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Abstract In this paper, the optimization mechanism of load-
ing path in hydroforming process is researched. Firstly, the
geometric model of an X-shaped tube is established by using
3D drawing software UG; the DYNAFORM software is used
to simulate the forming performance of the X tube under dif-
ferent loading paths. The backward displacement is taken as
the main factor of the loading path, and the loading path is
presented in the form of three factor graphs; it can show the
relationship of the main factors of the loading path visually,
accurately, and precisely, which are axial feed, internal pres-
sure, and back displacement. Secondly, the orthogonal test
method is used to select the optimal loading path, and the back
propagation (BP) neural network based on genetic algorithm
is used to optimize the loading path of X tubes. Through
synthetic consideration of the interrelation of the minimum
wall thickness, the maximum wall thickness, the height of
branch, and the contact area between branch tube and back
punch, the average performance index function is established
in the BP neural network control algorithm to optimize the
learning efficiency and shorten the calculation time. Finally,
verified by experiment, the optimization method of loading
path for X tube hydroforming process could control the pre-
cision error of results between the simulation and the experi-
ment within 5%, and has high accuracy and good feasibility.

Keywords Tube hydroforming . Loading path . Optimization
algorithm . Average performance index function

1 Introduction

In recent years, in the face of energy shortage, environmental
pollution, and a series of important issues with the develop-
ment of human civilization in twenty-first century, lightweight
technology is an effective way to reduce the vehicle weight,
reduce fuel consumption, and improve environmental pollu-
tion. Because of its many advantages, the hydroforming tech-
nology of metal tubes has been paid more and more attention
by researchers [1]. It takes tubes as processing objects to form
complex geometry parts in one procedure and produce seam-
less composite tube and composite tube joint with high qual-
ity. It can reduce the weight of the part effectively, improve the
production efficiency, reduce the subsequent machining and
assembling welding, and improve the strength and stiffness of
the parts. Recently, this technology is widely used to produce
high-quality seamless tubes which are used in the air intake
system, airplane pipeline system, train power system, sea
pipeline system, the nuclear industry, and so on [2].

The final forming quality of metal tubes is affected by
many factors such as axial feeding, internal pressure, back-
ward displacement, material properties, friction, and mold
structure. Meanwhile, various factors are mutual suppression
and interconnected. Taking an X-shaped tube as an example,
all the factors that control the tube form two-branch tubes to
shape an X tube. If the internal pressure increases too fast,
while the axial feed cannot be timely followed-up, the tubes
are prone to excessive thinning or even rupture. On the con-
trary, if the axial feed is too large and the internal pressure
increases slowly, it is easy to cause the accumulation of ma-
terial in the mold cavity and to form a dead wrinkle finally. If
the backward displacement (which is controlled by back
punch) is too small, it will hinder the growth of the branch
height. However, if the backward displacement is too large, it
will cause the wall thickness to be reduced fast or even rupture
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on the top of the branch. Meanwhile, it is restricted by the
other factors of loading path [3, 4]. The qualified parts can
be obtained only when the parameters are matched properly.

Many scholars in Germany, the USA, Japan, and other
countries systematically studied the basic theoretical problems
such as relationship between the failure mode and the loading
path, the problem of forming interval, forming limit, wall
thickness distribution, and material property test through the-
oretical analysiss, numerical simulation, and experiment. Kim
et al. [5] predicted the forming limit of tube hydroforming
through numerical analysis, which mainly studied the influ-
ence of loading path on forming results of aluminum alloy
tube to form three-way tubes, and the relative experiment was
compared to the theoretical analysis. Zadeh et al. [6] studied
the influence of different loading paths on the wall thickness
distribution of the three-way tube for general material. In ad-
dition, the results of numerical simulation were verified by ex-
periments. Jain et al. [7] studied on the plastic stability of
different kinds of coaxial variable diameter tubes for
hydroforming, and the relationship between the critical equiv-
alent ratio of strain and stress and material properties under
different loading paths is deduced. Hwang et al. [8] studied the
quantitative relationship among internal pressure, the friction
coefficient, and the transition fillet radius of aluminum alloy
variable diameter tubes during hydroforming process, and the
applicability of the relation is proven by numerical simulation.

The mechanism, process, mold, and equipment of
hydroforming were studied systematically by Professor Yuan
et al. [9–13] at the Harbin Industrial University. According to
the characteristics of deformation, the deformation law and
elastic-plastic instability mechanism of thin shell were

systematically studied. According to the general material such
as stainless steel, low carbon steel, and aluminum alloy, the
formation mechanism of the defects, the influence of loading
path on the stress state, the distribution of wall thickness, and
the filling behavior of fillet were revealed. DQSK low carbon
steel was chosen as the material, and the numerical simulation
was carried out to study the hydroforming process of the typ-
ical hollow member for the front beam of automobile by pro-
fessor Xue and Zhou et al. [14, 15] at Hefei Industrial
University. The results showed the forming process of wrin-
kling and fracture can be controlled by using the bilinear load-
ing path with low-pressure clamping and high-pressure shap-
ing together, and the final forming quality of parts was ideal.
Professor Zhu et al. [16] systematically studied the
hydroforming process of TRIP steel T tube, and the influence
of the loading path on the formability, wall thickness distribu-
tion, and microstructure evolution of advanced high-strength
steel tube was analyzed.

Many scholars study the effect of the loading path of tube
hydroforming process on the properties of products for T tube,
X tube, Y tube, and other typical tubes; however, the impor-
tant parameter that is backward displacement will always be
neglected because of the limitation of experimental condi-
tions, which will lead to the loading path optimization results
with only axial pressure and internal pressure are not ideal. On
the other side, the design of the loading path is mostly cured
on the set of single linear or bilinear curve, which will reduce
the flexibility of the loading path on the formability of the
product. So far, there is no consistent and clear conclusion
about the intrinsic mechanism of the influence of loading path
on the forming properties of tubes, and it lacks a set of loading
path optimization scheme with strong universality which is
available to various typical tubes. Therefore, studying the in-
fluence of loading path of hydroforming on the formability of
tube, using intelligent control technology to find suitable load-
ing paths for various shape parts, finding out the optimization
mechanism of loading path, and perfecting the research sys-
tem of tube hydroforming process have important significance
to reduce the scrap rate of parts, cut the production costs,
shorten the product development cycles, and spread the appli-
cation of hydroforming technology [17–21].

In this paper, the geometric model of the X-shaped tube is
established by using 3D drawing software UG, and
DYNAFORM software is used to simulate the forming

Fig. 1 The section of tube blank and mold

Table 1 The unit type of each
component Component name Grid type Unit type Unit numbers

Tube blank Deformable body—shell element Quadrilateral 13,703

Left and right punch Rigid body—shell element Quadrilateral 1294

Top and bottom back punch Rigid body—shell element Quadrilateral 662

Mold Rigid body—shell element Quadrilateral 5331
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performance of X tube under different loading paths firstly.
Secondly, the orthogonal test and back propagation (BP) neu-
ral network based on genetic algorithm are used to optimize
the loading path of X tubes. Finally, the accuracy and possi-
bility of the loading path are verified by comparing with the
experimental results.

2 The establishment of finite element model for X
tube blank

Firstly, the geometric modeling of X tube with hydroforming
is established by using 3D drawing software UG, and the
IGES standard format is imported into the DYNAFORM soft-
ware. Secondly, meshing of tube blanks, mold, and punches
and setting boundary conditions are finished in DYNAFORM
software, and the LS-DYNA is started to solve. Finally, the
results are read into the DYNAFORM post-processor to ana-
lyze the results.

2.1 The establishment of geometric model of tube blank
and mold

The thin shell elements are often used in the simulation of
hydroforming; therefore, the slice model is adopted in the
modeling, and the length of the tube blank is taken as
200 mm, the outer diameter is 42 mm, and the wall thickness
is 1 mm. The section of the tube and the mold is shown in
Fig. 1.

2.2 The meshing of X tube blank

The meshing of finite element model for X tube is divided into
six parts: (a) tube blank, (b) mold, (c) left punch, (d) right
punch, (e) top back punch, (f) bottom back punch. The
punches are designated as discrete rigid body and the tube
blank is set as deformable. The unit type of each component
is shown in Table 1.

LS-DYNA dynamic explicit algorithm is used to calculate,
and the research shows the dynamic explicit algorithm adopts
proportionate reduction time which has little effect on the
simulation accuracy, but it can significantly shorten the run-
ning time and improve the computational efficiency.
Therefore, the scaled forming time is set as 0.01 s.

2.3 Determination of material properties

In order to simulate more accurately, the mechanical
properties of SS304 stainless steel tube were measured
to reduce the error of simulation. The tensile test at
room temperature was measured according to the spec-
ifications of GB/T228-2002. After the tensile test spec-
imen was made by wire cutting, the experiment was
carried out on the INSTRON4206 electronic universal
material-testing machine. The drawing of tensile sample
size is shown in Fig. 2a, and the drawing of practical
tensile sample is shown in Fig. 2b. In this paper, the
material in the numerical simulation is chosen as SS304
stainless steel, which can be regarded as isotropic, and
the specific performance parameters are shown in
Table 2.

Fig. 2 a, b The drawing of the tensile sample size and practicality

Table 2 Material property
Sample material Yield strength /MPa Tensile strength /MPa Elongation

/%

Hardening modulus

F/MPa

304 stainless steel 374.6 658.74 53 2128

Int J Adv Manuf Technol (2018) 94:4125–4137 4127



After the experimental data are collected by equipment, the
stress-strain curve drawn by Origin software is shown in Fig. 3.

3 Research on the intelligent control method
to optimize loading path

The matching relationship of process parameters has a
great influence on the forming results. Meanwhile, the
backward displacement is added to compose the loading
path, which makes the matching relationship of process
parameters more complicated. Therefore, the intelligent
control method is used to optimize the matching of the
loading path’s critical factors (including axial feed, in-
ternal pressure, and backward displacement). And the opti-
mization of the loading path, the relevant parameters,
and the forming results (including the maximum of wall

thickness, the minimum of wall thickness, the height of
branch, and the contact area between branch tube and
back punch) are obtained to provide the basis for pro-
duction practice [22, 23].

3.1 The determination for the initial value of loading path

Some representative points are selected from the comprehen-
sive experiment by the orthogonal experiment method, and
the approach of three factors and three levels is selected. The
three factors are axial feed, backward displacement, and internal
pressure. Meanwhile, the three levels of each factor are de-
fined as three reference values or three set paths, and the
overall level of the combination of the three factors is
33 = 27. The preferred area of the three factors is represented
by cube in Fig. 4, and a total of nine trials were screened and
expressed by “●”. Each plane represents a level; there are a
total of nine planes, each plane has three “●” points, and there
is one “●” on each line of the cube, so the points are distrib-
uted in a balanced way. Therefore, the representativeness of
the nine tests is strong, which can reflect the result of the
experiment fairly comprehensive. It is reasonable to choose
these nine loading paths as the initial values of the intelligent
control method.

3.2 Research on the intelligent control method

The BP neural network based on the genetic algorithm has the
ability of arbitrary nonlinear approximation, self-learning, and
generalization, which enable the system to be adaptive, auto-
matically adjust the control parameters, and improve the per-
formance and reliability of the control [24–27]. Therefore, this
intelligent control method is used to match and optimize the
loading path (including axial feed, internal pressure, and back-
ward displacement). And the forming results (including the
maximum of wall thickness, the minimum of wall thickness,
the height of branch, and the contact area between branch tube
and back punch) are used to determine the rationality of the
loading path.

The BP neural network structure is set up according to the
optimization system of the loading path for hydroforming.
The input layer of the three-layer BP neural network is:

Q 1ð Þ
j ¼ x jð Þ j ¼ 1; 2;…;Mð Þ ð1Þ

In the formula, the number of input neurons M is selected
as four, and the inputs are axial feed, internal pressure, back-
ward displacement, and threshold. The inputs and outputs of the
network hidden layer are:

net 2ð Þ
i kð Þ ¼ ∑

M

j¼1
ω 2ð Þ
ij ⋅Qj

1ð Þ ð2Þ

Fig. 3 The stress-strain curve of 304 stainless steel

A

B

C

Fig. 4 The drawing of orthogonal test preferred area
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Q 2ð Þ
i kð Þ ¼ f net 2ð Þ

i kð Þ
� �

i ¼ 1; 2;…;Qð Þ ð3Þ

In formula, ωij
(2)is the weighting coefficient of the hidden

layer.
The inputs and outputs of the network output layer are:

net 3ð Þ
l kð Þ ¼ ∑

Q

i¼1
ω 3ð Þ
li ⋅Q 2ð Þ

i kð Þ ð4Þ

Ql
3ð Þ kð Þ ¼ g netl

3ð Þ kð Þ
� �

l ¼ 1; 2; 3ð Þ ð5Þ

Q 3ð Þ
1 kð Þ ¼ Tmax;Q

3ð Þ
2 kð Þ ¼ Tmin;Q

3ð Þ
3 kð Þ ¼ H ;Q 3ð Þ

4 kð Þ
¼ S ð6Þ

The output nodes of output layer which correspond to the
four adjustable parameters are Tmax (the maximum of wall
thickness), Tmin (the minimum of wall thickness), H (the
height of branch), and S (the contact area between branch tube
and back punch).

The weights and thresholds of each layer for the BP net-
work are cascaded in sequence by genetic algorithm, and N
chromosomes are randomly generated. According to

Bottom back punch 

Top back punch 

X shaped tube

Branch tube 

Mound 

Fig. 5 The scheme of X shaped
tube and contact area between the
branch tube and back punch
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calculating the fitness, the crossover probability, and mutation
probability, the ideal individuals are selected as initial weight
and thresholds of BP network [28, 29]. The number of neu-
rons in the hidden layer is five which is determined by genetic
algorithm. Therefore, the neural network structure is deter-
mined as 4–5–4.

Evaluation rules of loading path are established according
to the relevant technical experience under the premise of no
cracking, buckling, wrinkle, and so on and need to meet the
following requirements: (1) Making the minimum of wall
thickness of tubes as much as possible. (2) Making the max-
imum of wall thickness of tubes as small as possible. (3)
Making the wall thickness distribution more uniform. (4)
Making the maximum of branch height of the tube as much
as possible. (5) Making the contact area between the branch
tube and back punch as large as possible.

The ideal range of maximum wall thickness, minimum
wall thickness, branch height of the tube, and the contact area
between the branch tube and back punch after hydroforming is
determined according to different specifications of tube
blanks. Meanwhile, performance index function is established
according to Tmax, Tmin, H, and S.

E kð Þ1 ¼
1

2
r1 kð Þ−y1 kð Þð Þ2 ð7Þ

E kð Þ2 ¼
1

2
r2 kð Þ−y2 kð Þð Þ2 ð8Þ

E kð Þ3 ¼
1

2
r3 kð Þ−y3 kð Þð Þ2 ð9Þ

E kð Þ4 ¼
1

2
r4 kð Þ−y4 kð Þð Þ2 ð10Þ

E(k)1 , E(k)2 , E(k)3 , and E(k)4 are the performance index
functions corresponding to Tmax, Tmin, H, and S, respectively;
r1(k), r2(k), r3(k), and r4(k) are the set values of Tmax, Tmin, H,
and S of K cycle, and y1(k), y2(k), y3(k), and y4(k) are the
feedback values of Tmax, Tmin, H, and S of K cycle.

Considering to correlate the ideal values of the above four
factors, the average performance index function is:

E kð Þ ¼ 1

4
E kð Þ1 þ E kð Þ2 þ E kð Þ3 þ E kð Þ4
� � ð11Þ

The weights of the network are modified according to the
gradient descent method, and that is searched and changed
according to the negative gradient direction of the weighting
coefficient of E(k). A tiny inertia term is added and it can
fasten convergence on overall situation:

Δω 3ð Þ
li kð Þ ¼ −η⋅

∂E kð Þ
∂ω 3ð Þ

li

þ αΔω 3ð Þ
li k‐1ð Þ ð12Þ

In formula, η is the learning rate and α is the inertia
coefficient.

Table 3 Finite element simulation results of nine groups of loading paths selected by orthogonal test method

Forming performance 1 2 3 4 5 6 7 8 9
loading path

Minimum wall thickness (mm) 0.661 0.667 0.133 0.766 0.367 0.260 0.708 0.609 0.651

Maximum wall thickness (mm) 2.262 2.228 2.217 2.215 2.167 2.129 2.103 2.052 2.035

The maximum thinning rate (%) 33.872 33.324 86.669 23.419 63.319 74.022 29.239 39.139 34.941

Branch height (mm) 26.677 22.603 28.719 22.654 28.727 26.670 28.668 26.632 22.619

The maximum principal strain 1.321 1.082 1.718 1.284 1.160 1.227 1.519 1.280 1.065

Contact area (mm2) 806.56 894.03 – 1020.25 – – 714.09 686.51 707.94

Table 4 The parameters of
loading paths A and B before
optimization

Path A Time (s) Inter pressure (MPa) Axial feed (mm) Back displacement (mm)

0 0 0 0

0.001 30 2 1

0.008 170 44 24

0.01 190 46 26

Path B 0 0 0 0

0.001 30 2 1

0.008 130 44 26

0.01 150 46 28
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The learning algorithm of weighting coefficient for the net-
work output layer is obtained as shown in Eqs. (13), (14), and
(15), according to the classical incremental PID control algo-
rithm and the above analysis.

Δω 3ð Þ
li kð Þ ¼ αΔω 3ð Þ

li k−1ð Þ þ η⋅δ 3ð Þ
1 ⋅Q 2ð Þ

i kð Þ ð13Þ

δ 3ð Þ
l ¼ error kð Þ⋅sgn ∂y kð Þ

∂Δu kð Þ
� �

⋅
∂Δu kð Þ
∂Q 3ð Þ

l kð Þ
⋅g

0
net 3ð Þ

l kð Þ
� �

l ¼ 1; 2; 3ð Þ

ð14Þ

g
0
⋅ð Þ ¼ g xð Þ⋅ 1−g xð Þð Þ ð15Þ

Similarly, the algorithm of the weighting coefficient for the
hidden layer will be obtained.

3.3 Application of the intelligent control method in finite
element simulation

The above intelligent control method is programmed byMatlab
software to obtain an independent subroutine, which is embed-
ded in the solver (LS-DYNA) of DYNAFORM to complete
simulation calculation. Firstly, the solution result of LS-DYNA
is extracted by subroutine; the maximum of wall thickness, the
minimum of wall thickness, the branch height of tube could be
extracted directly; and the contact area between the branch and
the back punch could be calculated by Eq. (16), which is de-
termined by the diameter and the fillet radius of the branch tube
that is obtained by fillet tangent from the profiles of the tube
after hydroforming. The scheme of the X-shaped tube and con-
tact area between branch tube and top back punch is shown in

Fig. 5. For the symmetry, the contact area between the branch
tube and bottom back punch is the same.

S=π D1
2 −R2

� �2
(16).

In formula,D1 is the diameter of the branch tube, mm; R2 is
the fillet radius of branch tube, mm.

Secondly, by using the BP neural network controller, the
load is adjusted according to the evaluation rules of loading
path control; the genetic algorithm is used to search for the
ideal solution. Finally, the load size of the *.Dyn file is mod-
ified and calculated by adaptive simulation. According to the
above steps, the cycle calculation is carried out. When the
results of forming parts (including the maximum of wall
thickness, the minimum of wall thickness, the height of
branch, and the contact area between the branch tube and back
punch) meet the needs of calculation, the loading path will
be obtained reasonably. For the flexible form of intelligent
optimization, this optimization method could be used as the
control technology of hydroforming for many kinds of other
shape tubes. The flowchart of adaptive simulation and BP
neural network control algorithm based on genetic algorithm
is shown in Fig. 6. (In it, L is the axial feed, P is the internal
pressure, B is the backward displacement.)

4 Results of finite element simulation

The finite element simulation calculation is carried out in the
intelligent control system. According to the empirical formu-
la [30], using the value of yield strength and tensile strength
in Table 2, the initial yield strength of the tubes in the
hydroforming process is set as 30 MPa, the maximum

(a) (b)Path A                           Path B 
Fig. 7 a, b Comparison chart of loading paths A and B before and after optimization
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shaping pressure is 190 MPa, the maximum axial feed is
46 mm, and the maximum backward displacement is 28 mm.

The nine groups of loading paths were screened by orthog-
onal test, and the results of finite element simulation are

(a) Path A before optimization 

(b) Path A after optimization 

     (c) Path B before optimization 

 (d) Path B after optimization

Fig. 8 Tube hydroforming limit
diagram of path A and path B
before and after optimization. (a)
Path A before optimization. (b)
Path A after optimization. (c) Path
B before optimization. (d) Path B
after optimization
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shown in Table 3. From it, the maximum thinning rate of
group 3, group 5, and group 6 is so large, which exceeds
50%, that the tube under these loading paths could rupture,
so the results of the contact area cannot be calculated. Group
1 and group 7 are selected which have better formability and
ideal height of branch tubes and are named as loading path
A and B, which will be further optimized by adaptive sim-
ulation and BP neural network control algorithm based on
genetic algorithm. The parameters of loading path A and B
before optimization are shown in Table 4. The coefficient of
friction between mold and tube is identified as 0.125 under
simple single linear loading path, by comparing the results
of simulation and experimental before all the research work
[31]. Three factor curves of the loading path before and after
optimization are shown in Fig. 7.

The backward displacement is taken as the main factor of
the loading path, and the loading path is presented in the
form of three factor graphs. Loading paths A and B are
not the broken line after optimization, but the automatic
adjustment curve around the paths before optimization,
through adding control points according to the intelligent
control method, the optimization criterion, and the form-
ability, and they can adjust the loading paths adaptively.
With the same axial feed, the back displacement of path B
is larger than that of path A, while the internal pressure of
path B is less than that of path A at the same time. Thus,
in the hydroforming process, the growth of branch height
under path B is faster than under path A, and the fillet
radius of the branch tube is larger under path B. However,

the maximum thinning rate of tube blank under path A is
larger than under path B, because of the greater internal
pressure. To get the smallest fillet radius of the branch
tube and ensure the uniformity of tube wall thickness,
the growth rate of the back displacement will be slowed
down under path B, and the growth rate of internal pres-
sure will be slowed down under path A during the process
of loading path adaptive intelligent adjustment. At the
same time, the adjustment with the other factors to opti-
mize the forming results of tube blank can also be real-
ized. The evolution trend of contrast curves of loading
path before and after optimization is shown in Fig. 7a,
b. Under the loading path before and after the optimiza-
tion, the finite element simulation results of hydroforming
are shown in Figs. 8, 9, 10, and 11 individually.

The comparison of the effect of loading paths before and
after optimization of path A and path B on the formability
of tube blanks can show that the optimized path A and
path B play an important role in improving the formability
of tube blank. The forming limit diagram can be seen from
Fig. 8, and the optimized loading path makes the forming
tendency of tube blank more reasonable, the feeding of
both sides of the tube blank is more timely and enough.
Under the optimized loading path, the blue area of the
central part of the tube is obviously reduced, that is, the
possibility of wrinkling and buckling deformation is re-
duced. Meanwhile, under the optimized loading path, the
area of the green area on the top of the branch tube is
significantly reduced, that means, the trend of cracking on

(a) path A before optimization                (b) path A after optimization 

(c) path B before optimization                (d) path B after optimization 

Fig. 9 The distance between two
points of the fillet tangent and
height of branch before and after
optimization. a Path A before
optimization. b Path A after
optimization. c Path B before
optimization. d Path B after
optimization
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the top of the branch tube is effectively alleviated. The
profiles of the tube after hydroforming are shown in Fig.
9; the contact of the branch tube and top back punch could
also be observed. The fillet radius (R2) of the branch tube
is determined by measuring the distance (l) between two

points of the fillet tangent. Meanwhile, the formula R2 ¼ √2
2

∙l is used to calculate the R2 and to compare the contact of
the branch tube and the top back punch between the load-
ing paths before and after optimization. The fillet radius of
the top edge of branch tubes under the optimized path A
and path B is further reduced, the top edge of the branch
tube is more fit with the punch, and the height of the
branch tube is also better adjusted according to comparing
the values of (a) and (b), (c) and (d) in Fig. 9, respectively.

The wall thickness distribution of path A and path B is
known in Fig. 10. The optimized loading paths make the
wall thickness distribution more uniform. The maximum

thinning rate of the tube under path A is reduced from
33.872 to 19.677%, and the maximum thickening rate of
the tube is reduced from 126.175 to 99.298%. Meanwhile,
the maximum thinning rate of the tube under path B is
reduced from 29.239 to 21.206%, and the maximum
thickening rate of the tube is reduced from 110.262 to
102.970%. Therefore, the maximum and the minimum
of wall thickness of the tube have been adjusted effective-
ly under the optimized loading paths.

Under the optimized loading path, the distribution of
the principal strain is also improved in the distribution
curve of the principal strain in Fig. 11. The maximum
principal strain is obviously improved, the maximum prin-
cipal strain of path A is improved from 1.321 to 1.807,
and the maximum principal strain of path B is improved
from 1.519 to 1.773. However, the distribution area of the
maximum principal strain is significantly reduced as

(a) path A before optimization 33.872%         (b) path A after optimization 19.677% 

(c) path B before optimization 29.239% (d) path B after optimization 21.206% 
Fig. 10 The tube wall thickness distribution of path A and B before and after optimization. a Path A before optimization 33.872%. b Path A after
optimization 19.677%. c Path B before optimization 29.239%. d Path B after optimization 21.206%
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shown with the red zone of Fig. 11, and the strain distri-
bution of tube blanks is more uniform.

5 Experimental result

The intelligent control technology is applied to the
laboratory-made 200-MPa hydroforming machine which is
made by the State Key Laboratory of Rolling and
Automation in Northeastern University, as is shown in

Fig. 12. The results of path A and path B after optimization
are both well; for the higher branch height of tube, the
experimental test of the same process as the finite element
simulation under path B is executed. Taking seven points to
compare the difference, and the results of tube wall thick-
ness and the height of branch tube for simulation and exper-
iment are summarized in Table 5, and shown in Fig. 13a, b.
From Table 5 and Fig. 13, the conclusion can be the exper-
imental results well agree with the finite element simulation
results, and the precision error of results between the

(a) path A before optimization 1.321             (b) path A after optimization1 1.807 

(c) path B before optimization 1.519             (d) path B after optimization1.773 

Fig. 11 The tube principal strain
distribution of paths A and B
before and after optimization. a
Path A before optimization 1.321.
b Path A after optimization1
1.807. c Path B before
optimization 1.519. d Path B after
optimization 1.773

Hydroforming machine                  Mould and sample (a) (b)

Fig. 12 200 MPa hydroforming
machine. a Hydroforming
machine. b Mold and sample
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simulation and the experiment could be controlled within
5% and has high accuracy and good feasibility, and for the
comprehensive consideration of the method and the flexible
form of intelligent optimization, the optimization method
has wide applicability and could be used as the control tech-
nology of hydroforming for other similar shape tubes.

6 Conclusion

(1) The backward displacement is taken as the main factor
of the loading path, and the loading path is pre-
sented in the form of three factor graphs; it can
show the relationship of the main factors of the
loading path visually accurately, and precisely,
which are axial feed, internal pressure, and backward
displacement. Meanwhile, the comparison between
the loading paths before and after optimization can
be shown in the diagram.

(2) The orthogonal test method is used to select the
ideal loading path; this can reduce the mass screen-
ing work of the trial and error method effectively.

(3) Through synthetically considering the interrelation
of the minimum wall thickness, the maximum wall
thickness, the height of branch, and the contact

area between branch tube and back punch, the av-
erage performance index function is established in
the BP neural network control algorithm to opti-
mize the learning efficiency and shorten the calcu-
lation time.

(4) The comparisons of the thickness distribution, the
fillet radius, the height of the branch, and the princi-
pal strain distribution of the X tube before and after
optimization show the orthogonal test method, adap-
tive simulation, and BP neural network control strat-
egy based on genetic algorithm can solve the prob-
lem of matching and optimization of loading path
which are internal pressure, axial feed, backward displace-
ment, and the contact area between branch tube and
back punch in the hydroforming process effectively.

(5) Verified by experiment, the optimization method of
the loading path for X tube hydroforming process
could control the precision error of results between
the simulation and the experiment within 5% and
has high accuracy and good feasibility, and for the
comprehensive consideration of the method and the
flexible form of intelligent optimization, the optimiza-
tion method has wide applicability and could be used
as the control technology of hydroforming for many
kinds of other shape tubes.

(a) The section thickness distribution chart of finite element simulation (b) Experimental sample
section chart  

Fig. 13 The section thickness distribution of finite element simulation and experimental sample section chart. a The section thickness distribution chart
of finite element simulation. b Experimental sample section chart

Table 5 The wall thickness of simulation and experiment

Point position No. 1 point No. 2 point No. 3 point No. 4 point No. 5 point No. 6 point No. 7 point

Wall thickness simulation
value (mm)

0.992 1.135 1.378 1.458 1.596 1.539 1.554

Wall thickness actual value (mm) 0.963 1.102 1.439 1.525 1.642 1.592 1.616
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