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Abstract To improve the spindle thermal error prediction ac-
curacy, the least absolute shrinkage and selection operator
(LASSO) is used to directly select the temperature-sensitive
point subset to guarantee the prediction performance of the
thermal error model built by least squares support vector ma-
chines (LS-SVM). Taking a horizontal machining center as a
test stand, the thermal error experiments with different spindle
speed states are carried out. Then the temperature-sensitive
points are selected using LASSO. The number of temperature-
sensitive points is reduced from 20 to 7. Afterward, the thermal
error model is designed by LS-SVM. The prediction perfor-
mance and generalization performance of the thermal error mod-
el are compared with another two thermal error models using
gray model (GM) and multiple linear regression (MLR), respec-
tively. The comparison results indicate that the thermal error
model derived from LS-SVM shows better prediction perfor-
mance and generalization performance than those derived from
GM and MLR with the highest prediction accuracy increasing
about 74.6 and 54.3%, respectively. Thus, the feasibility and
effectiveness of the proposed spindle thermal error robust model-
ing method are validated.

Keywords Machine tool . Thermal error . Main spindle .

LASSO . LS-SVM

1 Introduction

With the development toward high speed and high precision
of machine tools, many studies show that thermal error has
become an increasing important factor affecting the machin-
ing accuracy of machine tools, which can account for up to
70% of total errors [1–3]. As the core component and the
maximum heat source of machine tools, the spindle usually
produces nonuniform temperature distribution and nonlinear
thermal errors because of its complex structure, poor cooling
conditions, and complex internal coupling relations [4], thus
reducing the machining accuracy. Therefore, reducing the
thermal error of machine tool spindle is crucial to improve
the machining accuracy. Through symmetry designing, isolat-
ing heat sources, and using composite materials to construct
the machine tools, the thermal deformations, and correspond-
ing thermal errors can be radically reduced [5–7]. But this
method is susceptible to hardware constraints and costly.

Accordingly, from the perspective of compensation, many
scholars have studied to establish an accurate thermal error
prediction model to compensate for the spindle thermal error.
Some scientific publications predicted the thermal error
through the established mechanism model of thermal defor-
mation of machine tool spindles [8,9]. According to the
thermo-elastic theory, as the spindle temperature increases,
the spindle length increases [10]. The mechanism model was
usually built based on that relationship. Creighton et al. [8]
built a high-speed micro-milling spindle growth model
through analyzing its thermal characteristics using FEMmeth-
od and compensated the thermal error with that model. Wang
et al. [9] simplified the Z-axis of a heavy boring and milling
machine to a one-dimensional rod, and established the thermal
error mechanism model through that one-dimensional rod.
The results showed that the model is better than the output
error model and the stepwise regression model. However,
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through mechanism modeling, the original thermal deforma-
tion characteristics were simplified greatly, which could not
accurately reflect the whole complex nonlinear thermal defor-
mation process. Therefore, many scientific publications built
machine tool thermal error prediction models from the map-
ping relationship between the temperature data in
temperature-sensitive points and the thermal error data, and
predicted the thermal error based on the real-time measured
temperature values. Liang et al. [11] compared the robustness,
versatility, and prediction accuracy of multivariate linear re-
gression (MLR)model, back propagation (BP) neural network
model, and radial basis function (RBF) neural network model
in thermal error modeling and proved that both models had
good effects. Guo et al. [12,13] screened temperature-
sensitive points by gray correlation analysis and clustering
analysis and established the prediction model using BP neural
network with its parameters optimized by artificial fish swarm
algorithm and ant colony algorithm. Ma et al. [14] used ge-
netic algorithm and particle swarm optimization algorithm to
optimize the initial weights, thresholds, and number of hidden
layer neurons of a BP neural network thermal error model.
Miao et al. [15] used traverse optimization method for
selecting the optimum temperature measuring points and built
a thermal error model using principal component regression
algorithm. Wang et al. [16] used fuzzy c means (FCM) clus-
tering method and the ISODATA method to select the
temperature-sensitive points and verified the effectiveness of
both methods. Cheng et al. [17] selected the temperature-
sensitive points based on the rough set theory and constructed
the thermal error model through RBF neural network method
and BP neural network method, respectively.

The above modeling methods have achieved some good
results, but there are still some shortcomings. The
temperature-sensitive points are usually selected by clustering
analysis and correlation analysis but independent to the
modeling method itself; moreover, the temperature-sensitive
points will change with the clustering number. The thermal
error models using BP neural network are mainly built by
optimizing their parameters through some optimization
methods, but it is time consuming and may not guarantee
the model with good generalization performance.

In the light of the temperature-sensitive point selection
problem and the thermal error modeling problem of spindle
thermal error, in this paper, the least absolute shrinkage and
selection operator (LASSO) [18–20] is used to directly select
the temperature-sensitive point subset and the least squares
support vector machine (LS-SVM) [21] is used to derive the
thermal error model, guaranteeing the robust prediction
performance.

The framework of this paper is organized as follows: The
thermal error experiments on different spindle speed states are
conducted on a horizontal machining center in Section 2. In
Section 3, the temperature-sensitive point subsets are selected

by LASSO and evaluated with supervision. And the
temperature-sensitive point subset ensuring the model with
best prediction performance are selected as the temperature-
sensitive points. Then in Section 4, the thermal error model is
derived from LS-SVM and for comparison the thermal error
models are also derived from gray model (GM) method
[22,23] and MLR method. Afterward, in Section 5, the pre-
diction performance and generalization performance of LS-
SVM thermal error model are compared with those of the
GM thermal error model and MLR thermal error model. The
comparison results indicate that the LS-SVM thermal error
model has the best prediction performance and generalization
performance among the three thermal error models. Finally,
the conclusions are made in Section 6.

2 Thermal error experiments

2.1 Experiment setup

In order to verify the feasibility and effectiveness of the pro-
posed temperature-sensitive point selection method and ther-
mal error modeling method, the spindle thermal error experi-
ments of a horizontal machining center are carried out refer-
ring to ISO 230-3: 2007 [24] to obtain the temperature data
and thermal error data. The experiment scheme is as follows:

The experiment setup is shown in Figs. 1 and 2. As shown
in Fig. 1, altogether 20 temperature sensors are arranged on
the machine tool. As specified in Table 1, T1–T7 are fixed on
the outer surface of the front part of the spindle along its axis
and T8–T10 are fixed on the outer surface of the rear part of
the spindle along its axis to measure the spindle temperature in
detail because it is the major heat source of the whole machine
tool. T11–T13 are fixed on the side of the spindle box, T14–
T16 are fixed on the side of the column, T17–T18 are fixed on
the bed and T19 is fixed on the worktable, respectively. The
ambient temperature is recorded by T20. All the temperature
data are recorded in real time with 1 min interval. As shown in
Fig. 2, a mandrel is clamped in the tool holder and three
mutually perpendicular capacitive displacement sensors were
fixed on the worktable to measure the thermal error of the
spindle in three directions. The relative displacements be-
tween the mandrel and the three capacitive displacement sen-
sors are regarded as the thermal errors of the spindle in three
directions, respectively. Thus, the thermal elongation in the
axial direction (Z-direction) and thermal drift in the radial
directions (X- and Y-direction) can be measured. The thermal
error data are recorded in real time with 1 min interval syn-
chronously with temperature data. The measured temperature
data and thermal error data at the same time was regarded as a
sample.

A total of three thermal error experiments are conducted
with three different spindle speed states, S = 2000 rpm,
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S = 4000 rpm, and the speed spectrum shown in Fig. 3. During
each experiment, the machine tool starts from the initial cold
state and runs in NC-hold, without any movements at the set
speed continuously for about 6 h without air conditioning and
then stops. During the experiment, the temperature data and
thermal error data are recorded in real time with an interval
time of 1 min synchronously.

2.2 Experiment data

The collected temperature data and thermal error data are
shown in Figs. 4 and 5, respectively, with a total N = 360
samples for each spindle speed state. As shown in Fig. 4, for
all the three spindle speed states, the temperatures started ris-
ing from the initial cold state and finally reached a relative

steady state. Different parts of the machine tool had different
temperature rising trends. The closer the parts near the heat
sources, the higher and faster the temperatures rise, and vice
versa. As shown in Fig. 5, for all the three spindle speed states,
the thermal error of the spindle mostly occurred in the axial
direction (Z-direction), and the thermal error in the two radial
directions (X- and Y-direction) are relatively small. Therefore,
in this paper, only the thermal error in Z-direction of the spin-
dle was considered for thermal error modeling, and in order to
facilitate the description, the thermal error is denoted as y.

3 Temperature-sensitive point selection using
LASSO

For simplifying the thermal error model and increasing its
prediction ability meanwhile decreasing the measurement
and compensation cost, the number of temperature points for
modeling should be decreased. The temperature points used
for modeling are usually named as thermal/temperature-
sensitive points.

Fig. 1 Temperature sensors layout

Fig. 2 Thermal error sensors layout

Table 1 Temperature sensors measurement locations

Temperature sensors Measurement locations

T1–T7 Front part of the spindle

T8–T10 Rear part of the spindle

T11–T13 Side of the spindle box

T14–T16 Side of the column

T17, T18 Bed

T19 Worktable

T20 Ambient temperature
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3.1 Temperature-sensitive point selection method

The traditional temperature-sensitive point selection method
in machine tool thermal error modeling usually involved the
combination of fuzzy clustering analysis and correlation anal-
ysis [12,13,16]. For example, fuzzy c means clustering anal-
ysis was one of the commonly used fuzzy clustering analysis
method and the gray correlation analysis was one of the com-
monly used correlation analysis method in temperature-
sensitive point selection. The full temperature points were
clustered by the fuzzy c means clustering algorithm to reduce
the collinearity between temperature-sensitive points, and
then, in each cluster, the temperature point with the biggest
degree of membership or with the biggest correlation coeffi-
cient with the thermal error was selected as a temperature-
sensitive point.

However, the number of temperature-sensitive points is
hard to decide with the traditional temperature-sensitive
point selection method, as the number of temperature-
sensitive points or the clustering number was usually
specified by experience. As the clustering number chang-
es, the new selected temperature-sensitive point subsets
may not guarantee enhancing the prediction ability of
the thermal error model. Moreover, the fuzzy clustering
analysis is an unsupervised classification mechanism
without using the information of the thermal error; there-
by, the selected temperature-sensitive points may not be
sensitive to the thermal error, and, further, cannot ensure
enhancing the prediction ability of the thermal error
model.

To solve the problem of selecting the best temperature-
sensitive point combination thus enhancing the prediction
ability of the thermal error model, the least absolute shrinkage
and selection operator (LASSO) is adopted, here the presented
research work. LASSO is a regression analysis method that
performs variable selection to enhance the prediction accuracy

and interpretability of the statistical model. It was introduced
byRobert Tibshirani [18] in 1996. The basic idea of LASSO is
to minimize the sum of squares of residuals under the con-
straint that the sum of the absolute values of the regression
coefficients is less than a constant, thus producing some re-
gression coefficients that are strictly equal to zero to achieve
variable selection and obtain an interpretable model.

For a given nonnegative parameter λ, LASSO solves the
following problem:

min
β0;β

1

2N
∑
N

i¼1
yi−β0−xTi β
� �2 þ λ ∑

p

j¼1
β j

�� ��
 !

ð1Þ

where the first part is the residual sum of squares for the
regression, the second part is the penalty involving the L1-
norm of β, N is the sample number of temperature data
and thermal error data, yi is the ith thermal error, xi is the
ith temperature data, a vector of p values, p is the total
number of temperature points p = 20, the regression co-
efficients β0 is a scalar and β is a vector of length p,
respectively, and λ is the nonnegative regularization pa-
rameter which controls the amount of shrinkage that is
applied to β. As λ increases, the components of β shrink
toward 0, and some components may be exactly equal to
0; thus, the number of nonzero components of β de-
creases. LASSO can effectively select a subset of the
temperature points with enhanced prediction accuracy of
the thermal error model.

The nonnegative regularization parameter sequence λ can
be calculated as follows:

λi ¼ e lnλmaxþ i−1ð ÞΔλð Þ i ¼ 1;…; nλ
� �

ð2Þ

Δλ ¼ −
lnλmax−lnλmin

nλ−1
ð3Þ

where nλ is the number of the nonnegative regularization pa-
rameters, initially nλ = 100, Δλ is the incremental interval of
λ, and λmax and λmin are the maximum value and minimum
value of λ, respectively, as follows:

λmax ¼
max XT

0 y0
�� ��� �

N
λmin ¼ 0:0001 λmax

8<
: ð4Þ

where X0 is the standard score matrix of temperature data
matrix X with the size of N × p, y0 is the centralized vector
of thermal error vector y, y0 ¼ y‐y. After obtaining the non-
negative regularization parameter sequence λ, we can perform
model fit and compute mean square error (MSE) for each λ.
To improve the robustness and reduce the overfitting problem
when computing theMSE, during the operation of LASSO, the
MSE for each λ is computed with 10-fold cross-validation
method [25]. Then the regression coefficients β corresponding

Fig. 3 Spindle speed spectrum
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Fig. 4 a Temperature data with
S = 2000 rpm. b Temperature data
with S = 4000 rpm. c Temperature
data with speed spectrum of Fig. 3
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to the minimum solution for Eq. (1) for each λ can be
solved by the iterative coordinate descent method
[19,20]. Finally, select the regression coefficients β with
minimum MSE, and the temperature points correspond-
ing to the nonzero components in β can be picked out
as the temperature-sensitive points.

3.2 Evaluation and selection of temperature-sensitive
point subsets

We perform LASSO on the three groups of temperature data
and thermal error data, respectively. The LASSO traces for the
three group data are illustrated in Fig. 6. The value of the
LASSO parameter λ increases from right to left along the
bottom axis of abscissae. The degrees of freedom for the mod-
el, i.e., the number of nonzero regression coefficients, in-
creases from left to right, along the top axis of abscissae.
The left vertical axis shows the standardized coefficient
values. With the increase of LASSO parameter λ, the compo-
nents of coefficients shrank toward 0 and the nonzero coeffi-
cients appeared alternately. The dashed vertical line shows the
λ value with minimum MSE and the corresponding nonzero
coefficients are selected as the temperature-sensitive point
subset. From Fig. 6, for each of the three group data, corre-
sponding to minimum MSE, we pick out the temperature
points with nonzero coefficients as the temperature-sensitive
points and the selection results are summarized in Table 2. As
shown, for the temperature data and thermal error data in
S = 2000 rpm, T2, T4, T8, T14, T16, and T19 are chosen as
temperature-sensitive points, for the temperature data and
thermal error data in S = 4000 rpm, T1, T2, T6, T7, and T19
are chosen as temperature-sensitive points and for the speed
spectrum shown in Fig. 3, T1, T3, T7, T8, T13, T16, and T20
are chosen as temperature-sensitive points. It indicates that
with the change of the spindle speed state, the temperature-

sensitive points vary. However, we can just pick out the best
temperature-sensitive point subset insuring the best prediction
accuracy by evaluating each subset.

For convenience, the MLR is taken as the regression
model to evaluate the three temperature-sensitive point
subsets. The expression of MLR is the following:

y ¼ β0 þ β1x1 þ…þ βmxm ð5Þ
where y denotes the thermal error, xi (i = 1 ,… , m) de-
notes the temperature value of the corresponding
temperature-sensitive point selected by LASSO, m is the
number of temperature-sensitive points in each subset,
and β = (β0, β1,…, βm) are the regression coefficients
and can be estimated by the least squares method, as fol-
lows:

β̂̂ ¼ XTX
� �−1

XTy ð6Þ

where β̂ is the estimated regression coefficients vector
with the length of m + 1, X = {1, x1, x2,…, xm} are the
matrix with the size of N×(m + 1) consisting of a 1 vector
with all the elements are 1 and the temperature values of
temperature-sensitive points, and y is the thermal error
vector with the length of N and N is the number of sam-
ples used for building the thermal error model.

For robustness, the evaluation of the three temperature-
sensitive point subsets using MLR is 10-fold cross-vali-
dated using both three groups of temperature data and
thermal error data. The collected total 360 data samples
in each spindle speed state are randomly disturbed, and
only the first 300 disturbed samples are used to evaluate
the three temperature-sensitive point subsets. The evalua-
tion results of the three temperature-sensitive point sub-
sets are shown in Fig. 7. The vertical axis indicates the
cross-validated root mean square error (RMSE). The
smaller the RMSE is, the better the temperature-sensitive
point subset is. As shown, for the data with the speed of
S = 2000 rpm, both three temperature-sensitive point sub-
sets almost have the same evaluation error with a slightly
lower evaluation error in temperature-sensitive point sub-
set 2. And for the data with the speed of S = 4000 rpm,
the evaluation error of temperature-sensitive point subset
3 was slightly lower than that of subset 2 and both are
much lower than that of subset 1. Finally, for the data
with the speed spectrum shown in Fig. 3, the evaluation
error of temperature-sensitive point subset 3 is lower than
that of subset 2 and is further lower than that of subset 1.
In general, temperature-sensitive point subset 3 shows the
best results; thus, the corresponding temperature points in
subset 3, T1, T3, T7, T8, T13, T16, and T20 are selected
as the temperature-sensitive points for thermal error
modeling with high prediction accuracy.

Fig. 5 Thermal error data
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Fig. 6 a LASSO trace for the
data with S = 2000 rpm. b
LASSO trace for the data with
S = 4000 rpm. c LASSO trace for
the data with speed spectrum of
Fig. 3
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4 Thermal error modeling

4.1 Least squares support vector machine

The LS-SVM was proposed by J.A.K. Suykens et al. [21],
which is a reformulation of the traditional SVM algorithm.
The LS-SVM uses a regularized least squares function with
equality constraints, leading to a linear system which meets
the Karush-Kuhn-Tucker (KKT) conditions for obtaining an
optimal solution. Consequently, the regression problem can be
solved by a linear equation system rather than quadratic pro-
gramming, as in SVM.

For the given temperature data matrix X of temperature-
sensitive points and thermal error data vector y of the spindle
Z-direction, the aim of LS-SVM is to construct the function
f(x) = y, which represents the dependence of the thermal error
output y on the input temperature x. The function of LS-SVM
is formulated as follows:

f xð Þ ¼ wTφ xð Þ þ b ð7Þ

where w is the regression coefficients vector, φ(x) is the non-
linear map function from original space to the high dimension-
al space and b is the constant model parameter. The optimiza-
tion problem and the equality constraints of LS-SVM are de-
fined as follows:

min
w;e

J w; eð Þ ¼ 1

2
wTwþ γ

2
∑
n

i¼1
e2i s:t: yi ¼ wTφ xið Þ þ bþ ei

�
ð8Þ

where ei(i = 1 ,… , n) is the training error, n is the number of
training samples, and γ is the tradeoff parameter between the
solution size and training errors. The solution of Eq. (8) can be
obtained by transforming it into the Lagrangian function, as
follows:

L w; e; b;αð Þ ¼ 1

2
wTwþ γ

2

� ∑
n

i¼1
e2i − ∑

n

i¼1
αi wTφ xið Þ þ bþ ei−yi
� 	 ð9Þ

whereαi(i = 1 ,… , n) is the is the Lagrangian multiplier. Then
differentiate Eq. (9) with respect tow, e, b,α, respectively, and
let the derivatives be zero, we obtain the following equations:

w ¼ ∑
n

i¼1
αiφ xið Þ

∑
n

i¼1
αi ¼ 0

αi ¼ γ ei; i ¼ 1 ; … ; n

yi ¼ wTφ xið Þ þ bþ ei; i ¼ 1;…; n

8>>>>>>><
>>>>>>>:

ð10Þ

Eliminate w and ei(i = 1 ,… , n) and define the kernel func-
tion K(xi, xj) =φ(xi)

Tφ(xj), the conditions for optimality lead
to the following overall linear system instead of a quadratic
programming problem, as follows:

0 1 ⋯ 1
1 K x1; x1ð Þ þ 1

.
γ ⋯ K x1; xnð Þ

⋮ ⋮ ⋱ ⋮
1 K xn; x1ð Þ ⋯ K xn; xnð Þ þ 1

.
γ

2
6664

3
7775

b
α1

⋮
αn

2
664

3
775

¼
0
y1
⋮
yn

2
664

3
775

ð11Þ

Usually, the Gaussian kernel function is used as the kernel
function, as follows:

Fig. 7 Evaluation results of the temperature-sensitive points subsets

Table 2 Temperature-sensitive
point subsets Temperature-sensitive point subset Temperature-sensitive points λ

Subset 1 (2000 rpm) T2, T4, T8, T14, T16, T19 0.4984

Subset 2 (4000 rpm) T1, T2, T6, T7, T19 0.9934

Subset 3 (speed spectrum) T1, T3, T7, T8, T13, T16, T20 0.0272
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K xi; x j
� � ¼ e

− xi−x jk k2
2σ2 ð12Þ

where σ2 is the kernel function parameter. The kernel function
parameter σ2 and the tradeoff parameter γ are the
hyperparameters of LS-SVM. Given these two hyperparameters,
the Lagrangian multipliers αi (i = 1 ,… , n) and the constant
model parameter b can be obtained from the solution of the linear
equation system in Eq. (11). Thus, the final LS-SVM thermal
errormodel can be derived from the rewritten form of Eq. (7) as a
function of the Lagrangian multipliers, as follows:

f xð Þ ¼ ∑
n

i¼1
αiK x; xið Þ þ b ð13Þ

4.2 Parameters determination

The performance of the LS-SVM depends on the two
hyperparameters σ2 and γ, and are usually obtained by grid
search method which is very useful for small number of
hyperparameters. Set the search range of the kernel function
parameter σ2 as (1, 2,…, 20) with spacing one and the search
range of the tradeoff parameter γ as (50, 100, …, 1000) with
spacing 50. Then, the LS-SVM thermal error model could be
derived using the training temperature data and thermal error
data with each combination of σ2 and γ in the grid search
ranges. For improving the prediction performance of the ther-
mal error model, the temperature data and thermal error data in
speed spectrum are used to build the thermal error model. The
collected total N = 360 data samples in speed spectrum are
randomly disturbed, and only the first 300 disturbed samples
are used as the training data set as elaborated in Section 5. And
then, take the mean prediction RMSE predicted using the data
with S = 2000 rpm and S = 4000 rpm as the criterion to select
the best hyperparameters. The grid search results of the two

hyperparameters are shown in Fig. 8. As we can see, corre-
sponding to the lowest RMSE denoted as the black point,
σ2 = 2 and γ = 650 are selected as the final hyperparameters.
Once the two hyperparameters are obtained, the thermal error
model could finally be built.

5 Prediction performance analysis

5.1 Prediction performance

To obtain a LS-SVM thermal error model with strong gener-
alization, the collected total N = 360 data samples using the
speed spectrum of Fig. 3 are randomly disturbed. The first 300
disturbed samples are used as the training data set, and the
remaining 60 disturbed samples are used as the test data set.
Use the training data set and the hyperparameters to build the
LS-SVM thermal error model and use the test data set to test
the model. The fitting RMSE and test RMSE are shown in
Table 3. The fitting RMSE refers to the prediction RMSE on
the training data set and the test RMSE refers to the prediction
RMSE on the test data set. For comparison, the GM method
and the MLR method are also used to build the thermal error
models. Their fitting RMSE and test RMSE are also shown in
Table 3. As shown, all the models can fit on the training data

Fig. 8 Grid search results of hyperparameters σ2 and γ

Table 3 Prediction accuracy comparison of different models using data
with speed spectrum of Fig. 3

Model Fitting RMSE
(μm)

Fitting R2 Test RMSE
(μm)

Test R2

LS-SVM 0.5738 0.9996 0.5838 0.9995

GM 1.1493 0.9985 0.9742 0.9985

MLR 0.9076 0.9991 0.8165 0.9989

Fig. 9 Thermal error prediction curves with speed spectrum of Fig. 3
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and predict on the test data very well, and the best one is the
LS-SVM model with the fitting RMSE about 0.5738 μm and
test RMSE about 0.5838 μm, respectively.

The coefficient of determination R2 of the models is also
shown in Table 3. It indicates the proportionate amount of vari-
ation in the thermal error y explained by the temperature-
sensitive points x in the thermal error model and ranges in (0,
1). The calculation of R2 is shown in Eq. (14). The larger the R2

is, the more variability is explained by the thermal error model. It
is shown that all the three models had a close to 1 R2 value in
both the training data set and test data set, but the values obtained
by the LS-SVM are slightly higher.

R2 ¼
∑
N

i¼1
ŷ̂i−y
� �2

∑
N

i¼1
yi−y
� �2 ð14Þ

where yi denotes the ith desired thermal error value, ŷi denotes
the ith predicted thermal error value, and y denotes the mean
value of desired thermal error values.

The thermal error prediction curves for all training and
test data of all three models are shown in Fig. 9. The three
predicted thermal error curves by the three models are
almost coincident with the measured thermal error curve.
The thermal error prediction residual error curves of the
three models are shown in Fig. 10. The residual error
curves are almost distributed around the zero axis. All
the three models have almost the same good prediction
accuracy on the training data and test data from the same
spindle speed spectrum. However, the prediction perfor-
mance of a thermal error model mainly depends on its
generalization performance, that is the ability to predict
on new temperature data from different spindle speed.

5.2 Generalization performance

In order to verify the generalization performance of the LS-
SVM thermal error model, the thermal errors are predicted on
the temperature data with the spindle speed of S = 2000 rpm
and S = 4000 rpm measured in Section 2 and the measured
temperature data using a different spindle speed spectrum
shown in Fig. 11. The new spindle speed spectrum is the
reverse of the spindle speed spectrum in Fig. 3. Clearly, the
spindle speed spectrum in Fig. 11 and the spindle speed spec-

Fig. 10 Thermal error prediction residual error curves with speed
spectrum of Fig. 3

Fig. 11 New spindle speed spectrum

Fig. 12 Temperature data with new speed spectrumof Fig. 11

Table 4 Prediction
accuracy comparison of
different models using
data with S = 2000 rpm

Model RMSE (μm) R2

LS-SVM 2.2731 0.9853

GM 8.9543 0.7725

MLR 4.9787 0.9297
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trum in Fig. 3 are symmetric around the vertical axis. Under
the same thermal error experiment setup as in Section 2, the
thermal error experiment is conducted with the new spindle
speed spectrum in Fig. 11. The measured temperature data
with the new spindle speed spectrum are shown in Fig. 12.

Feeding the new data with S = 2000 rpm, S = 4000 rpm,
and the new speed spectrum to the derived three thermal error
models, respectively, and calculating the corresponding pre-
diction errors, the prediction accuracies are listed in Tables 4,
5, and 6, respectively. As shown, for all the three different
spindle speed states, the RMSEs of LS-SVM model are the
lowest among the three prediction models with only about
2.2731 μm with S = 2000 rpm, 7.7523 μm with
S = 4000 rpm, and 2.0318 μm with new speed spectrum.
Comparing to GM and MLR, the prediction accuracy of LS-
SVM increases by about 74.6 and 54.3% with S = 2000 rpm,
30.2 and 42.0% with S = 4000 rpm, and 55.4 and 38.4% with
new speed spectrum, respectively. The coefficient of determi-
nation R2 of the three models for all the three different spindle
speed states are also shown in Tables 4, 5, and 6. As shown,
for all the three different spindle speed states, the R2 values of
the LS-SVM model could maintain the highest among the
three predict ion models with about 0.9853 with
S = 2000 rpm, 0.9483 with S = 4000 rpm, and 0.9947 with
new speed spectrum. Therefore, the LS-SVM model can still
hold good prediction performance when the spindle speed has
changed, indicating that the LS-SVM model could maintain
good generalization performance.

The thermal error prediction curves by the three models for
all the three different spindle speed states are compared in
Fig. 13. The thermal error curves predicted by LS-SVMmod-
el are in the best agreement with the measured thermal error
curves for all the three different spindle speed states among the
three models. The thermal error prediction residual error
curves of the three models for all the three different spindle
speed states are shown in Fig. 14. The residual error curves of
the LS-SVM model for all the three different spindle speed

states are the closest ones to the zero axis; on the contrary, the
residual error curves of GM andMLR have seriously deviated
from the zero axis. In general, all these indicate that the LS-
SVM model has the best prediction performance and general-
ization performance among the three models, and is more
suitable to be used as the thermal error prediction model in
thermal error compensation.

6 Conclusions

To further improve the spindle thermal error prediction accu-
racy, the LASSO was used to select the temperature-sensitive
point subsets and the LS-SVMwas used to derive the thermal
error model. The spindle thermal error experiments were con-
ducted on a horizontal machining center at three spindle speed
states, S = 2000 rpm, S = 4000 rpm, and speed spectrum. The
temperature-sensitive points varied with the change of the
spindle speed state, and three different temperature-sensitive
point subsets were selected by LASSO using the data in the
three different spindle speed states. Through evaluation by
MLR, the final seven temperature points T1, T3, T7, T8,
T13, T16, and T20 were picked out as the temperature-
sensitive points. Compared with the conventional unsuper-
vised method using fuzzy clustering analysis and correlation
analysis, the proposed temperature-sensitive point selection
method using LASSO is a kind of supervised method and
can select the best temperature-sensitive point subset with
the number of temperature-sensitive points automatically de-
termined. By regarding the temperature-sensitive points as the
input variables and the thermal error as the output variable, the
thermal error model was derived from LS-SVM using the
temperature data and thermal error data with speed spectrum.
Thereafter, the prediction performance and generalization per-
formance of the thermal error model derived from LS-SVM
were compared with those of the thermal error models derived
from the commonly used GM and MLR, respectively. The
comparison results indicated that thermal error model derived
from LS-SVM had the best prediction performance and gen-
eralization performance with the highest prediction accuracy
increasing about 74.6 and 54.3% compared with GM and
MLR, respectively. The feasibility and superiority of the pro-
posed temperature-sensitive point selection method and ther-
mal error modeling method are verified. Using the proposed
method, the spindle thermal error model with better prediction
performance can be built; thus, the spindle thermal error can
be compensated more effectively. The proposed method may
provide an alternative in thermal error modeling for machine
tool researchers, manufacturers, and users. All the work pre-
pares for the subsequent implementation of thermal error
compensation.

Table 5 Prediction
accuracy comparison of
different models using
data with S = 4000 rpm

Model RMSE (μm) R2

LS-SVM 7.7523 0.9483

GM 11.1022 0.8939

MLR 13.3724 0.8461

Table 6 Prediction
accuracy comparison of
different models using
data with new speed
spectrum of Fig. 11

Model RMSE (μm) R2

LS-SVM 2.0318 0.9947

GM 4.5606 0.9732

MLR 3.2967 0.9860

Int J Adv Manuf Technol (2018) 94:2861–2874 2871



Fig. 13 a Thermal error
prediction curves with
S = 2000 rpm. b Thermal error
prediction curves with
S = 4000 rpm. c Thermal error
prediction curves with new speed
spectrum of Fig. 11
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Fig. 14 a Thermal error
prediction residual error curves
with S = 2000 rpm. b Thermal
error prediction residual error
curves with S = 4000 rpm. c
Thermal error prediction residual
error curves with new speed
spectrum of Fig. 11
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