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Abstract In traditional processing, a large number of G01
blocks are adopted to discretize free surface or curve for NC
machining. But, the continuity of G01 line segments is only
C0, which may lead to discontinuity of axis acceleration,
resulting in the frequent fluctuation of tool motion at the junc-
tions in high-speed machining, deteriorating the quality of
work piece, and reducing processing efficiency. To solve this
problem, a local smoothing interpolation method is proposed
in this paper. At first, the analytic relationship between the
continuity of the trajectory and the continuity of the axes mo-
tion is first systematically described by formula. Based on this
relationship, a local smoothing algorithm and a feed-rate
scheduling method are proposed to generate a C2 continuous
tool path motion with axis-acceleration continuity. The local
smoothing algorithm smoothes the corners of G01 blocks by
the cubic B-spline according to the cornering error tolerance
specified by the user. After the feed rate at critical points of
smoothed tool path was determined by a modified bidirection-
al scanning algorithm by considering constrains of chord error
and kinematic property, an iterative S-shape feed rate sched-
uling is employed to minimize residual distance caused by
round of time while ensuring the continuity of feed rate and
acceleration. Then, a look-ahead interpolation strategy com-
bined with smoothing algorithm and feed-rate scheduling as
mentioned is proposed for real-time interpolation of short line

segments. At last, simulations are conducted to verify the ef-
fectiveness of the proposed methods. Compared with the tra-
ditional G01 interpolation, it can significantly improve the
processing efficiency and shorten the processing time within
error tolerance.

Keywords Local smoothing . C2 continuity . B-spline .
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1 Introduction

As the development of free form surfaces machining technol-
ogy, traditional linear (G01) and circular arc (G02/G03) inter-
polation cannot meet the requirements of high-speed and
high-accuracy anymore [1]. But, most of the post-processing
software are still in the form of a huge number of small linear
segments to approximate complex surfaces, and only C0 con-
tinuous can be guaranteed at the junction of blocks. In the
high-speed processing, such trajectory may cause the discon-
tinuity of the acceleration, triggering the oscillations of tool
and deteriorating the accuracy and surface quality. In order to
improve the continuity of the trajectory and realize the high-
order continuous interpolation method, a large number of
scholars have made relevant research on the smoothing of
the traditional G01/G02/G03 trajectory, mainly from the fol-
lowing two different aspects to solve the problem, i.e., global
smooth and local corner smooth.

Global smooth is used to fit several G01 points generated
by CAM by using a high-order continuous curve. And, the
fitting approach can be divided into interpolation method and
approximation method [2]. The interpolation method [2–5]
constructs a curve that will accurately pass the given G01
points, but it does not need to be accurate most of the time,
as long as the approximation error is guaranteed within a
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given tolerance. The approximation method [6, 7] generally
uses the least-square or other optimization method to approx-
imate the given G01 points with a curve that does not strictly
pass the points but can act as a compressor with less data to
express a large number of points. The main problem of this
method is that the error does not have an analytical expression,
and real-time interpolation is not easy to achieve.

The global smooth generally needs for continuous judg-
ment, to search breakpoint, if the continuity of original trajec-
tory generated by CAM is poor, it will increase the processing
burden, and there is mostly no analytical formula for the ap-
proximation error. In order to address these problems, local
smooth method was proposed, which rounds the G01 corner
at the junctions that is only C0 consecutive with high order
curve. This method requires lower demand to original trajec-
tory continuity and has a good control of smoothness. Different
from the global method, the tool path generated by the local
method is a blended trajectory consisted of curve and linear
segments. As the development of parameter curve, most
scholars used the parameter curve to blend the corner.
Pateloup et al. [8] and Zhao et al. [9] utilized cubic B-spline
to smooth three-axis linear tool path corner. Beudaert et al. [10]
developed this method to five-axis cases by utilizing a pair of
B-spline curves. Similarly, Tulsyan et al. [11] employed quintic
B-spline to smooth five-axis Tool Tip Center (TCP) trajectory,
in order to guarantee C3 continuous at the junctions. However,
the high order B-spline needed by Tulsyan et al. [11] unavoid-
ably increased the computation burden. Yutkowitz et al. [12]
proposed a three-axis tool path corner-smoothing method uti-
lizing two fourth-order polynomials. Farouki et al. [13] pro-
posed a blending method using seven degree PH curves. Bi
et al. [14] adopted a pair of cubic Bezier curves to round the
corner. Although the above scholars have proposedmethods to
improve the continuity of trajectory, they did not explain the
relationship between the continuity of trajectory and the con-
tinuity of acceleration of each axis. In this paper, such relation-
ship is systematically analyzed by formula. On this basis, a
local smooth method and a feed rate profile scheduling algo-
rithm to ensure the acceleration of each axis in the process of
trajectory are proposed.

After the trajectory is generated, it is also necessary to sched-
ule the feed rate. Considering different constraints, it can gen-
erate different feed rate profiles. Chord error constraint, accel-
eration constraint, and jerk constraint are usually considered in
high-speed machining [15–17]. Feed rate scheduling can be
divided into offline scheduling and online scheduling. Offline
scheduling [15] can achieve optimal speed profile, but offline
scheduling has its shortcomings. After offline scheduling, the
parameters in the high-speed machining process are not conve-
nient to adjust. Online scheduling needs to consider the prob-
lem of simplifying calculation and try to avoid iterative com-
putation. With the improvement of computer hardware perfor-
mance, online interpolation is becoming more and more

common. Because of the efficiency of bidirectional scanning
algorithm [9, 18], it is used to calculate the speed at the critical
point in real time. However, the specific bidirectional scanning
algorithm needs to be combined with the actual feed rate profile
scheduling method. The S-shape feed rate profile has been
widely studied for its smoothness with limitation of jerk.
Erkorkmaz et al. [19] proposed a seven-phase S-shape feed rate
profile. As the seven-phase S-shape feed rate profile is com-
plex, some scholars made a simplification based on it and pro-
posed a five-phase S-shape feed rate profile [4, 20]. However,
the acceleration of five-phase profile cannot maintain the max-
imum value and may increase the final cycle time because of
the lack of two uniform acceleration phases. And, the majority
of the literature does not mention how to deal with the problem
of the residual distance caused by the round of the interpolation
cycle. Ignoring this problem will lead the feed rate of the final
run results to be discontinuous, causing a sudden change,
resulting in vibration. This paper presents a modified bidirec-
tional scanning which was used as preparation of a seven-phase
S-shape feed rate scheduling. The acceleration of this schedul-
ing method can reach and maintain the maximum value. On the
other hand, residual distance will be compared with the given
error limit for iteration scheduling, so that the feed rate profile
maintain continuous. Combined with the smoothing algorithm,
it can realize smooth motion of tool axis acceleration in the end.

In this paper, a local smoothing interpolation method for
short line segments to realize continuous motion of tool axis
acceleration is proposed. The rest of this paper is organized as
follows: a local tool path smoothing algorithm is presented in
Sect. 2. In Sect. 3, combined with feed rate scheduling, a real-
time interpolation algorithm is developed. Simulations are
conducted in Sect. 4, and the conclusions are given in Sect. 5.

2 Local tool path smoothing scheme

In order to guarantee the continuity of the motion of each axis
of machine during processing, it should ensure the C2 conti-
nuity of the trajectory with respect to arc length and the con-
tinuity of tangential velocity and acceleration. Please refer to
the Appendix section for the proof of this conclusion. Based
on this conclusion of relationship between track continuity
and movement continuity for each axis, to avoid complex
calculation while ensuring the continuity, cubic B-splines are
used to generate C2 continuous tool paths after smoothing.
Suppose C(u) represents an pth-degree B-spline which is de-
fined as follows [21]:

C uð Þ ¼ ∑
n

i¼0
Ni;p uð ÞPi; for 0≤u≤1 ð1Þ

where {Pi} are the control points (n + 1 points), and {Ni,p(u)}
are the pth-degree B-spline basis functions defined on the non-
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periodic (or non-uniform) knot vector (m + 1 knots)U with U
given by

U ¼ 0;…; 0; upþ1; :…um−p−1; 1; :…; 1
� �

;where m

¼ nþ pþ 1 ð2Þ

The {Ni,p(u)} can be calculated by using the recurrence
formulas as follows:

Ni;0 uð Þ ¼ 1; if ui≤u < uiþ1

0; otherwise

�
Ni;p uð Þ ¼ u−ui

uiþp−ui
N i;p uð Þ þ uiþpþ1−u

uiþpþ1−uiþ1
Niþ1;p−1 uð Þ;

where
0

0
¼ 0

ð3Þ

Set p = 3, n = 4, and U = [0, 0, 0, 0, 0.5, 1, 1, 1, 1]. Then,
{Ni,p(u)} can be calculated according to Eq. (3).The next step
is to get the control points {Pi} under a series of limiting
condition. Finally, the B-spline C(u) can be obtained to
smooth the corners. Figure 1 describes a typical corner in

the tool path composed of linear segments, i.e., Q0Q1 and

Q1Q2, whose lengths are denoted as L1 and L2, respectively.
The resulting tool path is composed of two lines:Q0P0;P4Q2

and a cubic B-spline with five control points as P0, P1, P2, P3,
and P4. In the following, the C2 continuity constraint and
approximation error constraint are constructed as the limiting
conditions for the control points {Pi}.

2.1 C2 continuity constraint

Local tool path smoothing results in a curve-line-blending
trajectory, and C2 continuity means that the blended tool path
has second-order parametric continuity. The parametric func-
tions of the line can be expressed as

L ¼
x tð Þ ¼ x0 þ at
y tð Þ ¼ y0 þ bt
z tð Þ ¼ c0 þ ct

8<
: ð4Þ

while (a, b, c)T is the vector of line, (x0, y0, z0) is one point on
the line, and t is the parameter. So, the derivatives of the
position vector P with respect to the tool path length s for a
linear tool path profile can be derived:

Ls ¼ dL
ds

¼ dL
dt

dt
ds

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p a
b
c

2
4

3
5

Lss ¼ dL2

ds2
¼ 0

8>>>><
>>>>:

ð5Þ

The non-uniform knot vector U ensures that the B-spline
curve will pass through the first and the last control point P0

and P4. In order to achieve C
2 continuity at the junction points

P0(u = 0) and P4(u = 1), the following equation should be
satisfied:

Cs u¼0;1

�� ¼ dC
ds

¼ Cu•us ¼ Ls

Css u¼0;1

�� ¼ d2C

ds2
¼ Cuu•us2 þ Cu•uss ¼ Lss ¼ 0

8><
>: ð6Þ

where

us ¼ 1

Cuk k
uss ¼ −

Cu•Cuu
T

Cuk k4

8>><
>>:

By substituting u = 0 into Eq. (6), the solution leads to the
relationships of control points as

P1−P0

P1−P0k k ¼ Q1−Q0

Q1−Q0k k ð7Þ

24P0−36P1 þ 12P2 ¼ 0⇒ P0−P2k k ¼ 3

2
P1−P2k k ð8Þ

where ||·|| is the Euclidean norm.
Equation (7) implies that Q0, P0, and Q1 should be collin-

ear, defining the length of line P1P2 as l. From Eq. (8), the

length of line P0P2 is evaluated as 1.5l. To simplify the solu-
tion of control point locations, the third control point P2 is
positioned at the corner point Q1. Since the knot vector is
set as U = [0, 0, 0, 0, 0.5, 1, 1, 1, 1], the B-spline is symmet-
rical about the angular bisector of the corner angle. For this
property, another relationship between P2, P3, and P4 can be

Q0

Q1(P2) Q2

L2

P0

P1

P4P3

Fig. 1 Local tool path smoothing

Qi-1
Qi+1

Qi+2

(P2
i)

P4
i

(P2
i+1)

P4
i+1

Fig. 2 Example of two corners
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easily derived, where the length of line P3P2 and P4P3 are l
and 1.5l, respectively. Once the length l is determined, the
control points {Pi} will be fixed. The length lwill be evaluated
by the following discussion.

2.2 Approximation error constraint

Since the symmetry of the constructed spline is across the
angular bisector of the corner angle, the maximum approxi-
mation error (εmax) occurs at the middle point of the spline,
and its value is the length from P2 to C(0.5). Note the
cornering angle as θ. The maximum approximation error is
evaluated as

εmax ¼ P2−C 0:5ð Þk k ¼ P2−
1

4
P1 þ 1

2
P2 þ 1

4
P3

� �				
				

¼ 1

2
lcos

θ
2

� �
ð9Þ

On the other hand, the maximum approximation error εmax
should be limited by user-defined tolerance e,

εmax ¼ 1

2
lcos

θ
2

� �
≤e⇒l≤

2e

cos
θ
2

� �
0
BB@

1
CCA ð10Þ

Consider that the length of P0P2 should be no more than

the length ofQ0Q1. The same happens to P2P4 withQ1Q2. In
general, there are two corners existing in the start and the end
of one G1 block, as shown in Fig. 2. So, the sum of lengths

Pi
2P

i
4 and Piþ1

0 Piþ1
2 should be less than that of QiQiþ1.

Finally, the length l should be determined by

l ¼ min
2e

cos
θ
2

� � ;
L1
6
;
L2
6

0
BB@

1
CCA ð11Þ
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Fig. 3 The flowchart of the
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Then, the arc length Cli of ith corner spline Ci(u) can be
evaluated by adaptive Simpson’s method [22] offline, which is
than stored into buffer for interpolation.

3 Real-time interpolation algorithm

In order to feed position commands to the position controller
of the CNC, a real-time interpolation algorithm is proposed in
this section. As per the flowchart shown in Fig. 3, there are
three main procedures in the whole interpolation algorithm.

In the interpreter, the introduction of the look-ahead win-
dow can ensure that the interpolation algorithm can handle
trajectory comprising a large number of linear segments.
When the tail segment of the window forward direction has
completed the interpolation process, the look-ahead window
would move forward. Then, the real-time look-ahead functions
will be implemented for the trajectory in this new window.

The real-time look-ahead functions are composed of local
tool path smoothing, segmentation of the smoothed trajectory,
determination of the suitable feed rate at critical point, and the
feed-rate scheduling process. At first, the smoothed trajectory
by using the scheme in Sect. 2 is segmented into the feed rate
scheduling units (FSUs) by the pointsCi(0.5) on the ith corner
spline before scheduling the feed rate profile. The length Lui
of each unit is approximately calculated, which is used as
input information for the following steps. Then, the suitable
speed of start/end points Vs/Ve of each feed-rate scheduling

unit is determined by a modified bidirectional scanning pro-
cess which does not need to solve the equations. Based on the
data (Lui, Vs, Ve), a seven-phase S-shape feed rate profile as
shown in Fig. 4 is scheduled in each feed rate scheduling unit
to get the sum of sampling time Ti in each stage, the feed rate
vi, and the arc-length si at the end of each stage.

Finally, the arc-length incrementΔs at each sampling time
is calculated. According to the location of Δs, a linear inter-
polation or spline interpolation is adopted for computation of
the current interpolation point which is used as position com-
mand feed to controller.

3.1 Segmentation of the smoothed trajectory

Although the smoothed trajectory in Sect. 2 has C2 continuity,
it still could violate the kinematic property for high-speed
machining at critical points which has the local maximum
curvature [23]. Considering the similar problem, there is curve
segmentation module or curve splitting module in most
NURBS interpolator before determining the corresponding
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Fig. 4 S-shape feed rate profile with seven phases
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feed rates at these critical points with different constraints
[23–25]. Likewise, the trajectory resulted in Sect. 2 is firstly
segmented into FSUs by the critical points in this paper. And,
the determination of the suitable feed rates for the critical
points is discussed in the following sub-section.

Asmentioned in Sect. 2, the smoothed trajectory is curve-
line-blending. The curvature for linear sub-trajectory is al-
ways zero. For curve sub-trajectory, the curvature can be
calculated by

k uð Þ ¼ C
0
uð Þ � C} uð Þ		 		
C

0
uð Þ		 		 ð12Þ

The curvature profiles for some curve sub-trajectories
are shown in Fig. 5.The smoothed trajectories result from
two G01 blocks with various cornering angles. The length
of each block is set as 100 mm. And, the maximum
smoothed approximation error εmax is set as 0.1 mm.
From Fig. 5, it can be seen that the curve parameter u
corresponding to the local maximum curvature is approx-
imately equal to 0.5. Consequently, the points Ci(0.5)
which have the curvature as ki(0.5) at each concern curve
Ci(u) are taken as the critical points. Then, the trajectory
is segmented into the feed rate scheduling units by the
points Ci(0.5) on the ith corner spline. Therefore, there
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FSU

(1)

FSU

(2)

FSU

(3)

FSU

(4)

( )

FSU

(n)

( )

FSU
(N-1)

FSU
(N)

Backward Scanning 

Forward Scanning

N Feedrate Scheduling Units

n Feedrate Scheduling Units

V1

V2

V3

V4

V5

Vn

Vn+1

V(N-1)

VN

Fig. 8 Bidirectional scanning of
FSUs

1734 Int J Adv Manuf Technol (2018) 95:1729–1742



exist n feed rate scheduling units for a smoothed trajecto-
ry with n G01 blocks. Each unit is consisted of one linear
sub-segment and one or two half of B-spline curve sub-
segments, as shown in Fig. 6. The length of ith feed rate
scheduling unit Lui can be calculated by

Lui ¼
Lsi þ Cli=2 if i ¼ 1

Cl i−1ð Þ=2þ Lsi þ Cli=2 if 1 < i < n
Cl i−1ð Þ=2þ Lsi if i ¼ n

8<
: ð13Þ

where Cli(i = 1, 2...n) have been discussed in Sect. 2, and
Lsi(i = 1,2...n) is the length of ith linear sub-segment which

is equal to the length of Q0P
1
0 (i = 1) or Pi

4P
iþ1
0 (1 < i < n) or

Pn−1
4 Qn (i = n). Finally, the values of Lui and ki(0.5) are stored

into buffer for the following procedure.

3.2 Determination of the suitable speed of critical point

Before scheduling the feed rate profile of FSU, the suit-
able feed rates at its start/end points Vs/Ve which are the
critical point feed rates should be determined as well. A
modified bidirectional scanning as shown in Fig. 8 for
seven-phase S-shape feed rate profile based on [25] is
proposed for this determination procedure, which does
not require solving the equations of Vs/Ve in each FSU.
And, the constraints of command feed rate, chord error,
and acceleration/jerk limitations including centripetal/
tangent one are considered.

3.2.1 Modified backward scanning

Supposing that there exist N feed rate scheduling units in the
look-ahead window as shown in Fig. 3 and the number of feed
rate scheduling unit in look-ahead window for the real-time
interpolation is n(n ≤N), modified backward scanning should
be performed from the N-th to the second feed rate scheduling

unit. The start point feed rate of the backward scanning which is
at the end ofN-th feed rate scheduling is set as zero to make sure
the tool motion stop at the end of the look-ahead window. To
constrain the tangent acceleration/jerk limitations, the discrete S-
shape acceleration profiles as shown in Fig. 7 are adopted in
these feed rate scheduling units. The algorithm of the computa-
tion of final feed rateVe after the acceleration is given as follows:

Algorithm 3.1. Computation of final feed rate after dis-
crete S-shape acceleration

Input: the initial feed rate Vs, the length for acceleration
Sa, the sampling period Ts, the tangent acceleration/jerk
limitations At/Jt
Output: the final feed rate Ve after acceleration

1ð ÞSet a ¼ 0; ve ¼ Vs;Ve ¼ Vs; atemp ¼ 0; T1 ¼ 0; T2 ¼ 0;
1acc ¼ 0

2ð ÞTi ¼ T1 þ 1; atemp ¼ T1•J t•Ts;
if atemp≤At;

a ¼ atemp; ve ¼ Vs þ T1•a•Ts;
lacc ¼ T1•Ts Vs þ veð Þ;

else
T1 ¼ T1−1; T2 ¼ T2 þ 1;
if a≠At&T2 ¼ 1ð Þ

T2 ¼ T 2 þ 1;
ve ¼ ve þ aþ Atð Þ•Ts

else ve ¼ ve þ At•Ts

a ¼ At;

lacc ¼ 1

2
Ts 2T1 þ T2ð Þ Vs þ veð Þ

3ð Þif Sa−lacc > 0;Ve ¼ ve; go to step 2ð Þ;
else return Ve

where a, atemp, and lacc are intermediate variables for the
procedure.

Table 1 Expressions for the seven-phase S-shape AD profile

τ j(t) a(t) v(t) s(t)

τ1 ∈ [0, T1) Jmax Jmaxτ1
Vs þ 1

2 Jmaxτ12 Vst þ 1
6 Jmaxτ13

τ2 ∈ [0, T2) 0 a1 v1 + a1τ2
s1 þ v1τ2 þ 1

2 a1τ2
3

τ3 ∈ [0, T3) −Jmax a2 − Jmaxτ3
v2 þ a2τ3− 1

2 Jmaxτ32 s2 þ v2τ3 þ 1
2 a2τ3

2− 1
2 Jmaxτ33

τ4 ∈ [0, T4) 0 0 v3 s3 + v3τ4
τ5 ∈ [0, T5) −Jmax −Jmaxτ5

v4− 1
2 Jmaxτ52 s4 þ v4τ5− 1

6 Jmaxτ53

τ6 ∈ [0, T6) 0 a5 v5 + a5τ6
s5 þ v5τ6 þ 1

2 a5τ6
2

τ7 ∈ [0, T7) Jmax a6 + Jmaxτ7
v6 þ a6τ7 þ 1

2 Jmaxτ7
2 s6 þ v6τ7 þ 1

2 a6τ7 þ 1
2 Jmaxτ73

Int J Adv Manuf Technol (2018) 95:1729–1742 1735



In the end of acceleration, other constraints of command
feed rate Vmax, chord error δ, and normal acceleration/jerk
limitations An/Jn are considered to determine the suitable feed
rate at the start point of these feed rate scheduling units. The
details of the modified backward scanning process are given
as follows, where V′(i + 1) is the result end point feed rate of ith
feed rate scheduling unit for this procedure (Fig. 8).

Step 1: Set i = N, and V′(i + 1) = 0;
Step 2: According to the length of ith feed rate scheduling

unit Lui, set Sa = Lui, Vs = V′(i + 1), then implement
the algorithm of S-shape acceleration to get the final
feed rate Ve, which also considers the chord error,
normal acceleration/jerk [26]. Themaximum normal
acceleration/jerk is supposed to be equal to the tan-
gent ones. The result point feed rate V′i for (i-1)-th
feed rate scheduling in backward scanning should be
determined by

V
0
i¼min Ve;

2

Ts

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2δ
ki

−δ2
s

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An

max qssð Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
;

Jn
max qsssð Þ

3

s
;Vmax

( )

ð14Þ

where ki is the value of ki(0.5), δ is the chord error, and Vmax is
the command feed rate.

Step 3: Let i = i-1, if i = 1, go to step 4. Otherwise go to step
2.

Step 4: Store V′i (i = 2, 3 ...N) into the buffer.

3.2.2 Modified forward scanning

Supposing the start feed rate of the first feed rate scheduling
unit V1 in the look-ahead window is known, modified forward
scanning should be performed from the first FSU to the nth
one to determine the end feed rate of each unit for real-time
interpolation. As constraints of command, feed rate, chord
error, and tangent acceleration/jerk limitations have been con-
sidered for V′i(i = 2,3..n) in backward scanning, and the tan-
gent acceleration/jerk limitations are only considered in for-
ward scanning. The details of the modified backward scan-
ning process are given as follows, where V(i + 1) is the result
end point feed rate of ith feed rate scheduling unit.

Step 1: Set i = 1
Step 2: According to the length of ith feed rate scheduling

unit Lui, set Sa = Lui, Vs = Vi, then implement the
algorithm of S-shape acceleration to get the final
feed rate Ve. Compare the backward result feed rate
V′(i + 1) with Ve, the suitable end feed rate for the ith
FSU is determined by

Viþ1 ¼ min Ve;V 0
iþ1f g

Step 3: Let i = i + 1, if i > n, go to step 4. Otherwise go to
step 2.

Step 4: Store Vi (i = 2, 3 ...n) into the buffer.

Table 2 The corner point data of the pentagram contour

Corner point Data (X, Y, Z) unit mm

Q0 (5.706339, 1.605699, 4.927051)

Q1 (1.175571, 1.401259, 4.809017)

Q2 (0, 5.196152, 7)

Q3 (− 1.175571, 1.401259, 4.809017)

Q4 (− 5.706339, 1.605699, 4.927051)

Q5 (− 1.902113, − 0.5352331, 3.690983)

Q6 (− 3.526712, − 4.203776, 1.572949)

Q7 (0, − 1.732051, 3)

Q8 (3.526712, − 4.203776, 1.572949)

Q9 (1.902113, − 0.5352331, 3.690983)

Q10 (5.706339, 1.605699, 4.927051)
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Finally, the information of ith FSU for feed rate scheduling
is prepared as (Vi,V(i + 1), Lui).

3.3 S-shape feed rate profiling with seven phases

When the modified bidirectional scanning process finished,
the feed rate scheduling parameters of i-th FSU (Vmax, Amax,
Jmax, Vi, V(i + 1), Lui) are obtained. Then, the number of inter-
polation sampling time contained in each phase of feed rate
profile needs to be determined. Since the number of interpo-
lation cycle must be an integer, in order to ensure the interpo-
lation results will not exceed the target position, the number of
each interpolation cycle is rounded to negative direction in
general; this process will make the final interpolation path
shorter than the original path, resulting in a remaining dis-
tance. When the remaining distance is too long, it will cause
the velocity discontinuity. In this paper, the online feed rate
scheduling algorithm is used. An iterative way is adopted to
limit the difference between the remaining distance before and
after a scheduling controlled within a given tolerance Lerror to
minimize the remaining distance.

As shown in Fig. 4, the S-shape feed rate profile used in
this paper contains seven stages. The first three stages are the
acceleration segment. The total displacement corresponding
to this segment is denoted as Sa. The fourth stage is the uni-
form segment. The total displacement is taken as Su. The last
three stages are the deceleration segment, and the total

displacement at this stage is recorded as Sd. According to the
given parameter conditions, the total time of some stages Ti
may be zero. The feed rate scheduling process for once can be
described as follows:

The kth time feed rate scheduling process for the ith FSU:

Step 1: Initialization: vs ¼ v3 ¼ Vi; ve ¼ V iþ1ð Þ; Ti ¼ 0

i ¼ 1; 2::7ð Þ ; Sd ¼ Sa ¼ Su ¼ 0; Lkleft ¼ Lk−1left

(where k = 0,1,...and L0left ¼ Lui ).
Step 2: If v3 > ve, calculate the distance Sd from v3 to ve and

store the corresponding deceleration times T5, T6, T7;
go to step 3. Otherwise, go directly to step 3.

Step 3: Determine whether the remaining distance
Left = Lui − Sd − Sa − Su is greater than zero; if
yes, go to step 4. Otherwise, output the previous

one Left as Lkleft which is greater than zero and its

corresponding Ti, vs, and ve, and end the program.
Step 4: The vs accelerate one time step, i.e., T1 = T3 = T1 + Ts

or T2 = T2 + Ts or T4 = T4 + Ts. Recalculate v3; if
v3 < Vmax, calculate the corresponding acceleration
distance Sa. Otherwise, calculate the corresponding
uniform segment Su. Then, go to step 2.

The iterative way of above feed rate scheduling process is
described as follows:

If the difference between Lkleft and Lk−1left is greater than the

set residual tolerance Lerror, restart the above feed rate
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scheduling program process again with the previously obtain-
ed ve as the starting speed vs, V(i + 1) still as the end of the speed
ve until the final difference is less than Lerror.

Data update of the next FSU:
To ensure continuity of motion, the value of Lui + 1 for the

next FSU will be updated to the sum of original Lui + 1 and the
last Lleft of the ith FSU.

After the data Ti, vs and ve are obtained, through the for-
mulas in Table 1, and the total displacement s at each sampling
time can be calculated, then the increment displacement Δsik
at kth sampling time is derived.

3.4 Computation of interpolation points

Based on theΔsik at kth sampling time of the ith FSU obtained

in feed rate profiling, the interpolation points InterPi
k ¼

X i
k ; Y

i
k ; Z

i
k


 �
should be calculated. According to the location

ofΔsik in the ith FSU, there are two methods for interpolation.
For the linear segment in FSU, the linear interpolation is im-
plemented, which is given as

InterPi
k ¼ InterPi

k−1ð Þ þ
InterPi

k−1ð Þ−Q
i

� 

InterPi

k−1ð Þ−Q
i

			 			 Δsik ð15Þ

For the B-spline segments, the parametric interpolation is
adopted. Since there is no analytical relation between arc
length and parameter for B-spline curve, the second-order
Taylor’s expansion method is usually adopted in traditional
parametric interpolation algorithms [27–29]. But, the spline
curve derivative with respect to the parameters is not easy to
calculate, obtained by numerical analysis; the local truncation
error of the Heun’s method [30] and second-order Taylor

expansion are both (h3). But, the Heun’s method only needs
to calculate the value of first-order derivative, which can save
the calculation time. In this paper, the Heun’s method is used
to calculate the curve parameters uik corresponding toΔsik ; the
formula is given as follows:

~u
i

k ¼ uik−1ð Þ þ
du
ds

� �
u¼ui

k−1ð Þ

Δsik

uik ¼ uik−1ð Þ þ
1

2

du
ds

� �
u¼ui

k−1ð Þ

þ du
ds

� �
u¼~u

i

k

0
@

1
AΔsik

8>>>>><
>>>>>:
du
ds

¼ 1
ds
du

¼ 1

Cuk k

ð16Þ

whereΔsik would be replaced by the following value at first, if
it is located at the junction of line and B-spline Ci(u):

if
Cl i−1ð Þ
2

−Lsi
� �

< ∑
k

j¼1
Δsij < Lui

Δsik ¼ ∑
k

j¼1
Δsij−

Cl i−1ð Þ
2

−Lsi ;where Cl0 ¼ 0
ð17Þ

After the parametric interpolation, the Cox-de Boor algo-
rithm is adopted to evaluate the new interpolation point
InterPi

k by substituting the new parameter uik into the path

description Ci uik

 �

for its numerical stability and computa-
tional efficiency. Finally, the position commands are sent to
the servo controller to perform real-time motion control.

4 Simulation results

In this section, analytic simulations are performed to verify the
C2 continuity of the proposed local tool path smoothing
scheme and the proposed real-time interpolation algorithm.
The algorithm is developed by VS 2005 in an Intel Core i3-

Table 4 Parameters used for the experimental test

Parameter Symbol Value

Chord error constrain 1 μm

Maximum approximation error 5 μm

Command feed rate constrain F 50 mm/s

Tangent acceleration limitation At 1000 mm/s2

Normal acceleration limitation An 1000 mm/s2

Tangent jerk limitation Jt 30,000 mm/s3

Normal jerk limitation Jn 30,000 mm/s3

The sampling period Ts 1 ms

The remaining distance tolerance Lerror 1 μm
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Fig. 13 The spiral tool tip trajectory

Table 3 The local smoothing time consuming for each corner of the pentagram contour

Corner point Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Smoothing time(ms) 0.934 0.774 0.811 0.439 0.448 0.754 0.462 0.458 0.482
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2120 3.3 GHz personal computer with Windows 8 operating
system. And, the figure is plotted by MATLAB.

4.1 Verification of C2 continuity of the smoothed tool path

In simulation, the proposed local tool path smoothing scheme
is implemented for a 3D pentagram linear contour shown in
Fig. 9. The corner points are markedwithQi, i = 0,1,...9, whose
data is listed in Table 2. And, the length of each G01 block is
all the same as 4.5396 mm. There are two kinds of corner in
this pentagram contour, sharp corners, and obtuse corners. To
make the smooth effect obvious to see, the maximum approx-
imation error is set as 1 mm. The resulted trajectory of local
tool path corner smoothing algorithm is shown in Fig. 9.

In the two corners of the pentagram trajectory, which are
acute angle and obtuse angle, the actual approximation error
which is defined as the shortest distance from the point on the

original straight corner to the curve after the smoothing with
respect to the parameter u of the corner smoothing curve is
depicted in Fig. 10. It can be seen that the approximation error
constrained on the given limit of 1 mm, and the parameter u
corresponding to the maximum approximation error is equal
to 0.5, which is consistent with the previous description in
Sect. 2. In order to verify that the resulting smooth track has
C2 continuity, the second derivatives Qss profile of the
resulting contour with respect to the arc-length are depicted
in Fig. 11 according to Eqs. (19) and (20). As observed, the
Qss profiles are continuous. It demonstrates that the resulted
trajectory is C2 continuous. And, the curvature with respect to
the arc-length is presented in Fig. 12. As observed, in order to
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meet the approximation error limit, the curvature at the sharp
corner corresponds to a larger one. These prove that the pro-
posed local tool path smoothing algorithm is effective.

The time required for the calculation of the necessary in-
formation of each corner curve such as the control points in
the figure is shown in Table 3. It can be concluded that the
average time of the operation is less than 0.1 ms, which is fast.
It proves that the proposed smoothing scheme is suitable for
real-time interpolation process.

4.2 Process efficiency testification

-The interpolation algorithmas shown inFig. 3 is implement-
ed in VS 2005. After interpolation, the reference commands
are stored and plotted inMATLAB.A 3D spiral linear trajec-
tory which is a scaled result as shown in [31] is used in this
simulation. To make the comparative analysis, the point-to-
point G01 interpolation with the same S-shape feed rate
scheduling algorithm as the proposed smoothing interpola-
tion is also adopted to this trajectory. The set parameters of
interpolation and the limitations used for the simulation are
summarized in Table 4.

The 3D spiral trajectory as shown in Fig. 13 consists of 39
linear segments whose lengths are all the same as 6.1809 mm.
The experimental results of this trajectory are shown in
Figs. 14, 15, 16, and 17.

As shown in Figs. 15 and 17, the tangential velocity profile
of smoothing interpolation at the corner is not down to zero,
while the tangential feed rate of point-to-point interpolation is
zero at the corner for there is only C0 continuous. And, the
acceleration and jerk are all within set limitations.

The chord error profile of the proposed smoothing interpo-
lation is calculated in MATLAB and is plotted in Fig. 16. As
observed, the chord error is under the set constrain. Please note
that the chord error is much smaller than the set value due to the
consideration of the normal acceleration/jerk limitations.

The total cycle time of point-to-point interpolation is
10.88 s, while it reduces to 7.49 s by using smoothing inter-
polation. The total cycle time is reduced by about 31.2%.

From these experimental results, it can be determined that the
proposed smooth interpolation algorithm can achieve non-stop
processingmethods. For the same trajectory, the processing time
can be greatly reduced. As the proposed feed rate scheduling
algorithm takes the chord error and machine kinematic perfor-
mance into account, when the tool moves to a larger curvature
point, it will slow down in advance, so that the chord error is
within the set constrain. In the meantime, the speed and accel-
eration of each axis are within the set limits. The validity of the
smoothing interpolation algorithm is verified.

5 Conclusion

A local smoothing interpolationmethod for short line segments.
Cubic B-spline with five control points are designed to blend
the discrete linear segments to get C2 continuous tool path, and
a real-time look-ahead interpolation algorithm consists of four
modules: smoothing module, modified bidirectional scanning
module, feed rate profiling module, and interpolation module.

Compared with the previous work, the algorithms present-
ed in this paper have the following advantages: (1) the rela-
tionship between the continuity of the trajectory and the con-
tinuity of the axes is described by formula. (2) The local
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smoothing scheme can realize C2 continuity without complex
calculation, and also control the approximation error. (3) The
acceleration of each axis after feed rate scheduling is contin-
uous and within limitation.

Finally, the effectiveness of the proposed algorithms is
proved by the results of simulation.
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Appendix

In order to guarantee the continuity of the motion of each axis
of machine during processing, it should ensure the C2 conti-
nuity of the trajectory with respect to arc length and the con-
tinuity of tangential velocity and acceleration. The proof of it
is as follows:

Note that the trajectory of motion is q, according to the
chain derivation rule, and the following expression can be
derived:

qt ¼ qs•F;where qt ¼
dq
dt

¼
vx

vy

vz

0
@

1
A;qs ¼

dq
ds

; F ¼ ds
dt

qtt ¼ qss•F
2 þ qs•A;where qtt ¼

d2q

dt2
¼

ax

ay

az

0
@

1
A; qss ¼

d2q

ds2
;A ¼ d2s

dt2

qttt ¼ qsss•F
3 þ 3qss•F•Aþ qs•J ;where qttt ¼

d3q

dt3
¼

jx

jy

jz

0
@

1
A; qsss ¼

d3q

ds3
; J ¼ d3s

dt3

ð18Þ

where s is the arc-length of trajectory; F, A, and J are the
tangential velocity, acceleration, and jerk, respectively.

When F, A, and qs, qss are continuous, it can guarantee that
qt, qtt are continuous. So, by ensuring the C

2 continuity of the
trajectory, and through the S-shaped feed rate scheduling to
make F and A continuous, it can ensure the continuous move-
ment of each axis.

If the trajectory is a B-spline as q(u), qs, qss, and qsss can be
expressed by

qs ¼ qu•us
qss ¼ quu•us

2 þ qu•uss
qsss ¼ quuu•us

3 þ 3quu•us•uss þ qu•usss
ð19Þ

where u is the parameter of the B-spline q(u), and us, uss, and usss
can be derived as

us ¼ 1

quk k
uss ¼ −

qu•quu
T

quk k4 while curvatureρ ¼ qu � quuk k
quk k3

usss ¼ 4 qu•quu
Tð Þ2− quu•quu

T þ qu•quu
Tð Þ qu•qu

Tð Þ
quk k7

ð20Þ

FromEqs.(19) and (20), when qu, quu are continuous, it can
lead to the continuity of qs, qss, which means the C2 continuity
of B-spline with respect to parameter u can lead to the C2

continuity of B-spline with respect to arc-length s.
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