j ¼ J t T
!þ JnN

!¼ −v3κ2 T
!þ v3

dκ
ds

N
! ð10Þ

In Eq. (10), the coefficients on tangential and normal
directions should obey acceleration and jerk limitations
simultaneously. As a matter of fact, the limitations in
these directions are usually equal to each other for
CNC machines [1–3, 8–12]. Therefore, the tangential
and normal kinematic limitations are set as At = An =
Am and Jt = Jn = Jm in this part, where Am, Jm are the
given maximum. Moreover, with the bounded tangential
and normal kinematic parameters, the axis accelerations
and jerks would also be limited [21]. Correspondingly,
the feedrate constraints are given as follows:

vAlim ¼
ffiffiffiffiffiffi
An

κ

r

vJlim ¼ min

ffiffiffiffiffiffi
J t
κ2

3

r ffiffiffiffiffiffiffiffi
;
Jn
κs

3

r ! ð11Þ

Furthermore, the tangential limitations of acceleration and
jerk in Eq. (11) are consistent with conclusions in reference
[17], which validates the process. In order to satisfy accelera-
tion and jerk limitation simultaneously, the corner feedrate is
determined by Eq. (12), where F is the command feedrate
from G codes.

v ¼ min vAlim; v
J
lim; F

� � ð12Þ

2.3 Determination of optimal transition curve

2.3.1 Scaling factor of transition curve

As shown in Fig. 1, considering the symmetry and convex
hull property of B-spline curve, the maximum deviation from
the original linear segments occurred at u = 0.5, and it is cal-
culated as follows:

ε ¼ P4−r 0:5ð Þk k ¼ d0
2

1−kΔð Þ ð13Þ

The error constraint allowed by CNC systems is denoted as
εm, then d0 is constrained as d0 = 2εm/(1 − kΔ).

Assume the transition point is the coordinate origin, the
corner error ε can be separated from the curve function, and
the curve can be re-written as:

r ¼ εr̂̂ ð14Þ

Where r̂ is related to the transition parameters except cor-
ner error ε. Obviously, corner error ε can also be separated
from ru and ruu, which are utilized to calculate the curvature
and its derivative. Besides, they are re-written as:

κ ¼ ru � ruuk k
ruk k3 ¼ r̂̂u � r̂̂uuk k

ε r̂̂uk k3 ¼ κ̂̂
ε

κs ¼ dκ
du

=
ds
du

¼ κu

ruk k ¼ κ̂̂u
ε2 r̂̂uk k ¼ κ̂̂s

ε2

ð15Þ

Therefore, corner error ε can simply scale the transition
curve. Since the curvature and its derivative are independent
of linear segments, the conclusion also applies to the situation
that the transition point is not the coordinate origin. In other
words, when the corner error increases, the transition curve
will be zoomed in as a whole.

Considering Eqs. (11), (12), and (15), the corner
feedrate limitations, which are restricted by acceleration
and jerk, can be re-expressed as follows, where the co-

efficients αA ¼ ffiffiffiffiffiffiffiffi
εAm

p
;α J ¼

ffiffiffiffiffiffiffiffiffiffi
ε2 Jm

3
p

are only determined
by the given corner error ε and kinematic limitations
Am, Jm. Meanwhile, the coefficients have no relation
with the smooth toolpath.

vAlim ¼
ffiffiffiffiffiffiffi
Am

κ

r
¼

ffiffiffiffiffiffiffiffiffi
εAm

κ̂̂

r
¼ αAffiffiffî

κ̂
p

vJlim ¼ min

ffiffiffiffiffiffiffi
Jm
κ2

3

r ffiffiffiffiffiffiffiffiffi
;
Jm
κs

3

r !
¼

ffiffiffiffiffiffiffiffiffiffi
ε2 Jm

3
p

max
ffiffiffiffiffi
κ̂̂2

3
p ffiffiffiffiffiffiffi

; κ̂̂s3
p
 �

¼ α J

max
ffiffiffiffiffi
κ̂̂2

3
p ffiffiffiffiffiffiffi

; κ̂̂s3
p
 �

ð16Þ
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2.3.2 Transition optimization

For the B-spline transition curve, the global feedrate optimal
parameters kΔ, k1 are searched to maximize the minimum
value of the corner feedrate and the optimal objective is illus-
trated as follows:

vlim ¼ max
kΔ;k1

min min
u

vAlim
� �

;min
u

vJlim
� �h in o

ð17Þ

For a given corner error, the optimal method is conducted
to any transition angle changed from 1° to 90° and the

parameters kΔ, k1 are interpolated in the range of [−1, 0]
and [0, 1]. The curvature and its derivative are calculated at
500 discrete points along the transition B-spline parameter;
thereafter, the curvature and its derivative extreme in Eq.
(17) can be detected.

As shown in Fig. 2, for a given transition angle and
kinematic limitations (45° and Am = 2000 mm/s2, Jm =
300000 mm/s3 as examples), the corner feedrate with
acceleration limitation (FPAL) and jerk limitation
(FPJL) can be determined offline, respectively. In addi-
tion, corner feedrate with acceleration and jerk

k
k

k

k

k
k

k
k

m

m

A
J

(a)

(c)

(b)
Fig. 2 Feedrate planes with
acceleration and jerk limitations.
a FPAL. b FPJA. c FPAJL

k k

(a) (b)

Fig. 3 The optimal parameters w.r.t transition angle. a kΔ. b k1
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limitations (FPAJL) is combined by the smaller values
of FPAL and FPJL, which is also shown in Fig. 2c.
According to Eq. (17), the maximum of FPAJL is the
optimal corner feedrate and the global feedrate optimal
parameters kΔ, k1 are determined. Similarly, the optimal
parameters can be searched for each transition angle
from 1° to 90° as shown in Fig. 3.

In order to utilize the optimal transition curve in real-
time CNC systems, a bisquare linear-fitting method is
employed to obtain the relations between optimal

parameters and transition angle, and the fitting results
yield:

kΔ ¼
−0:9; 0 < θ < 0:05π
−0:4407θ−0:9707; 0:05π < θ < 0:3π
−0:2145θ2 þ 0:6720θ−0:9997; 0:3π < θ < 0:5π

8<
:

k1 ¼ 0:1; 0 < θ < 0:089π
−0:2021θ2 þ 0:6085θ−0:05474; 0:089π < θ < 0:5π

�
ð18Þ

Similarly, the curvature and its derivative, which are
scaled by corner error from Eq. (15), can also be cal-
culated offline to reduce the time cost on real-time mo-
tion plan process.

In the transition optimization process, the transition param-
eters kΔ, k1 are optimized under the given corner error and
kinematic limitations. When these given parameters change,
the optimal kΔ, k1 would vary correspondingly. In order to
avoid the time-consuming process, FPAL, FPTJL, and FPAJL
can be normalized and re-calculated by replacing the coeffi-
cients αA, αJ with the new ones simply. Thus, a new FPAJL
could be obtained efficiently and implemented in CNC sys-
tems directly.

3 Motion planning with G3 continuous toolpath

Based on Eq. (8), continuous jerk can be achieved for G3

continuous toolpath, and compared to jerk-limited and trape-
zoid AD profile, jerk-continuous feedrate has advantages in
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Fig. 4 An ACC period with jerk-continuous AD profiles
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reducing vibration and improving the machining quality [25,
26]. In this section, a novel jerk-continuous AD profile is
designed for the optimal G3 continuous toolpath.

3.1 Jerk-continuous AD profile

A linear jerk profile is designed and the boundary conditions
are shown in Eq. (19), where T is an ACC or DEC period.

j 0ð Þ ¼ j
T
2

� �
¼ j Tð Þ ¼ 0

j
T
4

� �
¼ − j

3T
4

� �
¼ Jm

8>><
>>: ð19Þ

Afterwards, the velocity, acceleration, and jerk can be ob-
tained as follows:

j ¼

4Jm
t
T

−4Jm
t−

1

2
T

� �
T

4Jm
t−T
T

� �

8>>>>>>><
>>>>>>>:

; a ¼

2Jm
t2

T

−Jm
2t2

T
−2t þ T

4

� �

Jm
2t2

T
−4t þ 2T

� �

8>>>>>><
>>>>>>:

;

v ¼

v0 þ 2

3
Jm

t3

T

v0−Jm
2t3

3T
−t2 þ tT

4
−
T 2

48

� �

v0 þ Jm
2t3

3T
−2t2 þ 2tT−

13T 2

24

� �

8>>>>>><
>>>>>>:

ð20Þ

The ACC profiles are shown in Fig. 4, where Am and Jm are
the tangential acceleration and jerk limitations, respectively.

From Eq. (20), the end velocity is expressed as follows:

vT ¼ v Tð Þ ¼ v0 þ 1

8
JmT 2 ð21Þ

The period time is T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 vT−v0ð Þ=Jm

p
and the ACC or

DEC block length yields:

Li ¼ s Tð Þ−s0 ¼ v0T þ 1

16
JmT3 ð22Þ

Considering Eqs. (21) and (22), the jerk-determined feedrate
vJT can be obtained by the following equation, and this equation
can be solved by Newton-Raphson methods efficiently.

vJT þ v0
� �2

vJT−v0
� � ¼ 1

2
Li2 Jm ð23Þ

Moreover, the maximal acceleration occurs at the middle of
ACC period and am = a0.5T = JmT/4 < Am. Thus, the
acceleration-determined feedrate vAT also needs to satisfy the
following equation simultaneously.

vAT ¼ 2Am
2

Jm
þ v0 ð24Þ

Table 1 The AD parameters of all types

Type Conditions AD parameters

Type 1 ve = vF
Ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 F−vsð Þ

p
=Jm; Te ¼ 0 Tc ¼ Li−L̂2

� �
=F; vm ¼ vF

Type 2 vs = vF
Ts ¼ 0; Te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 F−veð Þ

p
=Jm Tc ¼ Li−L̂2

� �
=F; vm ¼ vF

Type 3
Li < L̂2 vs≤ve Ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ve−vsð Þ

p
=Jm; Te ¼ 0 Tc ¼ 0; vm ¼ ve

Type 4
Li < L̂2 vs > ve Ts ¼ 0; Te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 vs−veð Þ

p
=Jm Tc ¼ 0; vm ¼ vs

Type 5
Li > L̂1 Ts ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 F−vsð Þ

p
=Jm Te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 F−veð Þ

p
=Jm Tc ¼ Li−L̂1

� �
=F; vm ¼ vs

Type 6
L̂2 < Li < L̂1 Calculate Ts by Eq: 29ð Þ Te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts

2 þ 8 vs−veð Þ
q

=Jm Tc ¼ 0; vm ¼ vs þ JmTs
2=8
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3.2 Feedrate-scheduling scheme

In order to determine the reachable corner feedrate, a bidirec-
tional scanning algorithm is implemented in feedrate schedul-
ing and the procedure is generally illustrated in reference [9].
Different from reference [9], a jerk-continuous AD profile is
adopted instead of the jerk-limited ones. In the stage of
feedrate scheduling, the proposed AD profile is applied to
connect the reachable corner feedrate and the procedure is
similar to reference [21]. The main difference is that the
toolpath is composed of linear and B-spline segments while
that in reference [21] is a continuous NURBS curve.

In this part, the feedrate-scheduling parameters consist of
feedrate and period ones. For feedrate parameters, we denote
vs, ve, vm as the start, end, and maximum velocities, respec-
tively, while the period parameters are composed of the accel-
eration period Ts and the deceleration period Te as well as the
constant feedrate period Tc. Besides, the parameters to be de-
termined are vm, Ts, Te, Tc.

All kinds of AD profiles are given in Fig. 5 and the type-
determinant process is described in the following.

If the command feedrate occurred at the end position and
ve = vF, it corresponds to type 1 in Fig. 5 while the condition
vs = vFmeans type 2. As shown in Fig. 5a, b, the CV (constant
velocity) period exists in both cases. Otherwise, the AD pro-
files are illustrated as follows.

Firstly, if the AD block length is longer than the reference
length Lr1, which means that the maximum feedrate is equal to
the command one, thus ACC, CV, and DEC profiles exist. In
this type, since max(ve, vs) < vm = vF and the determination of
period parameters Ts, Te, Tc is similar no matter ve > vs or ve
< vs, we give ve > vs as an example and Fig. 5c provides the

AD profile. Reference length Lr1 is calculated as:

Lr1 ¼ vs þ vFð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 vF−vsð Þ

J

r
þ ve þ vFð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 vF−veð Þ

J

r
ð25Þ

Secondly, if the AD block length is shorter than the refer-
ence length Lr2, the length needed by accelerating or deceler-
ating from vs to ve, only ACC or DEC profile exists. The AD
profile is shown in Fig. 5e or f, and it corresponds to type 5 or
6. The reference length Lr2 is calculated as:

Lr2 ¼ vs þ veð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 vs−vej j

J

r
ð26Þ

Finally, if the block length Li satisfies Lr2 < Li < Lr1, this
case is type 4, and the maximum feedrate vm is smaller than
the command feedrate. The CV profile does not exist while
ACC and DEC profiles exist. Similar to type 3, we also pro-
vide ve > vs without loss of generality. In this type, with the

acceleration period Ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 vm−vsð Þp

=2Jm and deceleration

period Te ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 vm−veð Þp

=2Jm, the relationship between Ts
and Te can be re-written as:

Te ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ts

2 þ 8 vs−veð Þ
Jm

s
ð27Þ

Based on Eq. (22), the AD block length is also illustrated:

Li ¼ vsTs þ 1

16
JmTs

3 þ veTe þ 1

16
JmTe

3 ð28Þ

Considering Eq. (27), acceleration period Ts can be calcu-
lated by the following equation, where Δv = vs − ve.
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Fig. 7 The curvature and its
derivative profile for BTAG3 and
BeTAG2

Table 2 The comparisons
between BTAG3 and BeTAG2 Algorithm MC (1/mm) CBE (1/mm) MCD (1/mm2) CDBE (1/mm3)

BTAG3 6.4 44.8 42.3 2234.7

BeTAG2 6.0 47.5 156.2 5945.2
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JmΔvTs
4−4JmLiTs

3 þ 8Δv2Ts
2−64LivsTs

þ 32Li2−
64

J
Δv ve þ vsð Þ2

¼ 0 ð29Þ

In the end, parameters for all types of AD profiles are listed
in Table 1.

After feedrate-scheduling process, the interpolation
methods of linear and B-spline segments are generally applied
in references [9, 20]. In order to reduce the feedrate fluctuation
between linear segments and spline segments, a predictor-
corrector interpolation method [27] is utilized in this step
while the second-order Taylor interpolation is applied to other
positions. Then, the sampling points can be computed in CNC
systems and transferred to driver systems.

4 Simulations and experiments

In this section, the proposed algorithms are validated and com-
pared with previous work in reference [12] where a G2 con-
tinuous toolpath is obtained by quintic Bezier curve, and the
minimal curvature is considered to determine the transition
Bezier curve. For conciseness, the proposed B-spline transi-
tion algorithms with G3 continuity and Bezier transition algo-
rithms with G2 continuity are abbreviated as “BTAG3” and

“BeTAG2,” respectively. For BTAG3, axis jerk limitations are
considered while they are not bounded for BeTAG2.

4.1 Simulations

In this part, a linear toolpath is designed, and after path
smoothing, the linear segments with G0 continuity are en-
hanced toG2 andG3 continuous toolpaths, respectively, which
are shown in Fig. 6a. The detailed path-smoothing results at
sharp corners are zoomed in Fig. 6b. The corner error con-
straint is set as ε = 0.1 mm, and the jerk-continuous scheduling
is done under kinematic constraints vm = 100 mm/s, Am =
7000 mm/s2, and Jm = 750000 mm/s3.

The curvature profile and curvature derivative profile are
illustrated in Fig. 7a, b. And BTAG3 has smooth curvature
and continuous curvature derivative, which guarantees more
stable kinematic features for the vibration reduction.
However, for BeTAG2, continuous curvature is obtained
while its curvature derivative is uncontinuous as shown in
Fig. 7b.

In order to evaluate the quality of toolpath, maximal cur-
vature (MC) and curvature-bending energy (CBE) are defined
in references [8, 10, 28]. Since axis jerks are bounded in this
paper, maximal curvature derivative (MCD) and curvature
derivative-bending energy (CDBE) are put forward for the
first time. The CBE and CDBE have the following mathemat-
ical forms, where N is the number of corners. The results are
shown in Table 2.

CBE ¼ ∫s0 κk k2ds ¼ ∑
N

1
∫10 κk k2 ruj jdu

CDBE ¼ ∫s0 κsk k2ds ¼ ∑
N

1
∫10

κuk k2
ruj j du

ð30Þ

Based on Table 2, BTAG3 has much lower CBE, MCD,
and CDBE; hence, the toolpath generated by BTAG3 is

Table 3 The comparison between BTAG3 and BeTAG2 with axis jerk
limitations

Algorithm BTAG3 BeTAG2

Cycling time 0.811 0.863

Cycle time reduction (%) Base 6.4%

Digital 
command

Encoder 
Feedback

PCI Bus
 (reference points)

Cartesian X-Y motion system

dSPACE controller
-Real-Time control
-Closed control loop (5 KHz)
-Adaptive sliding mode

Work station PC
-Read  G codes
-Generate smooth trajectory
-Motion plan and Interpolation

Fig. 10 Layout of the
experimental platform
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smoother than BeTAG2. In the optimal process of BTAG3,
maximal corner feedrate with axis jerk limitations, instead of
minimal curvature, is taken as the optimal objective; thus, MC
of BTAG3 is about 7% larger than that of BeTAG2. However,
considering that the MCD of BTAG3 is about 70% smaller,
the corner feedrate of BeTAG2 will become unavoidably
slower when axis jerks are bounded.

Afterwards, for BTAG3 and BeTAG2, the simulation re-
sults are analyzed. The interpolation reference points are ap-
plied to compute the actual feedrate, axis accelerations, and
axis jerks. As illustrated in Fig. 8, all of the actual values in
terms of axis accelerations and axis jerks can be constrained
within the setting limitations for BTAG3. When it comes to
BeTAG2, the axis jerk limitations exceed greatly at sharp cor-
ners. However, for high-precision machining, the axis jerks
should be bounded to reduce vibration and tracking error.

For BeTAG2, when axis jerk limitations are bounded with
the same method in this paper, the feedrate and axis jerk pro-
files are elaborated in Fig. 9, and they are all subjected to the
given limitations. However, the corner feedrate becomes
much lower than that of BTAG3, and the machining efficiency
is given in Table 3. Compared to BTAG3, the cycling time of
BeTAG2 increases by about 6.4%.

4.2 Experiments

Experimental validations and comparisons between BTAG3
and BeTAG2 are performed on the Cartesian X-Y motion

system driven by two linear motors. Current mode of servo
amplifiers is set to validate the proposed algorithms. As shown
in Fig. 10, a closed loop control is executed by a dSPACE 1202
real-time controller with an adaptive control model, and the
closed loop sampling period is set as 0.2 ms. Linear encoders
serve as position sensors with a resolution of 156.25 nm.

A more curvedly starfish curve is utilized to compare the
performance between BTAG3 and BeTAG2 under jerk-
continuous feedrate profile. The chord error constraint and
the kinematic constraints are the same as that in simulations.
Within the given tolerance, the G3 continuous trajectory is
shown in Fig. 11a, and the detailed path-smoothing results
around several corners are shown in Fig. 12b.

The kinematic profiles of BTAG3 and BeTAG2 and the
constant feedrate are shown in Fig. 12a. For the constant
feedrate method, AD processes are not conducted around the
sharp corners. Therefore, it has the shortest cycling time,
which is 7.745 s; however, large violations of axis acceleration
limitations exist in this strategy. Furthermore, since the axis
jerks of constant feedrate motion are much larger than that of
the other two methods, it is not given in Fig. 12d, e. BeTAG2
blend the corners by curvature-optimal Bezier curves and axis
accelerations are bounded in feedrate scheduling. However,
from Fig. 12d, e, axis jerk limitations are not respected. In
contrast, the toolpath of BTAG3 is optimized to obtain the
highest corner feedrate with axis jerk limitations; thus, the
corner feedrate is reduced compared to other methods while
the axis jerks are under limitations.
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Fig. 13 Experimentally recorded
contour error

Table 4 Machining efficiency
and contour performance Methods Cycling time (s) Cycle time reduction (%) Contour error

(μm)
Mean contour error
reduction (%)

Max Mean

BTAG3 8.354 Base 100.624 17.453 Base

BeTAG2 8.052 − 3.62 141.181 23.875 36.80

Constant feedrate 7.745 − 7.29 683.253 65.694 276.41
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The jerk profile would affect the contour errors and vibra-
tory behavior of motors [26], and as shown in Fig. 13, the
conclusion is verified in the tracking response. Since the
closed loop bandwidths are limited, largest contouring errors
occur at sharp corners. The machining efficiency and contour
performance of the three methods are summarized in Table 4.
Compared with BTAG3 proposed in this paper, the cycling
time of BeTAG2 is reduced by about 3.62%; nevertheless, the
maximal and mean contour errors increase a lot, and the mean
contour error increases by nearly 36.80%. The constant
feedrate motion has higher efficiency but the contour error is
unacceptable.

For different kinematic limitations, the machining efficien-
cy and contour performance of three methods have similar
conclusions as shown in Table 5. With larger limitations, the
contour performance of BTAG3 has more obvious improve-
ment compared to BeTAG2 and the constant feedrate strategy.

5 Conclusions

A novel toolpath-smoothing algorithm with axis jerk limita-
tions for linear segments is presented in this paper. The quintic
B-spline transition curve is optimally designed to generate a
curvature-smooth toolpath. Correspondingly, a five-phase
jerk-continuous feedrate profile is designed and the feedrate
scheduling with bidirectional scanning process is adopted.
Compared to previous works, the proposed methodology has
the following advantages: (1) the toolpath after transition sat-
isfies G3 continuous and can be scaled by corner error, which
is rigorously constrained in path-smoothing algorithm; (2) the
feedrate constraints with axis jerk limitations are given, and
the smooth toolpath is optimized by maximizing the corner
feedrate to improve machining efficiency; and (3) considering
the trajectory continuity, continuous jerk is guaranteed in
feedrate scheduling correspondingly. Finally, the proposed al-
gorithms are validated by simulations and experiments com-
pared to BeTAG2 and the constant feedrate strategy in effi-
ciency and precision. The simulation and experiment bench-
marks indicate that the proposed algorithms with bounded

axis jerks can improve the contour performance dramatically
with identical machining efficiency.
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