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Abstract A queueing network model is developed for un-
derstanding the way product quality may affect the prof-
itability of production systems, when the consumers base
their future demand patterns on the quality of the products
they have recently purchased. We examine a multistage
make-to-order system which receives orders from regular
and occasional customers, the former having a higher
mean demand rate. Each outgoing item undergoes inspec-
tion and quality grading to decide whether it will be
discarded as nonconforming or shipped to a customer. In
the latter case, the customer who purchases the item will
subsequently become a regular or occasional customer
with complementary probabilities which depend on the
quality level of that item. The solutions of simple test
cases with dynamic programming show that the optimal
policy is state-dependent, complex, and computationally
intensive. A much simpler, threshold-type policy is pro-
posed, whose performance evaluation and optimization
uses closed queueing network formulas and has minimal
computational requirements. Numerical results indicate
that the proposed policy performs almost as well as the
optimal policy.

Keywords Production control . Quality control .Markov
decision processes . Closed queueing networks

1 Introduction

Customer satisfaction is considered to provide companies
with a competitive advantage for sustaining and increasing
their market shares, sales, and revenue rates. Τhe nature of
customer satisfaction, its key determinants, and consequences
have been examined in [1, 2]. Even though it is hard to deny
its benefits, the idea of incorporating customer satisfaction in
the company strategy was confronted at first with much of
reservedness from managers. This was due to a lack of tangi-
ble and measurable evidence of its impact on financial returns.
According to an opinion survey among major US firms, only
28% of them could relate their customer satisfaction measures
to accounting returns and only 27% to stock returns [3].
According to [1], a failure of establishing a link between cus-
tomer satisfaction and economic performance may discourage
firms from investing on product quality and customer satisfac-
tion. Research concerning the interplay between customer sat-
isfaction and marketing strategy suggests that keeping an
existing customer may be a better strategy than attracting a
new one [4, 5].

A method to assess the effect of satisfaction on customer
retention and market share was provided for the first time in
[6]. A relevant study [7] identified factors affecting customer
satisfaction, studied the contribution of customer satisfaction
to the financial performance of a firm, and observed
asymmetries in the effects of opposite variations (satisfaction,
dissatisfaction) on profit.

Although numerous studies have examined certain factors
linking customer satisfaction and financial corporate results,
no universal approach has been proposed, mainly due to sev-
eral other factors that may significantly affect this linkage
(e.g., product or firm-related characteristics, market or other
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environmental factors). However, it is widely accepted that a
higher customer satisfaction leads to higher levels of repur-
chase intention and, in turn, higher levels of revenue and prof-
itability (see [8] for a detailed discussion). In addition, other
intermediate factors (e.g., customer retention, customer loyal-
ty) may increase the complexity of the previous linkage.

For manufacturing systems, customer satisfaction is a com-
plex concept which depends on many factors, such as product
quality, price, warranty terms, and lead time in filling custom-
er orders. Although customer satisfaction has received consid-
erable attention by marketing researchers, it has not yet been
studied to the same extent jointly with the problems of pro-
duction and quality control. The majority of studies
concerning customer satisfaction focus on product pricing
and lead-time decisions, even though product quality is a
key factor in customer satisfaction. Models for studying the
behavior of stockout-averse customers of a multiperiod inven-
tory system with partially observable, service-dependent de-
mand are proposed in [9]. A somehow dual situation is con-
sidered in [10], where a single customer chooses randomly
between two suppliers depending on credibility factors, which
are decreasing functions of the stockouts experienced in the
past when ordering from each firm. The firms make dynamic
inventory decisions by observing the current inventories and
credibilities of each other.

In the literature, quality is usually specified by the de-
viations of a product’s principal functional characteristics
from the specified target value of the product design spec-
ification. The economic losses caused by these deviations
are called quality loss. These costs may include loss of
sales and loss of producer’s goodwill. A common quality
loss function is the quadratic function, which has been
proposed by Taguchi et al. [11]. This approach is a rather
simple approximation and it does not describe the com-
plex dynamics between production decisions, product
quality, customer satisfaction, and market shares.

Recently, there has been a growing interest in the intercon-
nection of production control and quality control. Towards
this end, problems in which production design or control de-
cisions are coupled with quality control strategies have re-
ceived considerable attention [12–16]. A recent literature re-
view on this topic can be found in [17].

A common quality control practice is the design of
complete inspection plans, also known as screening or
100%-inspection procedures. Detailed literature reviews
on the design of screening procedures can be found in
[18, 19]. The problem of coordinated production and
quality control in manufacturing systems when screening
is applied has been studied in detail [20–23]. In these
works, it has been clearly shown that a joint consideration
of production and quality control problems results in a
considerable improvement of manufacturing systems
performance.

Our goals in this work are to examine how product speci-
fication decisions interact with customer satisfaction and mar-
ket share and to propose simple and efficient policies, in order
to increase manufacturing systems profitability.

A recent study [24] reported on the impact of quality con-
trol on customer satisfaction and market size for single-stage
production systems. This work extends the analysis to com-
plex multistage manufacturing systems. In Sections 2 and 3,
we describe a multistage, make-to-order manufacturing sys-
tem with quality-dependent customer behaviors. We formu-
late a quality control problem for maximizing the average
profit rate of the system. It turns out that the optimal policy
requires exact knowledge of the current market state (numbers
of regular and occasional customers) and the current backlog
(number of unfilled orders). In Section 4, we propose a
threshold-type heuristic quality control policy, which is easily
computable and implementable and does not require any state
information. In Section 5 we present a numerical comparison
between the optimal and heuristic policies. Concluding re-
marks are presented in Section 6.

2 Inspection planning with quality-dependent
customer satisfaction and classification

Consider a make-to-order production system that manufac-
tures a single type of product. The system serves a market
comprising a total of M customers, where M is constant. At
each time instant, a fraction of these customers have recently
placed orders which are still outstanding. Each of the remain-
ing customers belongs to one of two distinct classes: the class
of regular or satisfied customers, denoted i = 1, and the class of
occasional or dissatisfied customers, i = 2. Regular customers
have a higher loyalty and a tendency to make more frequent
purchases in the future than occasional customers. The system
receives orders from customers of either class who currently
have no orders outstanding. Thus,M is the sum of three time-
varying state variables:

n1 number of regular customers who currently
have no outstanding orders,

n2 number of occasional customers who
currently have no outstanding orders,

M – n1 – n2 number of customers awaiting fulfillment
of outstanding orders.

Customer demands occur according to independent
Poisson processes. Each customer requests one unit of product
and has a class-dependent mean demand rate, λi, i = 1, 2,
where λ1 > λ2. Thus, the mean demand rate in state (n1, n2)
is λ1n1 + λ2n2. When a customer places an order, a raw item is
released into the first production stage of the system, and
when a product is finished, its quality is inspected and a deci-
sion is made as to whether this item will be scrapped or
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shipped to fill an outstanding order. Each outgoing product
has acquired a certain quality level1 q with corresponding
probability pq, where q = 0, 1, …, L, p0 + … + pL = 1, and
the product quality decreases with increasing q. If a product of
quality level q is sold to a customer, then this customer will
eventually be satisfied with (conditional) probability sq or dis-
satisfied with the complementary probability. Satisfied cus-
tomers join the regular class while dissatisfied ones become
occasional customers. High-quality items have higher satis-
faction probabilities; thus, s0 > s1 > … > sL.

The production system is assumed to be modeled as a net-
work of single-machine, queueing nodes of the Jackson type.
This assumption is adopted here in order to keep the formula-
tion as simple as possible and for computational convenience.
The analysis that follows can be extended to more general
Markovian production networks.

For notational convenience, we assume that the system has
a production facility with N – 2 machines denoted i = 3, 4,…,
N, where machine 3 processes the raw material corresponding
to each placed order and machine N makes the final product,
as shown in Fig. 1. Each machine is fed by a buffer of unlim-
ited capacity, in which items from other machines are tempo-
rarily stored. The processing times at machine i are indepen-
dent random variables from an exponential distribution with
mean 1/μi.

The flow of items in the system is described by a matrix
Π = [pi,j], where pi,j is the routing probability from machine i
to machine j. For example, if machines i and i + 1 are consec-
utive in a production line then we have pi,i + 1 = 1, whereas for
more general geometries we have pi,j ≥ 0 and ∑j pi,j = 1 for all
i. If a quality q item goes out of machine N and is sold to a
customer, then either this customer will be satisfied and join
the pool of class 1 customers with corresponding routing
probability pN,1 = sq or will be dissatisfied and become a class
2 customer with corresponding routing probability
pN,2 = 1 – sq.

The objective is to find an optimal control policy, which
dictates whether to sell or scrap an outgoing product of a given
quality level q so as to maximize the mean profit rate of the
system. The mean profit rate depends on the sales rate (system
throughput), the costs of rejected items, and the holding costs,
with corresponding parameters.

r profit per unit of product sold,
c unit rejection cost (cost for scrapping and/or reworking an

item),
bi per item and pending order holding cost rate at node

(buffer, machine) i, i = 3, …, N.
The parameters bi accumulate the unit inventory cost (cost

of holding one item for one-time unit) and the unit backlog

cost (cost of delaying an order by one-time unit) of node i,
i = 3, 4, …, N.

The state of the system is described by the vector n = (n1,
n2, n3, …, nN) with state space Z = {n | n1 + n2 + n3 +
… + nN =M and ni ≥ 0 for all i = 1,…,N}.Whenever machine
N produces an item, we observe its quality level q and the
system state n, and then we make a selling decision π(n, q),
where π(n, q) = 1 if the item will be shipped to a waiting
customer and π(n, q) = 0 if it will be scrapped (discarded).
In the latter case, a new raw item is released into the buffer of
machine 3; thus, nN is reduced by one and n3 is increased by
one.Whenwe sell an item, nN also decreases by one and either
n1 increases by one if the customer is satisfied with the item’s
quality or n2 increases by one. Analogous changes in the state
of the system take place when an entity (item or customer
order) moves from one node of the system to another: a move
from i to j causes ni to decrease by one and nj to increase by
one. The new state is expressed in vector notation as n – ei + ej
where ei is a vector having unity in the ith place and zeros
elsewhere.

Three types of events are defined:

& order placement by a type i customer (i = 1 for regular
customers, i = 2 for occasional customers),

& completion of a semi-finished item at machine i = 3, …,
N – 1,

& production of a quality q finished item at machine N and a
selling or scrapping decision.

Because the interevent times are exponentially distributed, we
can formulate the optimization problem as a Markov decision
process.We do this using the uniformization technique [25] and a
homogeneous Poissson process with rate ν = Mλ1 + μ3 + μ4 +
… + μN. Let Vk(n) denote the value of the maximum expected
profit over the first k events of the Poisson process when the
initial state is n. The dynamic programming equations for the
optimal expected profit over the first k + 1 events are

Vkþ1 nð Þ ¼ 1

ν
⋅ n1λ1Vk n−e1 þ e3ð Þ þ n2λ2Vk n−e2 þ e3ð Þf

þ ∑
N−1

i¼3
μiIni>0 ∑

N

j¼3
pi; jVk n−ei þ e j

� �" #

þμΝ InN>0 ∑
L

q¼0
pqmax sqVk n−eΝ þ e1ð Þ þ 1−sq

� �
Vk n−eΝ þ e2ð Þ þ r;

�
Vk n−eN þ e3ð Þ−c�

þ ν−n1λ1−n2λ2− ∑
N

i¼3
μiI ni>0

� �
Vk nð Þ− ∑

N

i¼3
bini

�

ð1Þ

for every n ∈ Z, where V0(n) ≡ 0 and

IC ¼ 1 condition C is satisfied
0 otherwise

�

The terms inside the braces in Eq. 1 correspond to the
arrival of a regular or an occasional customer (first two terms),

1 Assessing a set of discrete quality levels is consistent with the quality man-
agement literature (e.g., six sigma approach).
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completion of a semi-finished part (the two nested summa-
tions), production of a final product followed by inspection
and the most profitable decision (fourth term with max oper-
ation), a self-transition (dummy event, fifth term) and, finally,
the overall holding cost in state n.

Because all states have self-transitions (i.e., ν is greater than
the total transition rate out of any state), they are aperiodic.
Also, the number of states in Z and the number of decisions in
each state are finite. As a result ([26] Theorem 9.4.5), the
optimal long-run average profit J* of the system is given by

J* ¼ ν lim
k→∞

Vk nð Þ−Vk−1 nð Þ½ � ð2Þ

for every n ∈ Z and can be approximated numerically by value
iteration (Eq. 1) on Vk(n) for sufficiently large k.

3 Simple systems, complex policies

We consider here a few test cases of a single-machine system
(i.e., N = 3) serving regular and occasional customers. By
performing several dynamic programming iterations, we com-
pute J* using Eq. 2 and the optimal decision at each state n (the
maximizer term in Eq. 1). It turns out that even for such simple
production systems the optimal policy has a rather elaborate
structure.

Standard parameter values of the test cases are M = 50,
λ1 = 1, λ2 = 0.1, μ3 = 60, r = 4, c = 3.5, and b3 = 0.3.
Next we make a few additional assumptions only for es-
tablishing some plausible values for the quality level pro-
duction probabilities pq and the corresponding probabili-
ties of satisfaction sq. The quality of every produced item
is determined by the absolute deviation of the value of a
certain quality characteristic Y from a target value t = 10.
We assume that Y follows a normal distribution with a
mean value equal to the target 10 and variance σ2 = 1.
This is a common assumption in the quality control liter-
ature. For each outgoing item, the characteristic Y is
screened and assigned one of the eight quality levels
q = 0, …, 7. For the experimental results reported herein
the quality levels are determined as follows. We divide the

interval [t − 3σ, t + 3σ] containing the 0.997 probability
mass of Y values into 16 segments of equal length 3σ/8,
which are pairwise symmetric around t. The symmetric
segments [t – 3(q + 1)σ/8, t – 3qσ/8] and [t + 3qσ/8,
t + 3(q + 1)σ/8] are both assigned the quality level q,
q = 0, …, 7. The two symmetric intervals corresponding
to q = 7 are modified to (−∞, t – 21σ/8] and [t + 21σ/8, ∞)
so as to cover all possible Y values. Using normal proba-
bility approximations, we calculate the probability pq that
Y falls in one of the two symmetric intervals correspond-
ing to quality level q. Finally, we assume that the proba-
bility of customer satisfaction sq is a sigmoid function of
q. Sigmoid functions are commonly used in the literature
to model different relationships between product quality
and customer satisfaction (see, e.g., Grigoroudis and
Siskos; 2010). The customer satisfaction and product
quality probabilities for the test cases investigated are
shown in Table 1.

Figure 2 shows the optimal policy as a function of n1
(regular customers) and n3 (pending orders) when the item
produced is of quality level 4 (recall that quality decreases
as level q increases and that n2 = M – n1 – n3). For quality
levels 0 to 3 the optimal decision is π(n, q) = 1 for all
system states n, while for quality levels 5 to 7 the optimal
decision is π(n, q) = 0 for all states. This result agrees
with intuition: it is worth scrapping products only if their
quality is poor. In Fig. 2 we see the regions of acceptance
and scrapping decisions within the state space for quality
level q = 4. It becomes clear that in those quality levels
where there are two competing decisions, it is optimal to
sell a product of moderate quality (here q = 4) either when
n1 is large, i.e., there are already many regular customers
in the market, or when n3, the number of customers with
pending orders, is large and the system incurs a high
backlog cost rate b3n3. For the above parameters, the val-
ue iterations of Eq. 1 returned an optimal mean profit rate
J* = 77.44.

We now examine how sensitive the optimal policy is to
changes in parameter values. First we use three different
values for the revenue parameter r. The left graph of
Fig. 3 shows the switching curves of the optimal policy

pN,3
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n1

n2
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2 

regular customers
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5
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nj j 
nN N 

occasional customers

Production facility
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Each discarded item is replaced by a new raw item

Fig. 1 Make-to-order production
system with two customer classes
and scrapping of products
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for quality level 4. The regions on the left of each
switching curve comprise all states (n1, n3) for which a
scrapping decision is optimal and those on the right cor-
respond to optimal selling decisions for quality 4 items.
As the unit revenue r increases, the number of states for
which scapping is optimal within a certain quality level
increases as well. For the same quality level we investi-
gate how sensitive the optimal policy is to the changes of
rejection cost value c. The right graph of Fig. 3 suggests
that as the rejection cost decreases scrapping becomes
more appealing, a result that agrees with intuition.

Next, we investigate the sensitivity of the optimal policy to
the unit backlog cost b3 and the order arrival rate λ1 of regular
customers. We use three different values for each parameter.
Figure 4 shows the optimal policies returned at quality level 4.
We see that when b decreases, scrapping decisions are more
often optimal than not, which is something we expect since a
small backlog cost gives the opportunity to prolong the order
lead times by scrapping items of relatively low quality, while
higher backlog costs tend to make it more urgent to fill orders
as soon as possible with quality becoming a secondary con-
cern. The optimal policy is also sensitive to variations of λ1.
The smaller the arrival rate of regular customers (and yet
higher than λ2), the smaller the backlog and the easier it is
for the system to scrap items so as to have as many satisfied
customers (and regular) as possible, while avoiding excessive
delays in filling customer orders.

We have also numerically examined the impacts of
changing the production rate μ3 and the order arrival rate
λ2 on the optimal policy. In all cases, there was only one
quality level in which both decisions are optimal, separat-
ed by a switching curve. However, there exist problem
instances in which both decisions are present in several
quality levels, as we shall see later.

4 A heuristic threshold policy

4.1 Policy description

The numerical investigation of the previous section indicates
that the optimal quality control policy does not have a simple
structure because, in addition to the item’s quality level, it
depends on the state vector n as well. This makes the optimal
policy unappealing for practical use since human operators
prefer using simple rules of thumb to complex computer gen-
erated solutions. Nevertheless there are some values of q for
which the optimal policy is independent of n. In the previous
example, we always sell outgoing items of quality levels q = 0,
1, 2, 3 and always dispose items having q = 5, 6, 7. The only
exception is when q = 4 where both decisions are applicable
and the optimal policy has the form of a switching surface, as
shown in Figs. 2, 3, and 4.

In this section, we consider a heuristic, threshold-type pol-
icy for ease in the implementation, as an alternative to the
optimal policy. We assume that Q is a quality threshold (Q ≤
L) such that all items having q >Q are rejected, otherwise they
are shipped to the waiting customers. Then, the problem be-
comes one of finding the optimal Q so as to maximize the
mean profit rate. The major advantage of the proposed policy
is its computational efficiency. For complex production net-
works the optimal policy cannot be computed due to the ex-
plosion of the state space. The derivation of the optimal policy
is computationally demanding even for a two-stage produc-
tion line. On the other hand, the heuristic policy requires fewer
computations and may be applied to production systems with
increased complexity. Apart from its computational advan-
tage, the proposed threshold policy is applicable when the
manufacturing firm has only partial information about the
market status, e.g., when M is known but the market shares
n1 and n2 corresponding to regular and occasional customers
are unknown.

4.2 Performance evaluation

When the system operates under the threshold-type quality
control policy, it can bemodeled as a closed queueing network
(CQN) with N nodes andM jobs. Each node i, i = 3,…, N, of
the CQN has a single exponential server with mean service
rate μi equal to the mean production rate of machine i of the
production facility. Nodes 1 and 2 represent, respectively, the
mechanisms that generate arrivals of regular and occasional
customers and at each time instant they have as many active
servers as the number of jobs in their queues. The servers in
these two nodes have exponentially distributed processing
times with means 1/λi, for i = 1, 2. The CQN and the produc-
tion system have the same schematic representation shown in
Fig. 1.
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Fig. 2 Optimal policy π(n, q) for quality level q = 4

Table 1 Product quality and customer satisfaction probabilities

q 0 1 2 3 4 5 6 7

pq 0.261 0.234 0.188 0.135 0.087 0.050 0.026 0.019

sq 0.950 0.938 0.868 0.692 0.458 0.282 0.212 0.200
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At any time instant, the state vector n of the production
system is the same as the vector of the number jobs in the
nodes of the CQN. The routing probabilities of node N
depend on the quality of the corresponding outgoing item
and the decision made in the production system. Under
the threshold policy, the end item’s quality q is identified
by inspection and if q > Q (low quality), then this item is
rejected and a new raw item is released into the first
machine of the production facility. In essence, this is the
same as a job being routed form node N back to node 3,
as shown in Fig. 1. The corresponding routing probability
is given by pN,3 = pQ + 1 + … + pL. Moreover, if the end
item is of acceptable quality level (q ≤ Q), then it will be
purchased by a customer. With probability pN,1 = p0s0 +
… + pQsQ the customer who purchases the item will be
satisfied. In the equivalent CQN, a job departs from node
N and is routed to node 1 (satisfied customer becomes a
regular customer). However, with probability pN ,2

=p0(1 – s0) + … + pQ(1 – sQ) the customer will be dis-
satisfied and in the equivalent CQN the job will go to
node 2 (dissatisfied customer becomes an occasional cus-
tomer). The other routing probabilities of the CQN are the
same as the ones of the production facility. Finally, all
jobs coming from nodes 1 and 2 are routed to node 3 of
the CQN, i.e., p1,3 = p2,3 = 1.

Next we summarize a known algorithm from queueing
theory which permits the computation of the equilibrium
probabilities P(n) = P(n1, …, nN) and all the components of
the mean profit rate of the system.

Let THN denote the average outflow rate (throughput) of
node N, Bi = E(ni) the average inventory/backlog of node i,

Π = [pi,j] the matrix of routing probabilities, and u = [u1… uN]
any nonnegative solution of the system of linear equations
u = uΠ. The vector u is determined only within a multiplica-
tive constant, so we are free to choose a normalization scheme
for the ui (e.g., uN = 1 or u1 + … + uN = 1). Let αi(ni) be the
number of occupied servers in node i. We have that αi(ni) = 1
for all i ≥ 3 and ni ≥ 1, since each of these nodes has only one
server, while for nodes 1 and 2 we have α1(n1) = n1 and
α2(n2) = n2. Next, we recursively calculate the sequences
βi(ni) = αi(ni)βi(ni − 1) using βi(0) = 1 as a boundary value.
It turns out that βi(ni) = 1 for i ≥ 3 and βi(ni) = ni! for i = 1, 2.
The equilibrium probabilities of the system are given by (see
e.g. [27])

P nð Þ ¼ 1

G Mð Þ ∏
N

i¼1

ρnki
βi nið Þ

where ρ1 = u1/λ1, ρ2 = u2/λ2, ρi = ui/μi, and G(M) is is a
normalization constant given by

G Mð Þ ¼ ∑
n1þ…þnN¼M

∏
N

i¼1

ρnki
βi nið Þ

	 


The remaining performance indices of the system are given
by.

THi ¼ 1
G Mð Þ ρiG M−1ð Þ and Bi ¼ 1

G Mð Þ ∑
M

m¼1
G M−mð Þρmi for

i ≥ 3.and the overall mean profit rate

J ¼ r 1−pN ;3

� �
THN−cpN ;3THN− ∑

N

i¼3
biBi
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The value J corresponds to the choice of the quality thresh-
old Q = 0, …, L, which determines the routing probabilities
pN,1, pN,2 and pN,3, and, eventually, the equilibrium probabil-
ities of the system. To find the optimal Q we perform an
exhaustive search. We initialize the optimal policy, setting
J* = –∞ and the quality threshold Q = 0. For any given Q,
we compute the corresponding routing probabilities pN,1, pN,2,
and pN,3, and equilibrium probabilities P(n) of the CQN and
the overall mean profit rate J of the system. If J < J*, then we
set J* = J and Q* = Q. We increase Q by one and repeat the
above steps until all Q ≤ L have been evaluated. The optimal
pair is (Q*, J*).

5 Numerical experiments

In this section, we numerically compare the proposed thresh-
old policy and the optimal policy to see if the former can be
applied as an easily implementable alternative of the latter at a
small cost in performance.

5.1 Single-stage test case

First we examine a single-stage manufacturing system as
the one described in Section 2. We use M = 50 and the
same quality level probabilities pq and satisfaction proba-
bilities sq as in Section 3 (Table 1). Table 2 shows the
remaining parameter values and the corresponding opti-
mal policies. The column “Policy structure” describes
the optimal policy for each problem instance. With only
a few exceptions, for quality levels close to 0 and close to
7, the optimal decision is, respectively, to accept (1) and
reject (0) the item regardless of the system state n. The
quality levels for which the optimal decision depends on n
are indicated in Table 2 with the letter M. For example,
the entry 1111M000 in the first row of the table indicates
that a selling decision (1) is optimal for q = 0, …, 3 and
scrapping (0) is optimal for q = 5, 6, 7 both regardless of
n, while for q = 4 we have two separate regions of the
state space where each decision is optimal. We observe
that the threshold Q of the optimal heuristic policy always
equals one less the number of 1’s of the optimal decision.

Table 2 Comparison of policies for a single-stage system and various parameter values

Parameter values Optimal policy Threshold policy

λ1 λ2 μ c r b Policy structure Average profit Average profit Quality threshold

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

1 0.1 60 3.5 4 0.4 1111M000 77.15 77.15 Level 3

1 0.1 60 3.5 4 0.9 1111M000 76.87 76.87 Level 3

1 0.1 60 3.5 4 1.2 1111MM00 76.59 76.59 Level 3

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

1 0.1 60 3.5 3 0.3 11111M00 53.92 53.92 Level 4

1 0.1 60 3.5 4.8 0.3 1111M000 96.75 96.75 Level 3

1 0.1 60 3.5 4.5 0.3 1111M000 89.51 89.51 Level 3

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

1 0.1 60 3 4 0.3 1111M000 80.13 80.13 Level 3

1 0.1 60 4 4 0.3 1111M000 74.74 74.74 Level 3

1 0.1 60 2.5 4 0.3 11110000 82.82 82.82 Level 3

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

0.9 0.1 60 3.5 4 0.3 1111M000 73.98 73.98 Level 3

1.1 0.1 60 3.5 4 0.3 1111M000 80.50 80.50 Level 3

0.8 0.1 60 3.5 4 0.3 1111M000 70.07 70.07 Level 3

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

1 0.08 60 3.5 4 0.3 1111M000 68.15 68.15 Level 3

1 0.15 60 3.5 4 0.3 1111MMM0 94.59 94.59 Level 3

1 0.2 60 3.5 4 0.3 11111MMM 108.83 108.83 Level 4

1 0.1 60 3.5 4 0.3 1111M000 77.44 77.44 Level 3

1 0.1 55 3.5 4 0.3 1111M000 77.12 77.12 Level 3

1 0.1 65 3.5 4 0.3 1111M000 77.67 77.67 Level 3

1 0.1 50 3.5 4 0.3 1111M000 76.69 76.69 Level 3
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Recall that the first bit 1 corresponds to q = 0. This means
that Q coincides with the last quality level for which the
decision to sell is always optimal. Moreover, we see that
the mean profit rates of the two policies are equal to two
decimal places. Thus, for the datasets used in this study,
the proposed policy seems to be a very good approxima-
tion of the optimal policy. We also observe that the ac-
ceptable quality thresholds in both policies are rather in-
sensitive to parameter variations except for λ2. As λ2 in-
creases, occasional customers tend to have a similar pur-
chasing behavior as the satisfied ones and, therefore, a
high level of sales rate can be maintained even with a
large share of occasional customers by selling products
of lower quality and avoiding scrapping costs.

5.2 Production lines with multiple machines

We now test the threshold policy in multi-machine pro-
duction lines. Two cases are examined: a two-stage pro-
duction line, and a three-stage line. As previously, we use

eight quality levels and the same probabilities pq and sq
(Table 1). To avoid the problem of state-space explosion
we assume that the market comprises a total of M = 25
customers for the three-stage line. In the case of the two-
stage system we have used M = 50 as in the first test case.
Table 3 shows the other parameter values and the corre-
sponding optimal policy parameters and profit rates for
the two-stage system. Results and parameter values for
the three-stage system are presented in Table 4. As the
number of stages increases, one may observe that the
complexity of the optimal policy increases too. In multi-
stage test cases it is never optimal to fully scrap items of
very poor quality. Even for the worst quality level, scrap-
ing decision depends on systems state. This seems quite
reasonable as in the case of item rejection, we may have a
significant increase of customers waiting times, especially
when the number of pending orders in early production
stages is high. The complexity of the optimal policy does
not seem to have an effect on the performance of the
heuristic policy. As previously, compared to the optimal

Table 3 Comparison of policies for a two-stage system and various parameter values

Parameter values Optimal policy Threshold policy

λ1 λ2 μ3 μ4 c r b3 b4 Policy structure Average profit Average profit Quality threshold

0.12 0.015 6.5 5.5 3.5 4 0.25 0.4 1111MMMM 9.31 9.31 Level 4

0.12 0.015 6.5 5.5 2.5 4 0.25 0.4 1111MMMM 9.68 9.60 Level 4

0.12 0.015 6.5 5.5 3 4 0.25 0.4 1111MMMM 9.46 9.45 Level 4

0.12 0.015 6.5 5.5 4 4 0.25 0.4 11111MMM 9.17 9.16 Level 4

0.12 0.015 6.5 5.5 3.5 3 0.25 0.4 11111MMM 6.64 6.64 Level 5

0.12 0.015 6.5 5.5 3.5 3.5 0.25 0.4 11111MMM 7.95 7.93 Level 4

0.12 0.015 6.5 5.5 3.5 5 0.25 0.4 1111MMMM 12.13 12.06 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.2 0.4 1111MMMM 9.35 9.35 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.3 0.4 1111MMMM 9.27 9.26 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.35 0.4 1111MMMM 9.23 9.22 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.25 0.3 1111MMMM 9.43 9.43 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.25 0.5 1111MMMM 9.19 9.19 Level 4

0.12 0.015 6.5 5.5 3.5 4 0.25 0.55 11111MMM 9.14 9.13 Level 4

0.1 0.015 6.5 5.5 3.5 4 0.25 0.4 11111MMM 8.70 8.70 Level 4

0.15 0.015 6.5 5.5 3.5 4 0.25 0.4 1111MMMM 9.99 9.99 Level 4

0.18 0.015 6.5 5.5 3.5 4 0.25 0.4 1111MMMM 10.49 10.48 Level 4

0.12 0.01 6.5 5.5 3.5 4 0.25 0.4 1111MMMM 7.48 7.46 Level 3

0.12 0.02 6.5 5.5 3.5 4 0.25 0.4 11111MMM 10.72 10.70 Level 5

0.12 0.025 6.5 5.5 3.5 4 0.25 0.4 111111MM 11.93 11.93 Level 7

0.12 0.015 5.5 5.5 3.5 4 0.25 0.4 1111ΜMΜΜ 9.18 9.17 Level 4

0.12 0.015 6.0 5.5 3.5 4 0.25 0.4 1111ΜMΜΜ 9.25 9.25 Level 4

0.12 0.015 7.0 5.5 3.5 4 0.25 0.4 1111ΜMΜΜ 9.35 9.35 Level 4

0.12 0.015 6.5 4.5 3.5 4 0.25 0.4 11111MMM 8.97 8.92 Level 4

0.12 0.015 6.5 5 3.5 4 0.25 0.4 1111ΜMMM 9.16 9.15 Level 4

0.12 0.015 6.5 6.5 3.5 4 0.25 0.4 1111MΜΜΜ 9.50 9.50 Level 4
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policy obtained by value iteration, the proposed threshold-
type policy achieves almost the same profit rates with
minimal computational cost. The maximum deviation
from the optimal profit rate is less than 0.9% and only
in one or two occasions this deviation exceeds 0.5%. As
in the single-machine case, when λ2 increases, it is opti-
mal for the system to sell products of inferior quality, thus
avoiding a fraction of the scrapping costs and increasing
the population of occasional customers without jeopardiz-
ing future sales.

6 Conclusions

In this paper, we have used dynamic programming and
queueing theory to model the impact of product quality
variations on customer satisfaction, market share and prof-
itability in a class of make-to-order production systems. It
was shown that the disposable quality levels which maxi-
mize profitability are not constant but depend on the con-
gestion in the production facility as well as on the market
share (regular customers) of the company. For situations in
which it is desirable to maintain a constant quality level for
the products or when there is partial market information a
simple threshold-type control policy is proposed, which

has reasonable computational requirements and appears
to be a very good approximation of the optimal policy for
single-stage as well as multistage manufacturing systems.
The inclusion of past purchasing experience, as well as
order lead time performance (customer delays) in the
modeling of customer satisfaction will be the subjects for
further research. Such extensions pose both computational
and theoretical challenges due to the enormity of state
space and the violation of the memoryless property, which
allows for efficient solution algorithms of queueing prob-
lems. Other more straightforward extensions of the model
would be the inclusion of more than two customer satis-
faction states, the analysis of different customer behaviors
and alternative functions for linking pq and sq with q, and
the consideration of market competition and the study of
different competition intensities (e.g., different patterns of
customer satisfaction, different combinations of mean de-
mand rates). In addition, more complex systems with both
final and intermediate inspection stations subject to inspec-
tion errors and locally repairable nonconformities in addi-
tion to the scrapping of items can also be modeled by
extending the models presented herein and in [28].
Finally, another research direction to be considered in fur-
ther work is the application of the models using historical
data from real-world companies.

Table 4 Comparison of policies for a three-stage system and various parameter values

Parameter values Optimal policy Threshold policy

λ1 λ2 μ3 μ4 μ5 c r b3 b4 b5 Policy structure Average profit Average profit Quality threshold

0.25 0.03 6 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 8.50 8.48 Level 5

0.25 0.03 6 5.5 5 3 4 0.25 0.3 0.3 11111MMM 8.59 8.57 Level 4

0.25 0.03 6 5.5 5 4 4 0.25 0.3 0.3 11111MMM 8.44 8.42 Level 5

0.25 0.03 6 5.5 5 3.5 3.5 0.25 0.3 0.3 11111MMM 7.30 7.28 Level 6

0.25 0.03 6 5.5 5 3.5 4.5 0.25 0.3 0.3 11111MMM 9.74 9.72 Level 4

0.25 0.03 6 5.5 5 3.5 4 0.2 0.3 0.3 11111MMM 8.54 8.51 Level 5

0.25 0.03 6 5.5 5 3.5 4 0.3 0.3 0.3 11111MMM 8.46 8.44 Level 5

0.25 0.03 6 5.5 5 3.5 4 0.25 0.35 0.3 11111MΜΜ 8.46 8.44 Level 5

0.25 0.03 6 5.5 5 3.5 4 0.25 0.4 0.3 11111MΜΜ 8.42 8.40 Level 5

0.25 0.03 6 5.5 5 3.5 4 0.25 0.3 0.35 11111MΜΜ 8.45 8.43 Level 5

0.25 0.03 6 5.5 5 3.5 4 0.25 0.3 0.4 11111MΜΜ 8.40 8.38 Level 5

0.2 0.03 6 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 7.94 7.93 Level 5

0.3 0.03 6 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 8.91 8.88 Level 5

0.25 0.02 6 5.5 5 3.5 4 0.25 0.3 0.3 1111MMMM 6.88 6.87 Level 4

0.25 0.04 6 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 9.79 9.79 Level 7

0.25 0.03 5.5 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 8.44 8.42 Level 5

0.25 0.03 6.5 5.5 5 3.5 4 0.25 0.3 0.3 11111MMM 8.55 8.52 Level 5

0.25 0.03 6 5 5 3.5 4 0.25 0.3 0.3 11111MMM 8.41 8.39 Level 5

0.25 0.03 6 6 5 3.5 4 0.25 0.3 0.3 11111MMM 8.57 8.54 Level 5

0.25 0.03 6 5.5 5.5 3.5 4 0.25 0.3 0.3 11111MMM 8.59 8.57 Level 5

0.25 0.03 6 5.5 6 3.5 4 0.25 0.3 0.3 11111MMM 8.67 8.64 Level 4
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