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Abstract Interior structures including lattice, porous, or cel-
lular structures have been widely used in geometric design for
3D printing. It can not only reduce the weight of objects but
also adjust the physical properties, such as stress, balance, and
center of mass. In this work, we present a novel method for
buoyant equilibrium and optimization of the material distribu-
tion inside an object, such that the 3D printed object satisfies
prescribed constraints of mass properties. In particular, we
introduce a mathematical method to describe the internal
structure compactly, and prove that this compact formulation
generates density-variable lattice structures to control the mass
properties precisely. Additionally, this internal structure has
shown itself to be capable of self-supporting in 3D printing
processing. We demonstrate the effectiveness of our mathe-
matically based method for generating interior patterns in the
applications of optimizing shapes that stably float in liquids,
and in improving mechanical stiffness.

Keywords Buoyancy optimization . Self-supporting
structures . Physical modeling . 3D printing

1 Introduction

3D printing technologies significantly extend the geometric
design space and liberate the designer’s creativity, particularly

through the research of the computational methods. They pro-
vide an easy and intuitive control over the physical properties
of the printed object [1]. One of the recurrent research prob-
lems in this field is the design of balance and the optimization
of physical properties of the fabricated objects. Moreover, the
physics of flotation have gradually become a popularly stud-
ied topic in the context of 3D printing technology, leading to
innovations such as the design of offshore platforms with
complex underwater structures, or optimizing ships with bet-
ter balance performance, or objects for entertainment such as
floating toys. The orientation of the floating object is defined
by the shape of the object, the mass distribution, and the fluid
displacement. These factors must be optimized so that the
object can be stably floating at the desired orientation and
waterline position. Moreover, unlike traditional hull design
[2, 3], we are presented with a particular shape and required
to make it float without changing its external appearance.

However, it is difficult to design a buoyant object with
numerous constraints by hand. In many cases, the optimized
structures cannot be directly fabricated by a layer-based 3D
printing method. Especially, if the shape has a relatively large
overhang, it needs additional interior support which can make
an optimized model lose its balance, and it is hard to remove
the internal surface supporting structures. Therefore, in this
paper, we propose a computational fabrication method to de-
sign and optimize buoyancy and improve the manufacturabil-
ity through a computer program.

First, for the buoyancy balance problem, we adopt the vox-
el carving method [4, 5] to manipulate the internal mass dis-
tribution of a designed object, and combined with the
Archimedes principle [6], a set of buoyancy geometric calcu-
lation criteria is established. The user only provides the mesh
of a 3D object, desired waterline position and floating orien-
tation, and the densities of the fabrication material and target
fluid. Then, the mechanical parameters and mass density
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distribution of an object will be calculated by our method.
Next, with the mass distribution, the interior structure of the
object is easy to distribute. Second, to obtain a better overall
mechanical stiffness property, we will optimize full internal
filling on the basis of buoyancy optimization in this work,
instead of hollowing part of the area. Third, to overcome the
manufacturability problem in internal structure optimization,
we present a mathematically based method for infill optimi-
zation that ensures the resultant structures are self-supporting.
We have selected a structure that has a high geometrically
controllable performance and has been widely proven to have
self-supporting capacity [7, 8] as our internal design structure,
from a set of many of the similar mathematical structures.
Specifically, this mathematical expression method can obtain
continuously controllable density changes in space. The spe-
cial contributions of our work are as follows:

& We use a compact parameterization of the shape’s interior
by a mathematical expression, which significantly reduces
the number of design variables in shape interior
optimization.

& We take account of manufacturability by the mathematical
method to generate self-supporting structures living in a
manufacturability-ensured space represented by a gyroid-
like lattice.

& We demonstrate the effectiveness of our buoyancy optimi-
zation approach.

2 Related works

Recently, more and more researchers have been devoting to
geometric and physical modeling for 3D printing techniques.
In this section, we have discussed the advantages and limita-
tions of current approaches most closely related to our work.

Balancing optimization This class of problems usually in-
volves static and rotational stability and optimization by con-
trolling the internal mass distribution of the shape. Prévost
et al. [4] proposed an approach to optimize the balance of a
shape to make it stand in a given pose. Furthermore, Bächer
et al. [5] extended the work and provided a new optimization
of the mass distribution to make an object spinnable around a
given axis. With the above approaches, the interior of the
object is discretized into voxels, and some voxels are
hollowed to redistribute the object’s mass. Xie et al. [9] mainly
referred to this method to generate internal voids which not
only satisfy the static and rotational stability functions but are
also support-free during 3D printing. In our work, we adopt a
similar design idea, but the voxels are just mapped to the
density distribution and will be replaced by our mathematical-
ly based lattice structures. Additionally, different from the

volume-based methods, Musialski et al. [10] optimized an
offset surface of the input mesh as the interior shape and pre-
sented a subspace method to accelerate the internal form and
showed a subspace method to speed up the computation.
Christiansen et al. [11] presented an automatic, optimization-
based method for balancing objects, and the object is embed-
ded in an adaptive tetrahedral mesh, and the balance is then
improved by creating internal cavities and by rotating the
model around its base. Complementary to these works, we
focus on buoyancy equilibrium properties resulting frommass
distribution.

Buoyancy optimization Buoyancy equilibrium is also a
balancing optimization problem, which has become a hot top-
ic in the field of computational fabrication recently. In 2016,
Wang et al. [12] introduced a design and manufacturing pipe-
line for optimizing buoyant equilibrium and stability of com-
plex 3D shapes and applied a similar voxel carving technique
[4, 5] to control the mass distribution. For high-precision fab-
rication, they employed 3D printing method and introduced a
method for stacking laser cut planar pieces to create 3D ob-
jects for larger-scale designs. Recently, Wu et al. [13] pro-
posed an extension of ray representation to shape interior
modeling, and proven this compact formulation greatly re-
duces the number of design variables compared to the general
volumetric element-wise formulation, and demonstrated the
effectiveness for optimizing shapes that stably float in liquids.
In contrast, Prévost et al. [14] introduced the approach of
placing movable masses inside a 3D shape to consider multi-
ple centers of mass depending on the object’s pose, including
the standing, suspension, and immersion balancing problem.
Summarizing the above buoyancy optimization approaches
are mainly through hollowing out local internal space of the
model.

Interior structure optimization The internal structure opti-
mization of an object can be realized for different objectives of
physical properties. Similar to 2D texture mapping, Chen [15]
presented a 3D texture design method which maps a lattice
into a design space to generate internal structures, and this
system is based on a microstructure library. Inspired by the
construction of truss structures, Wang et al. [16] optimized the
mechanical stiffness of objects’ fabrication by using a skin-
frame structure to support the shape’s interior. Lu et al. [17]
introduced a honeycomb-cell structure by gradually carving
out the interior of an object, but the hollowed cells are
enclosed. That makes it difficult to remove the internal
supporting materials. Zhang et al. [18] proposed an internal
supporting structure based onmedial axis tree, and the internal
results are more complex for 3D printing. Li et al. [19] intro-
duced the method of controlling the parameters of the micro-
structures which can vary spatially to produce graded
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materials, and combined with cross-sectional stress analysis
method [20] to reinforce an object.

Self-supporting structures Among the above approaches,
the interior structure cannot be fabricated directly without
support structures. Thus, many approaches have been devel-
oped to reduce the usage of the support structure to optimize
material usage, fabrication time, and surface quality. It mainly
consists of optimizing the printing orientation [21, 22],
supporting shapes [23, 24], and even splitting the model [25,
26]. In contrast, the structure with self-supporting ability will
be able to better solve the manufacturing problem of the in-
ternal fabric of the object. Whereas, self-supporting structures
have been extensively studied in the field of architectural ge-
ometry [27–29], and only the shape of a surface is optimized
in most of these approaches. In 3D printing field, Wu et al.
[30] proposed a rhombic cell which is self-supporting. As a
concurrent work, Xie et al. [9] proposed a similar support-free
interior carving by the rhombic cell for 3D printing. While
their focuses are mainly on optimizing the static and rotational
stability, we demonstrate our method by optimizing the buoy-
ant stability of 3D printed objects.

3 Preprocessing

Given an input object and desired orientation and waterline, we
optimize the density distribution to satisfy these properties. First,
to preserve the external shape of the object, a hollowed shell
structure is generated from an input surface mesh. An implicit
function f(x) is fitted by using the vertices of the input mesh using
multi-level partition of unity (MPU) implicit [31]. As shown in
Fig. 1a, the continuous function f(x) gives an approximated dis-
tance between the interpolated surface and x. Therefore, the inner
surface is obtained by contouring the isosurface f(x) = d. The
parameter d is the thickness of the shell. Here, let ΩI be an
internal region of the shell structure. In the region ΩI, we define
the structured domain represented by voxels for density optimi-
zation as shown in Fig. 1b. Each voxel has eight grid points, and
the value of the implicit function f(x) is assigned to each grid
point. If all eight grid points of a voxel have negative values, the
voxel is labeled as an inside voxel. Otherwise, it is labeled as an
outside voxel. Finally, we construct an optimization problem and
solve it to assign density values to each voxel (Fig. 1c).

Density constraint We assume that the object consists of a
single material whose density is ρmaterial. Therefore, we consid-
er ρi as a relative density value that takes the following range:

ρmin ≤ ρi ≤ 1 i ¼ 0; 1;…;N−1 ð1Þ
In this representation, ρi = 1 corresponds to ρmaterial, and ρmin
is the minimum constant value of relative density that satisfies

0 < ρmin < 1. The choice of value ρmin is discussed in the fol-
lowing sections.

4 Procedural function-based modeling for shape
interior

Given a polygonal mesh representing the boundary of a solid,
we construct the triple periodic minimal surface structures as
composites of the object’s interior, and these structures have
proven to have superior mechanical properties [32, 33] and
self-supporting ability [7, 8] in additive manufacturing. The
presentation of this type of lattice structure, the associated
geometric operators, and the properties are presented in this
section.

4.1 Self-supporting interior structure modeling based
on mathematical method

There are numerous kinds of lattice structures consisting of
triple periodic minimal surface (TPMS) which have been
widely used in the fields of biomimetic and 3D printing geo-
metric design. Particularly fascinating are minimal surfaces
that have a crystalline structure, in the sense of repeating
themselves in three-dimensional space, i.e., being triply peri-
odic. These minimal surfaces have three lattice vectors, and
they are invariant under translation along three independent
directions. The most common ones are Schoen gyroid,
Schwarz primitive, diamond, and Neovius. All TPMS can be
expressed as [34]:

F x; y; zð Þ ¼ ∑
hkl

F hklð Þj j⋅cos 2π
L

hxþ kyþ lzð Þ−αhkl

� �
: ð2Þ

where F(hkl) denotes the structure factor amplitude,
reflecting the symmetry of the structure; αhkl the phase
angle; and L the cubic unit cell edge length. The set of
allowed hkl values of the Fourier components of the struc-
ture and the Fourier series representation of the space
group can be found in the International tables of X-ray
crystallography [34].

The TPMS which have an infinitely connected triply
periodic non-self-intersecting minimal surface with triple
junctions and which contain no straight lines on the sur-
face are believed to be suitable for additive manufactur-
ing. These cellular structures such as Schwarz diamond
and Schoen gyroid surfaces are continuously curved ge-
ometries and self-supporting and are deemed to be suit-
able for SLA/DLP technology. These periodic cellular
structures could be considered a potential for lightweight
and support structure applications.

Through the level set isosurface algorithm, we can eas-
ily control the volume fraction of these lattice structures.
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Moreover, the level surfaces are represented by function
F: ℝ3 → ℝ of points (x, y, z) ∈ ℝ3, which satisfy the
equation:

F x; y; zð Þ ¼ t; ð3Þ
where t is a constant. The form of the surface is controlled
by F(x, y, z), while the parameter t determines the volume
fraction of the areas that are separated by the surface.
Figure 2 shows the relationship between the isosurface
value and volume fraction for four typical TPMS func-
tions. From this plot, we can find that only the Schoen
gyroid structure appears to be linear at all volume frac-
tions. Moreover, this linear property makes it easy to per-
form geometric control with volume fraction design.
Thus, in this paper, we choose gyroid and gyroid-like
lattice as our interior structure to control the density dis-
tribution of the floating bodies.

4.2 Density-variable modeling method and its properties

As the gyroid structure has superior and controllable geo-
metric properties, in this work, we use this structure as the
fill lattice. In this part, we will describe how to achieve
continuous variable density design in detail. The level

surface can approximate the single-gyroid of constant
mean curvature:

FSG x; y; zð Þ ¼ sin
2π
L

x
� �

cos
2π
L

y
� �

þ sin
2π
L

y
� �

cos
2π
L

z
� �

þ sin
2π
L

z
� �

cos
2π
L

x
� �

¼ t ð4Þ

At t = 0, Eq. (4) corresponds to the minimal gyroid surface.
As the absolute value |t| increases in the range between 0 and
1.413, the fraction of volume occupied by one of the regions
decreases, whereas the complementary one increases. For
|t| > 1.413, the surface becomes disconnected [19].

If we set parameter t to be a continuous function t(ρ) in ℝ3

with respect to the density value ρ, we will obtain a new
structure in which the spatial density is continuously changed.
Also, as long as the function t(ρ) is a continuous function in
the geometric space, it is possible to obtain a structure in
which any continuous non-uniform density changes. As
shown in Fig. 3a, we present a design case to illustrate the
significance of variable density for buoyancy control design.
The inverse function ρ(t) of t(ρ) is divided into two continuous
segmented functions ρ(t1(x)) and ρ(t2(x)) in the x-direction,
and they are continuous at point B. In this case, the ρ(t1(x))
function’s curvature rises rapidly when near the point B, so
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that the structure can be quickly converted from the high-
density value to low density, and then the function ρ(t2(x)) is
a low-density constant value function that takes ρ(t1(x)) func-
tion’s minimum, so that the BC segment is a low-density
uniform change structure. Thus, not only can the overall mass
center be controlled near the point A (the section AB accounts
for 95% of overall mass), and the entire space can be filled to
ensure a good overall stiffness. As shown in Fig. 3b, this
gyroid-based density-variable structure is manufacturable by
a 3D printing method and has a self-supporting ability.

4.3 Elastic modulus of gyroid structure

The mechanical properties of porous structures are often char-
acterized by relatively Young’s modulus, and it reflects the
resistance-distortion ability of an object. Additionally,
Young’s modulus can be altered by variations in pore shape
as well as pore distribution. According to [35]’s research, at
low densities, experimental results indicate that Young’s mod-
ulus of the porous structure is related to their density through
the relation:

E
Es

¼ C
ρ
ρs

� �n

¼ Cρ
n
; ð5Þ

where Es and ρs are Young’s modulus and density of the solid
material, and ρ is the relative density. Furthermore, Choren
et al. [36] presented detail relationships between Young’s

modulus and volume porosity for additive manufacturing ap-
plications. Using similar expression, Khaderi et al. [37] cal-
culated the stiffness and strength of gyroid structure and
given the C as 0.465 and n as 2. Thus, it shows that each
density value corresponds to a certain modulus, which can
be used to design the minimum strength of an object. Then,
the designer needs to give a certain infilling density value
as the minimum density constraint ρmin, and this work is
pure to verify our buoyancy optimization method. In this
paper, according to gyroid’s geometric properties [19], the
minimum density constraint value is set as 0.05 that the
gyroid has a minimal good complete continuous geometry
structure.

5 Optimizing buoyancy properties

The buoyancy, orientation, and stability of a floating object
are closely related to the mass distribution of the object. In this
paper, the above spatial density-variable controlled method is
used to realize a stable equilibrium of a floating body when
placed in the fluid. Equilibrium and stability are the two most
important parameters in buoyancy optimization, whose equi-
librium ensures that the object is in its designed orientation
and waterline, and stability is the ability to restore balance
when it is disturbed.

5.1 Equilibrium

According to Archimedes’ principle, an unrestrained object is
subject to two forces when in the liquid, its weight FG and the
buoyancy force FB, due to pressure acting on its surface. If the
total force F =FG +FB does not vanish, an unrestrained body
will accelerate in the direction F according to Newton’s sec-
ond law. Therefore, in mechanical equilibrium, gravity force
and buoyancy must cancel each other precisely at all times to
guarantee that the object will remain in place. Although an
object may be in buoyant equilibrium, such that the total force
composed of gravity and buoyancy vanishes, it may still not
be in complete mechanical equilibrium. The total moment of
all the forces acting on the body must also vanish; otherwise,
an unrestrained body will necessarily start to rotate. The total
moment is also a sum of two terms, M =MG +MB, with one
contribution from gravity, MG =FG ×CG, and the other from
pressure called the moment of buoyancy, MB = FB × CB,
where CG and CB are the center of gravity and buoyancy of
the object. If the total force is zero, the total moment will be
independent of the origin of the coordinate system, as may be
easily shown. In summary, the equilibrium equation of the
floating body is as follows:

F ¼ FG þ FB ¼ 0
M ¼ MG þMB ¼ 0

�
ð6Þ

ρ(t(x))
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Fig. 3 a Gyroid-based density-variable structure generated and b self-
supporting ability by 3D printing method
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And we assume the direction of gravity to be g = (0, 0, −||g||).

5.2 Static stability

Stability is of great importance to a floating object. As shown
in Fig. 4a, given a small disturbance displacement, the object
may return to its original position (stable), or move away from
its initial position (unstable). Stability depends on the relevant
lines of action of forces on an object. The upward buoyancy
force on an object acts through the center of buoyancy CB,
being the centroid of the displaced volume of fluid. The
weight force on the object acts through its center of gravity
CG. A floating object will be stable if the center of gravity is
beneath the center of buoyancy because any angular displace-
ment will then produce a “restoring moment,” The stability of
a buoyant object at the surface is more complex, and it may
remain stable even if the center of gravity is above the center
of buoyancy, provided that when disturbed from the equilib-
rium position, the center of buoyancy moves further to the
same side that the center of gravity moves, thus providing a
positive restoring moment. If this occurs, the floating object is
said to have a positive metacentric height, zMG (as shown in
Fig. 4b). This situation is typically valid for a range of heel
angles, beyond which the center of buoyancy does not move
enough to provide a positive restoring moment, and the object
becomes unstable.

In equilibrium, the horizontal positions of the centers of
buoyancy and gravity must be equal xB = xG and yB = yG.
The vertical position zB of the center of buoyancy will nor-
mally be different from the vertical position of the center of
gravity zG, which depends on the actual mass distribution of
the object, determined by its structure and load. In addition,
when an object heels, the center of buoyancy of the object
moves laterally. It might also move up or down concerning
the water line. As shown in Fig. 4b left, the point M at which a
vertical line through the heeled center of buoyancy crosses the

line through the original; vertical center of buoyancy is the
metacenter. The metacenter M remains directly above the cen-
ter of buoyancy by definition, such that xM = xB = xG and yM =
yB = yG. Moreover, there is a relationship between the height
of the metacenter zM and vertical position zB of the center of
buoyancy [6]:

zM ¼ zB þ I
V
: ð7Þ

where V is the volume of displaced fluid, I is the smallest
second moment of the waterline area. The metacenter is a
purely geometric quantity, depending only on the displace-
ment volume V, the center of buoyancy zB, and the second-
order moment of the shape of the object in the waterline.
When giving a small tilt angle α, it will generate a restoring
moment MR around the x-axis to achieve stability, and in
terms of the height of the metacenter zM, the restoring moment
is defined as:

MR ¼ α zG−zMð Þ � FG: ð8Þ

For the buoyant object to be stable, the restoring moment
must counteract the tilt and thus have opposite sign of the tilt
angle α. Consequently, the stability condition becomes:

zG < zM: ð9Þ

Evidently, the floating body is only stable when the center
of gravity lies below the metacenter. Morever, the larger the
metacentric height, the larger the restoring moment and the
harder the object is to overturn. Also, for a given designed
waterline, the term I/V and zB in (7) will be a constant value,
and thus, zM is a certain value. In this work, we aim to control
zG without changing the external shape. Additionally, it is also
a special state of buoyancy balance when the object is sub-
merged in a liquid. Because I is equal to zero in this condition,
so the metacenter coincides with the center of buoyancy, and
the constraint is still meet zG < zM.

FB

FG

T
FB

FG
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CG

CB CB

CG

stable unstable

CG

CB

M
α

M

CG
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a b

Fig. 4 a, b Given a small disturbance displacement, the object may return to its original position (stable), or move away from its original position
(unstable)
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5.3 Optimization implementation

The static status of floating of an object is related to its center
of mass. The object floats if its buoyancy balances the gravity,
and to maximize floating stability, its center of mass should be
at its lowest possible position. For simplicity, we choose a
coordinate frame such that the z-axis coincides with the
intended perpendicular direction. Similar to [12, 13], the de-
sign problem is formulated as follows:

minimize
vi

zG

s:t: : FG þ FB ¼ 0
xM ¼ xB ¼ xG; yM ¼ yB ¼ yG
zG < zM
vmin≤vi≤1

ð10Þ

We then can obtain the target center of gravity of the ob-
ject, z*G, and it will be added as the center of mass con-

straint so that the target center of mass C*
G ¼ xG; yG; z

*
G

� �
is

equal to the center of mass of the object (shell and density
distribution).

C*
G ¼ ρmaterial Vshellcshell þ ∑ρiviwið Þ

ρmaterial Vshell þ ∑ρivið Þ ð11Þ

Vshell and cshell denote the volume and the center of mass of
the shell structure, respectively, and wi denotes the center
of mass of the ith voxel. In addition, given the shape of the
waterline area, the force of buoyancy FB is equal and op-
posite to the weight of the displaced fluid and the gravity
force FG, and thus, the gravity force FG is a constant value
with a defined waterline. Therefore, we add a mass con-
straint so that the total target mass m∗ is equal to the total
mass of the object (shell and density distribution).

m* ¼ ρmaterial Vshell þ ∑ρivið Þ ð12Þ

To assign a density value to satisfy the given mass proper-
ties, we should set an objective function with respect to the

density value ρi of the ith voxel as expressed by Eq. (13). We
use the Laplacian of mass to get a smooth density distribution
usage similar to [38].

E ¼ ∑
i
∑
j∈Ni

ρivi−ρ jv j
� �2

ð13Þ

Ni and vi denote a set of adjacent voxels of the ith voxel and
the volume of the ith voxel, respectively. According to Eqs.
(11)–(13), the above objective function can be converted to
the following matrix form:

minimize
1

2
ρTQρþ cTρ

s:t: Aρ ¼ b; ρmin≤ρ≤1

(
ð14Þ

The objective function described in Eq. (14) is a quadratic
form, and the constraints are linear equality and inequality.
Therefore, these equations can be interpreted as a linear
constrained convex problem. We solve the problem using
the interior point method [39]. We use the EIGEN matrix
library as a quadratic programming solver to compute density
for all inside voxels. An overview is illustrated in Fig. 5.

6 Results

Our proposed approach has been used for the optimization of
several models with different geometric complexities, and we
verified their behavior by placing them in a tank filled with
pure water.

6.1 3D printing results

To demonstrate the effect of the buoyancy optimization and
the manufacturability of the optimized shapes, we have fabri-
cated some models using Envisiontec-Micro-Edu equipment
with a transparent photopolymer. The density of the polymer
printingmaterial is 1.18–1.19 g/cm3. As shown in Fig. 6, it is a

a b c d

R

FB

FG

CB

CG M

FG

CB

CG
M

FB

VFluid displacement

Waterline area

Fig. 5 Buoyancy optimization overview: a User input, solid model
placed in the fluid. The fluid displacement, waterline area, and center of
the roll are calculated for optimization. b Initially, the center of gravity
and center of buoyancy are not vertically aligned. Additionally, the
gravity force and the buoyancy force are typically not equal

magnitudes. c A minimal thickness boundary shell is fixed. The interior
space is voxelized and then hollowed. d Result, center of gravity and
center of buoyancy align vertically and center of gravity lies below the
metacenter (M)
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set of models optimized for floating in water; 1 and 2 are the
Stamford bunny in differently designed directions, 3 is an
oceanic floater, and 4 is a boat. After optimization, the centers
of mass of these objects are aligned vertically with the center
of buoyancy, and the magnitude of the buoyant force and the
magnitude of the gravity force are same. We then put these 3D

printed floating bodies in a tank filled with pure water, and
their orientations and positions in the liquid almost achieve the
desired results of design. During the experiment, we measured
the emersed height of the model in the direction of the z-axis,
and the total experimental deviation could be controlled with-
in 2 mm.

Fig. 6 Shapes optimized for stable floating: a On the upper of each
group, the original object does not satisfy the floating stability criteria.
b The middle one shows the optimized internal shape where the center of

mass and the center of buoyancy are vertically aligned, and the center of
mass is located in its lowest position, c The bottom image of each group
shows the printed object stably floating in a water tank
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1.44.55 and >

134.618

124.685

114.753

104.82

94.8879

84.9554

75.023

65.0906

55.1581

45.2257 and <

Von Mises Stress (MPa)

Deflection scale: 0

Fig. 7 Compared voxel
hollowed method with ours under
the same force conditions
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6.2 Mechanical stiffness and self-supporting

To achieve the optimal solution, the most existing center of
gravity optimization solutions is not considering the overall
mechanical stiffness of the model, which is affected by
hollowing out the object partially [4, 5, 12, 13]. In this work,
the model’s internal space is entirely filled with the lattice
structures at the expense of a small amount of weight without
affecting the optimization results of the model’s balance, and
which can give the object better overall mechanical stiffness.
As shown in Fig. 7, we compared the voxel hollowing method
with ours. It is evident that the model with a fulfilled internal
lattice structure has better mechanical strength under the same
force conditions.

Secondly, to allow removal of supporting material from the
hollowed space, these models had to be printed in multiple
segments and glued together afterwards, because the internal
structure of these approaches created models without self-
supporting capacity. In this way, not only is the operation
too expensive, but also the support removal could cause over-
all quality deviations of the object and lead to inaccurate buoy-
ancy optimization results. In this work, the self-supporting
structure is used to fill the whole model, and it allows the
complex inner surface of the model to be produced by 3D
printing (As shown in Fig. 3).

7 Conclusion

We propose a novel method to control the mass properties of
3D printed objects for buoyancy optimization. In contrast to
other approaches, our method not only optimizes the buoyan-
cy balance but also considers the global stiffness of the model
and the manufacturability of the internal structure. The pro-
posed method consists of two steps. First, density distribution
is optimized to satisfy mass properties which are calculated by
given waterline and orientation condition. Second, an internal
self-supporting structure is generated to represent the density
distribution through mathematical expression. Finally, we
have demonstrated the effectiveness of our buoyancy stability
with numerous printed results and have shown the overall
structural strength to be better than the local hollowing
method. As future work, we will extend this approach to
the design of other 3D printed objects’ physical properties,
such as rotation, stress distribution, and other relevant en-
gineering applications.
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