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Abstract Chatter is a common state in the end milling, which
has important influence on machining quality. Early chatter
detection is a prerequisite for taking effective measures to
avoid chatter. However, there are still many difficulties in
the feature extraction of chatter detection. In this article, a
novel online chatter detection method in end milling process
is proposed based on wavelet packet transform (WPT) and
support vector machine recursive feature elimination (SVM-
RFE). The measured vibration signal in the machining process
was preprocessed by WPT. The original feature set of chatter
composed of ten time-domain and four frequency-domain fea-
ture parameters was obtained via calculating the reconstructed
signal. Then feature weights are computed by SVM-RFE, and
the obtained feature ranking list was to indicate their different
importance in chatter. The optimal feature subset was selected
according to the prediction accuracy. The proposed method is
described and applied to incipient chatter over conventional
methods in identifying the transition from a stable to unstable
state. Some milling tests were conducted and the experiment
results was shown that the impulse factor and onestep auto-
correlation function were the sensitive chatter features.

Keywords Chatter detection .WPT . SVM-RFE . Feature
parameters

Chatter is a common adverse phenomenon in the process of
high-speed milling. It is a self-excited vibration between cut-
ting force and vibration of tool-workpiece system. The occur-
rence of chatter has negative effects on poor surface quality,
unacceptable inaccuracy and reduced material removal rate,
seriously destroying the cutting tools and shortening the life-
time of machine tool. Some researchers reviewed about the
chatter problems which is chatter prediction, chatter detection,
and chatter control strategies [1–3]. However, considering the
complexity of the chatter mechanism and cutting conditions,
the chatter prediction is difficult to carry out in industrial pro-
duction; therefore, chatter detection becomes crucial. The
most reliable approach is to establish an automatic online de-
tection systemwhich is a prerequisite for maintaining efficient
machining process and the realization of control strategies for
chatter suppression. Hence, in order to improve the accuracy
and workpiece quality, online chatter detection is the key fac-
tor to suppress the chatter, which has become the key research
contents.

In the recent years, for the purpose of monitoring the cut-
ting status, many chatter monitoring techniques have been
developed through monitoring a certain signal sensor such
as accelerometer [4], AE sensor [5], current [6], microphone
[7], dynamometer [8, 9], and multisensors [10] to obtain the
process information. No matter which signal is selected, the
method of signal analysis is extremely important.
Unfortunately, due to the measured vibration signal during
the manufacturing process containing the background noise,
which may not be directly used for chatter identification, it
needs to be analyzed and extracted, the effective and sensitive
features [11]. Therefore, appropriate method of feature extrac-
tion and feature selection should be found for chatter detection
via the signal processing, which is crucial. Advanced moni-
toring and detection chatter methods are developed mostly
depending on frequency and time-frequency analysis. Fast
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Fourier transform (FFT) can convert signals from time domain
to frequency domain, which can reflect the overall statistical
characteristics of vibration signals. It is often used to detect
cutting chatter [12]. It only has a good resolution in the fre-
quency domain, but it masks the time-domain information.
However, the measured vibration signal inmachining process-
es is normally non-stationary and non-linear; the application
of FFT is limited for online detection of chatter onset. Wavelet
analysis expands its range of application because of its strong
ability of local analysis. Somkiat et al. [13, 14] established
online chatter detection of the ball milling based on wavelet
analysis, which achieved good performance. However, when
the chatter frequency occurs at a high frequency, the applica-
tion of the high frequency signal is greatly limited because of
the low resolution of the decomposed high frequency coeffi-
cient. To solve this issue, wavelet packet transform (WPT) is a
very suitable choice, which can simultaneously decompose
the low frequency and high frequency coefficients, and adap-
tively determine the resolution of different frequency seg-
ments in the signal. Yuxin Sun et al. [15] used the weighted
wavelet packet entropy method to achieve online chatter de-
tection of the turning process. Yao et al. [16] adopted the
standard deviation of wavelet analysis and energy ratio of
wavelet packet transform as the feature vector, which realized
the turning machining condition accurately by the SVM. Chen
Bing [17] used multi-scale permutation entropy and wavelet
packet energy as the milling chatter premonition features, and
the selected chatter features is depended on experimental anal-
ysis. However, the above selected chatter features, constructed
on the basis of individual experience, are not always efficient
to detect a defect at its early stage of chatter. Lamraoui [18]
used the wiener filter to extract various statistical features for
detect chatter in CNC milling process. The adepts of data
fusion take advantage of a mass of features for effective con-
dition detection. However, those approached would impact on
the training time and classification accuracy owning to the
presence of irrelevant or redundant features [19].

In order to improve the accuracy of chatter recognition and
reduce the calculation time, it is more crucial to select the most
sensitive features from the extracted features to identify chat-
ter. The main purpose of chatter detection is to analyze the
relevant external information in order to judge the condition of
the inaccessible internal components so as to decide if the
machine needs to be dismantled or not [20]. There are many
feature selectionmethods. Li Sheng [21] combined the genetic
algorithm and the partial least-squares method to select the
characteristic of hydraulic system fault diagnosis, which short-
ened the calculation time and improved the classification ac-
curacy. Li Weihua [22] adopted principal component analysis
to select the fault characteristics in the gearbox early fault
diagnosis. Lamraoui [19] applied a multiband resonance fil-
tering to preprocess the vibratory signal before generated fea-
tures. Extracted features were ranked based on their entropy in

which only best features are selected. Then two neural net-
work approaches, radial basis function and multi-layer
perceptrons, classify the selected features into stable or unsta-
ble classes. Although these feature selection approaches have
achieved superb performance, they have unstable and
overfitting phenomena. Therefore, it is imperative to find a
reliable and stable feature selection method. Support vector
machine recursive features eliminating (SVM-RFE) is an em-
bedded method of feature selection [23]. SVM as a small
sample learning machine, it has many unique advantages in
non-linear and high-dimensional pattern recognition, owning
maximized generalization ability, and minimized classifica-
tion errors [24]. SVM-RFE uses the weights of support vector
machine as the evaluation criterion of feature selection, and
only one feature is eliminated for each iteration. This method
has a very effective effect in gene selection [25], signal pro-
cessing [26], and other fields. Therefore, the method of com-
bining wavelet packet transform and SVM-RFE used to detect
chatter onset in high-speed milling may be feasible. Shicai
Qian [27] utilized LSSVM-RFE to select the effective wavelet
packet node energy feature online detection of chatter vibra-
tion. The experiment results were shown that the novel meth-
od can not only improve the accuracy of chatter recognition,
but also decreased computing time.

Based on the above analysis, this paper proposed a novel
approach to establish the online chatter detection of milling,
which is combinedWPTand SVM-RFE. Firstly, the vibration
signal is preprocessed with WPT. The wavelet packets around
twice the natural frequencies of system are selected and recon-
structed when chatter occurs. Then, the ten time-domain and
four frequency-domain features of reconstructed signal are
calculated as the original feature set of chatter identification.
The extracted features are ranked based on the algorithm of
SVM-RFE, in which the optimal features are selected. Finally,
the optimal feature subset was selected according to the pre-
diction accuracy, which was fed into SVM for training and
testing. The experiment results was shown that the selected
best features were the sensitivity of features, which was a
promising approach to detect chatter in end milling at an early
stage.

1 Experimental setup

As shown in Fig. 1, the experimental machine is VMC1165B
three-axis milling machine. The accelerometer was mounted
on the spindle housing to collect the vibration signal during
the milling process. The vibration signals were sampled by a
data acquisition card, and then transmitted to the PC that was
applied to save data and analyze signals.

During the cutting tests, a carbide end mill cutter with two
flutes was applied to cut aluminum 6061. Besides, the cutting
tool’s diameter is 8 mm and the tool overhang is 44 mm. The
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signal sampling frequency is set to 12,000 Hz. All tests are
conducted without coolant.

Since, it was well known that chatter can arise at certain
combinations of axial depth of cut and spindle speed during a
milling process [19, 28]. Therefore, for the validation of the
proposed method in this paper, the feed rate was the same
(0.02 mm/per tooth). When the spindle speed is fixed, the
cutting depth starts from 0.2 mm and increases 0.2 mm each
time until chatter occurs. The other cutting parameters in this
experiment are shown in Table 1.

Experimental conditions for the feed rate 0.02/z, spindle
speed 7000 r/min and the depth of cutting 0.4 mm, the mea-
sured vibration signal is shown in Fig. 2. From Fig. 2, the
occurrence of chatter is an energy accumulation process dur-
ing the milling. There are three states in the milling process,
which are stable state, transition state, and chatter state. It is
seen that when chatter occurs, the amplitude of the vibration
signal will increase significantly. At this moment, the surface
quality and geometry of workpiece may have been damaged
seriously. When the stable state is transformed into the chatter
state during the milling process, there is a transition state
where the amplitude of vibration signal does not increase sig-
nificantly, but it has been pregnant with chatter onset [16].

Normally, the preliminary experiments have been conduct-
ed to examine the measured vibration signal and their FFT to
check the chatter frequency. However, the chatter frequency is
different since the chatter is influenced by the cutting

parameters and the modal parameters of the machining sys-
tem. Hence, a hammer test is applied on the tool tip to obtain
the modal parameters of the spindle (including tool and tool
holder) before the milling tests. A third orders natural frequen-
cies are 1494, 2041, and 4160 Hz.

Figure 3 shows the measured vibration signal and their
FFT, where a, b, and c are corresponding to A, B, and C of
Fig. 2, respectively. From the figure, when chatter occurs dur-
ing in the milling, the distribution of the frequency compo-
nents has been changed. In Fig. 3b, the chatter frequency has
obviously emerged, which is about 2719 Hz. The chatter fre-
quency is close to the twice first natural frequency of the
system [29] because the helix angle of the mill can have an
important role on instability due to repetitive impact driven
chatter [30]. And the amplitude also is slight increased.
Therefore, the recognition of the transition stage becomes

Table 1 Cutting conditions

Workpiece AL6061

Tool Carbide End Mills Φ8mm

Spindle speed(rpm) 3000, 4000, 5000, 6000, and 7000

Feed per tooth(mm/z) 0.02

Fig. 2 Vibration signal of time domain
Fig. 1 Experimental setup

Fig. 3 The measured vibration signal and their FFT. a stable state, b
transition state, and c chatter state
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the focus of attention in this paper. Early chatter recognition is
the recognition at the transition stage. Timely chatter is detect-
ed of chatter which may effectively avoid the unfavorable
effect on the workpiece and the tools.

2 Feature extraction of chatter

The vibration signals with rich information can be used to
detect chatter in the milling process. There are several time-
domain and frequency-domain characteristic parameters used
in chatter identification. From the thesis [20, 22, 28], this
paper selected ten time-domain and four frequency-domain
feature parameters, which form the original feature set of
chatter.

Supposed xi(i = 1, 2,⋯,N) is a signal series, N is the num-
ber of data points.

Time-domain feature parameters are described as follows:

(1) (Mean)a1 ¼ xm ¼ 1
n∑

n
i¼1xi

(2) Standard deviation, a2 ¼ xstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1∑
n
i¼1 xi−xmð Þ2

q

(3) Root mean square, a3 ¼ xrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n ∑

n

i−1
xið Þ2

r

(4) (Peak) a4 = xp =max(|xi|)

(5) (Skewness) a5 ¼ xske ¼ ∑n
i¼1 xi−xmð Þ3
n−1ð Þx3std

(6) (Kurtosis) a6 ¼ xkur ¼ ∑n
i¼1 xi−xmð Þ4
n−1ð Þx4std

(7) Crest factor, a7 ¼ CF ¼ xp
xrms

(8) Clearance factor, a8 ¼ CLF ¼ xpffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1 xij j

p� �2

(9) Shape factor, a9 ¼ SF ¼ xrms
1
n∑

n
i¼1 xij j

(10) Impulse factor, a10 ¼ IF ¼ xp
1
n∑

n
i¼1 xij j

When chatter occurs in the machining process, the ampli-
tude and distribution of the time-domain signal may be differ-
ent from those of the time-domain signal under stable condi-
tion. In the time domain, xm, xp, and xrms reflect the amplitude
and energy of signal. While xstd, xske, xkur, CF, CLF, SF, and IF
represent the time series’ distribution of signal. Besides, the
amplitude and distribution of frequency may change in the
frequency.

Frequency-domain feature parameters can be written as:

(11) Mean square frequency, MSF ¼ ∑m
j¼1 f j

2S f jð Þ
∑m

j¼1S f jð Þ
(12) One-step autocorrelation

function, ρ ¼ ∑n
j¼1cos 2π f jΔtð ÞS f jð Þ

∑n
j¼1S f jð Þ

(13) Frequency center, FC ¼ ∑n
j¼1 f jS f jð Þ
∑n

j¼1S f jð Þ
(14) Standard frequency, FV ¼ ∑m

j¼1 f j−FCð Þ2S f jð Þ
∑m

j¼1S f jð Þ

In the formula above, fj(j = 1, 2,⋯,m) represents the jth
frequency in the power spectrum.S(fj) represents the ampli-
tude of the power spectrum calculated by FFT. Δt represents
sample interval. The MSF represents the energy of the vibra-
tion signal in the frequency domain. ρ and FC are used to
reflect the position change of the main band of the signal.
FV is used to describe the signal energy dispersion and con-
centration in the frequency domain.

However, calculating these four frequency-domain feature
parameters takes a lot of time to compute the fast Fourier
transform (FFT), so these methods are not suitable for flutter
online monitoring. In this study, the fast calculation criterion
of frequency-domain characteristic parameters is proposed
[31], and the frequency-domain characteristic parameters can
be rewritten as follows:

(15) Mean square frequency, a11 ¼ MSF ¼ ∑n
i¼2x

2

4π2∑n
i¼1x

2
i

(16) One-step autocorrelation function, a12 ¼ ρ ¼ ∑n
i¼2xixi−1
∑n
i¼1x

2
i

(17) Frequency center, a13 ¼ FC ¼ ∑n
i¼2xix

4π2∑n
i¼1x

2
i

(18) Standard frequency, a14 = FV =MSF − 4π2FC2

As mentioned above, some of the feature parameters based
on the previous publications have been demonstrated not ef-
fective. While, based on different applications, different fea-
ture parameters are used to detect the chatter by different re-
searchers. One of the purpose of this paper is to utilize the
feature selection method to automatically select the effective
chatter identification parameters, rather than depending on
human experience.

However, the measured vibration signal generally contains
background noise, which is the disadvantage of identifying
the chatter both in time domain and frequency domain.
Therefore, it is very critical to suppress or eliminate the noise
for the feature extraction of chatter. Considering the noise is
broadband, the measured signal is decomposed into some nar-
row band components so that the energy of the noise is dis-
persed in these narrow bands. Based on the reference [32],
wavelet packet transform is the most suitable choice.
Wavelet packet transform (WPT) was applied to preprocess
the measured vibration signal before feature extraction of
chatter. The vibration signal via WPT may be allocated in a
specific frequency band. This allows for increasing the signal-
to-noise ratio and increasing the sensitivity of chatter features.

3 Wavelet packet transform

Wavelet packet transform is based on wavelet analysis. Not
only it can decompose the low frequency component, but also
can decompose the high frequency component. It can be a
multi-level signal band division in the whole band, improving
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the time-frequency domain resolution. Therefore, the band
signal contains rich information of the original signal.

Assuming that the subspace Un
j is the closure space of the

function un(t), and U 2n
j is the closure space of the function

u2n(t). So the formula un(t) that satisfies the two-scale equation
is described as:

u2n tð Þ ¼
ffiffiffi
2

p
∑
k∈Z

h kð Þun 2t−kð Þ

u2nþ1 tð Þ ¼
ffiffiffi
2

p
∑
k∈Z

g kð Þun 2t−kð Þ

8>><
>>:
where, hk and gk are the filter coefficients of the orthogonal
wavelet basis. The two coefficients are the orthogonal rela-
tionship, andg(k) = (−1)kh(1 − k).

The sequence {un(t)}n ∈ Z is constructed by the Eq. (1),
which is called the orthogonal wavelet packet determined by
the basis function u0(t) = ϕ(t). When n = 0, u0(t) and u1(t) are
orthonormal scaling function ψ(t) and wavelet basis function
ϕ(t), respectively. The above formula becomes:

ϕ tð Þ ¼
ffiffiffi
2

p
∑
k∈Z

h kð Þϕ 2t−kð Þ

ψ tð Þ ¼
ffiffiffi
2

p
∑
k∈Z

g kð Þψ 2t−kð Þ

8>><
>>:

ð1Þ

The wavelet packets decomposition algorithm:

d jþ1;2n
l ¼ ∑

k
hk−2ld

j;n
k

d jþ1;2nþ1
l ¼ ∑

k
gk−2ld

j;n
k

8>><
>>:

ð2Þ

The wavelet packet reconstruction algorithm:

Qj;n
l ¼ ∑

k
hl−2kd

jþ1;2n
l þ gl−2kd

jþ1;2nþ1
l

h i
ð3Þ

In this paper, the db10 is used as the wavelet basis function
which has a better orthogonality. For the stable and transition
state, the measured vibration signal was decomposed four

levels byWPT. 16 wavelet packets di4; i ¼ 1; 2;⋯; 16
� �

were
obtained correspondingly. The energy distribution of the
wavelet packet is shown in Fig. 4. When milling is in stable
state, energy is mainly distributed at low frequency, and con-
sumption of its energy is mainly used in milling process.
Whenmilling is in the transition state, its high frequency com-
ponents are suppressed, and energy is mainly concentrated in
the wavelet packet nodes 8 and 9, where the vibration energy
was concentrated around the chatter frequency. The energy
and amplitude of vibration signal increase sharply. The wave-
let packet nodes 8 and 9 which contain the chatter frequency
were selected as the characteristic wavelet packets and recon-
structed by the Eq. (3). Then the reconstructed signalQ(t) was
obtained. As it is shown in Fig. 5, it is obvious that the recon-
structed signals has apparent changes in the early chatter.

Then, the aforementioned ten time-domain and four
frequency-domain feature parameters were obtained via cal-
culating the reconstructed signal Q(t). These feature parame-
ters was denoted as the original feature set T = [a1 a2 a3 a4 a5
a6 a7 a8 a9 a10 a11 a12 a13 a14]. The aim was to obtain the
more efficient features to monitoring the milling process. In
order to select sensitive features of chatter rather than individ-
ual experience, the selection feature method of SVM-RFEwas
applied in the following paper.

4 Feature selection of chatter identification based
on SVM-REF

4.1 Theory of the SVM

Support vector machine (SVM) is derived from the thought of
the optimal classification surface under the linear separable

Fig. 5 The reconstructed signal and its spectrum in transition state
Fig. 4 Comparison of the wavelet packet energy ratio in stable state and
transition state
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case. Support vector regression machine and support vector
machine for classification are mainly used. This paper briefly
introduces the application of class support vector machine [23,
33].

For the two-class classification problem, supposing there is
a training data {(xi, yi), i = 1, 2,⋯, n}, where n is the number
of samples and xi is n dimensional feature vectors with class
labelsyi ∈ {−1, +1}.

The goal of SVM is to find an optimist separating hyper-
plane.Maximizing the margin of the hyperplane is then equiv-
alent to maximizing the distance between the class bound-
aries. The distance between the margin and the hyperplane is
defined as D = 1/‖ω‖. Since the distance are symmetry with
respect to hyperplane, the distance between the two margins
becomes 2/‖ω‖2. So the problem of the biggest classification
margin distance is transformed into finding the minimum ‖ω‖.
The decision function of SVM is:

f xið Þ ¼ ω � xi þ b ð4Þ

where ω is a weight vector and b is a bia.
The position of the separating hyperplane is defined by ω

and b. The optimal hyperplane is found out by solving the
following constrained optimization problem:

min L ω; b; ξð Þ ¼ 1

2
ωk k2 þ C ∑

N

i¼1
ξi

s:t: yi ω � φ xið Þ þ bð Þ−1þ ξi≥0; i ¼ 1; 2;⋯; n

8<
: ð5Þ

where C is the penalty parameter which represents a trade-off
between training error and the margin, ξi are slack variables,
andξi > 0.

Using the Lagrange function, the problem can be rewritten
as follows:

min L ¼ ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
αiα jyiy jK xi; x j

� �

s:t: ∑
n

i¼1
yiαi ¼ 0; 0≤αi≤C; i ¼ 1; 2;⋯; n

8>><
>>:

ð6Þ

where αi are called Lagrange multipliers which are the con-
stants and are determined in the optimization process.K(xi, xj)
is a symmetric and positive kernel function which denotes as
K(xi, xj) = 〈φ(xi) ·φ(xj)〉, with satisfying Mercer’s theory. The
derived training algorithm is guaranteed for minimization.

Then, the non-linear decision function of SVM is described
as following:

f xð Þ ¼ sign ω � φ xð Þ½ � þ bð Þ

¼ sign ∑
n

i¼1
αiyiK xi; x j

� �þ b
� �

ð7Þ

This decision function is the so-called as SVM. In the prac-
tical application, the most commonly adopted kernel function
is the radial basis function, which has the form asK(xi, xj) =
exp(−|xi − xj|

2/2σ2).

4.2 Feature selection of chatter based on SVM-RFE

Support vector machine recursive feature elimination (SVM-
RFE) is a feature selection method proposed by Guyon [23,
27]. It is a highly efficient feature ranking criterion based on
the weight of SVM classifier. The larger the weight of feature,
the greater it impacts on the classification decision. In each
iteration of recursive feature elimination (RFE), a trained
SVM model is obtained. The feature with the smallest weight
is eliminated according to the effect on classification. The
remaining features are used to train the SVM model in the
next iteration. The iteration process is repeated until all the
features have been eliminated. Finally a feature ranking list
is obtained. A number of nested feature subsets may be de-
fined to train SVM based on the feature ranking list, then the
optimal feature subset is obtained based on the prediction
accuracy of SVM classification.

For classification problems, Kohavi [34] indicated that the
weight of SVM may be replaced by a cost function. The fea-
tures are sorted based on the value of the cost function. By
calculating the weights, the cost function of each weight could
be obtained. The weight vector of SVM classifier could be
obtained by Eqs.. (6) and (7):

ω ¼ ∑
i
αiyixi ð8Þ

where ω is represented as ω = [ω1, ω2,⋯, ωn]
T and n is the

number of features in the feature ranking list.
For linear SVM, the cost function of the hth feature is

defined by:

DJ hð Þ ¼ ωhð Þ2 ð9Þ

For non-linear SVM, the cost function of the hth feature is
described by:

DJ hð Þ ¼ 1

2
αTHα−

1

2
αTH −hð Þα ð10Þ

where DJ(h) is denoted as the cost function, and h is denoted
as the hth removed feature. H is a matrix with elements
yiyiK(xi, xj), and H(−h) is a matrix similar H, which removes
the hth feature.

Since chatter phenomenon is linked to the dynamic behav-
ior of the machine-tool-workpiece system, the measured vi-
bration signal in milling process is non-linear and non-station-
ary. So the non-linear cost function is applied in the study.
Based on the above analysis, the SVM-RFE feature selection
criteria [23] is as follows:
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Step 1: Inputs: training examples X0 = [x1, x2,⋯, xi,⋯, xn]
and class labelsy = [y1, y2,⋯, yi,⋯, yn];

Step 2: Initialize: subset of surviving features S = [1, 2,⋯,
k], the feature ranking listr = [ ];

Step 3: The feature ranking process:
(1) Restrict training examples to good feature indices X =

X0[:, S];
(2) Train the classifier α = SVM − train(X, y);
(3) Compute the ranking criteria:

ranking DJ hð Þ ¼ 1
2α

THα− 1
2α

TH −hð Þ, for all h. Find
the feature with smallest ranking criterion f = arg
min(ranking);

(4) Update feature ranked list r = [S( f ), r] and eliminate the
feature with smallest ranking criterion S = S(1 : f − 1, f +
1, length(S));

(5) Repeat until S = [ ];
Step 4: Step 4: Output: the feature ranked listr.

5 Early scheme of chatter detection

In order to improve the accuracy of chatter identification, the
measured vibration signal is preprocessed by a four-level
wavelet packet transform. Some wavelet packets with rich
chatter information are selected and reconstructed. The feature
parameters of ten time domain and four frequency domain are
extracted, which form the original feature set. The SVM-RFE
criterion is used to select the most sensitive chatter features
from the original feature set, which can effectively remove the
irrelevant or redundant features. Finally the selected best fea-
tures are fed into the SVM for pregnant chatter identification.
The main scheme of early chatter detection is as follows:

Step 1: Obtain the vibration signal for the milling. The vi-
bration signal of the spindle is collected by the
accelerometer.

Step 2: Analysis the vibration signal by WPT. The vibration
signal is processed by four-levelWPT, and the wave-
let packet 8, 9 is selected and reconstructed.

Step 3: Extraction of time-domain and frequency-domain
feature. The chatter feature parameters of time do-
main and frequency domain were calculated via the
reconstructed signal, and the 14-dimensional origi-
nal feature set T is obtained.

Step 4: Select the optimal feature subset based on SVM-
RFE. The feature selection method of SVM-RFE
was implemented to obtain the feature ranking list.
Then a series of feature subset was obtained.

Step 5: Train the SVM classifier. The SVM model is trained
based on training data for every feature subset.

Correspondingly, the prediction accuracy of testing
data is obtained.

Step 6: According to the classification accuracy of chatter,
the optimal feature subset is obtained.

6 Chatter identification of the milling

6.1 Feature extraction of chatter

In this paper, identifying the transition from stable to chatter in
end milling process was mainly studied. So the vibration sig-
nals in stable state and transition state were collected in the
milling process. According to the experiment condition
Table 1, 60 samples were obtained, where 30 samples were
collected in cutting stable state and the others were collected in
chatter transition state. Each sample has 1024 data points,
which were processed with four-level WPT and 16 time-
frequency domain wavelet packets was obtained. In terms of
feature extraction, according to the analysis in Section 2, 8,
and 9, wavelet packets 8 and 9 were selected and reconstruct-
ed. Then, for each sample, ten time-domain feature parameters
and four frequency-domain feature parameters were calculat-
ed, and 14 feature parameters were obtained, which construct-
ed the original feature set T = [a1 a2⋯a14 ].

In order to verify the proposed approach in this study, ran-
domly 20 samples were selected as training data from stable
and transition samples, respectively. The remained samples
were selected as testing data.

6.2 Chatter feature selection based on SVM-RFE

The original feature set may not directly recognize the preg-
nant chatter state (i.e., the transition state) because of chaos
and overlap in structure. This phenomenon is showed in

Fig. 6 Spatial distribution of [xkur CLF] between stable state and
transition
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Fig. 6, which was kurtosis xkur and clearance factor CLF of
time-domain parameters from the original feature set. From
the picture, it was not effectively in chatter recognition be-
cause the selected chatter features exists great relevant.
Therefore, the original feature could not be directly fed into
the SVM classifier for chatter identification.

The step of feature selection is crucial in order to find
which features are the most significant and reliable for chatter
detection. To avoid this disadvantage phenomenon, the meth-
od of SVM-RFE was implemented to select the best chatter
features from the original feature set. Then the redundant or
irrelevant features could be eliminated. Features with rich in-
formation were selected, chatter identification accuracy of
SVM classifier could be improved and the computation time
was reduced.

In the algorithm of SVM-RFE, the calculated cost function
is realized by using the Lagrangemultipliers which is linked to
the penalty function C and Gaussian kernel parameter of SVM
classifier. As a result, the selection of SVM parameters will
directly affect the performance in the process of feature selec-
tion. But it is difficult to choose appropriate penalty function C
and kernel parameter of SVM classifier, the particle swarm
optimization (PSO) [35] was used to optimize the SVM pa-
rameters in this paper.

Through the application of particle swarm optimization, the
optimal regularization parameter and Gaussian kernel func-
tion are C = 75.68 and γ = 0.93, respectively. Based on the
algorithm of SVM-RFE, the feature ranking list was obtained,
which was represented as [a12, a10, a4, a7, a8, a11, a5, a2,
a3, a9, a13, a13, a6, a14]. The top feature of the feature
ranking list had the greatest effect on classification, while
the last feature of the feature ranking list had the least influ-
ence on classification. Then a series of feature subset was
obtained, which is shown in Table 2. And the corresponding
prediction accuracy of testing data is obtained. From Table 2,
the feature subset comprised of one-step autocorrelation func-
tion a12 and impulse factor a11 was the best, which was
selected as the feature vectors of chatter identification. Then
the selected two features were fed into SVM to train the SVM
model based on the training data. The prediction of classifica-
tion accuracy was 100% according to the testing data. While,

when the feature number was 14, the prediction of classifica-
tion accuracy decreased to 95%, and the training time and
testing time would increase correspondently. It was demon-
strated that the selected best features through SVM-RFE could
obviously improve the chatter identification accuracy of SVM
classification.

6.3 Online verification of chatter detection

The purpose of this section is to verify the selected features
comprised of one-step autocorrelation function a12 and im-
pulse factor a10 in online detection of chatter onset. From
Fig. 7, it was seen that there was no obvious change of the
vibration signal amplitude before the time is 5.1 s, as shown in
line 2 in Fig. 7. While the increasing trend was emerged
through the selected two feature parameters, which means
the early evidence of chatter was occurred at 4.2 s during the
milling process, as shown in line 1 in Fig. 7. If suppression
chatter could be carried out at this moment, there would be
enough time to avoid the disadvantageous effect.

From Fig. 7, it was also indicated that the one-step auto-
correlation function a12 reflected the change of dominant

Table 2 the partial feature subset
Number of used features Selected feature Accuracy Execution time

1 a12 80 12.6 ms

2 a12, a10 100 12.6 ms

3 a12, a10, a4 95 17.4 ms

4 a12, a10, a4, a7 80 18.9 ms

⋯ ⋯ ⋯ ⋯
14 a12, a10, a4, a7, a8, a11, a5, a2, a3, a9, a13, a13,

a6, a14
95 117.3 ms

Fig. 7 The selected features a10 and a12 in chatter development process
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frequency band in frequency domain, gathered around the
chatter frequencies with the increase of chatter intensity when
chatter occurred. And the impulse factor reflected the frequen-
cy of the vibration pulses, a dimensionless feature parameter
on time domain, represented the increasing degree of collision
between the milling tool and workpiece as time went on.
Hence, the selected two feature parameters based on SVM-
RFE fully reflected the chatter phenomenon from both time
domain and frequency domain during the milling process.

7 Conclusion

This paper proposed a novel method of chatter detection in
milling machines based on wavelet packet transform and sup-
port vector machine recursive feature elimination, which over-
came the influence of artificial experience of selecting the
chatter identification feature parameters. The collected vibra-
tion signal was preprocessed by wavelet packet transform
regarded as a filter, which allowed for increasing the signal-
to-noise ratio and the sensitive features. Features were ranked
by the value of cost function via SVM-RFE. Through the
feature ranking list, the optimal feature subset was obtained,
which was comprised of one-step autocorrelation function
a12 and impulse factor a10. The experimental results showed
that the proposed technique offered good chatter detection
based on the two selected chatter features, which not only
improve the chatter identification accuracy but also reduce
the computational time.

The proposed method is quite encouraging. The sensitive
chatter features are selected based on the algorithm of SVM-
RFE rather than individual experience, and the good classifi-
cation accuracy guarantees its reliability only under the spe-
cific conditions. However, when the cutting condition chang-
es, the natural frequency will change accordingly. In order to
solve this issue, a simple hammer test is implemented to ob-
tain the system natural frequency, and the wavelet packets
around the twice natural frequency of system are selected. If
that was done, the proposed method in this paper may be
applied in other condition. In the future work, since industrial
applications are much more complicated, more experimental
conditions including feed rate should be carried out in more
complicated milling conditions.
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