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Abstract Identification of geometric errors of translation-
al axis is a key step to improve the accuracy of machine
tools. However, during the procedure of measurement,
installation errors of instruments are inevitable and should
influence the measurement results. In order to avoid this
and improve the reliability and accuracy of measurement,
a novel identification measurement method is proposed.
The errors of positioning and straightness of translational
axis are measured by a laser interferometer in four instal-
lation positions. Twelve measured results are obtained,
and then are used to identify six geometric errors of trans-
lation axis, based on the homogeneous transformation ma-
trix and the least square method. Furthermore, an optimi-
zation method based on sensitivity analysis of the identi-
fication matrix is presented to obtain the optimum instal-
lation positions of the laser interferometer, to diminish the
influence of the installation errors. Finally, simulations
and experiments are conducted to validate the correctness
and effectiveness of proposed method. The results indi-
cate that the optimization identification method proposed
is effective and accurate.

Keywords Geometric errors . Translational axis . Laser
interferometer . Installation errors . Sensitivity analysis

1 Introduction

As the requirement of precision machining has become higher in
the field of aerospace, military industry, automobile and other
industries, the performance of CNC machine tools is receiving
increased attention in the manufacturing industry [1–3].
Translational axis is one of the most important components in
multi-axis machine tools, to move the workpiece and the tool.
Accuracy of translational axis directly affects the geometric ac-
curacy of the CNC machine tool [4]. Measurement and identifi-
cation of geometric errors of translational axis is the precondition
for improving the geometric accuracy of CNC machine tools,
especially for ultra-precision machine tools which need higher
accuracy compensation. Therefore, an identification method of
geometric errors of translational axis with high accuracy and
insensitive to instrument installation errors is necessary [5].

Usually, the measurement method of geometric errors of
translational axis can be classified into two categories: direct
and indirect [6, 7]. Regarding direct measurement, errors are
directly obtained by the measurement instruments without any
auxiliary operations. Lee et al. [8] using a five-DOF measuring
system and hybrid measurement technique to directly measure
the geometric errors of machine tools with three translational
axes. The positioning error of a translational axis is measured
using a laser interferometer [9]. Laser diodes and beam splitters
are applied for the measurement of three-axis machine tools
[10]. In addition, some other newly designed measurement de-
vices such as laser-based measuring systems and capacitance
sensors were also utilized to measure geometric errors
[11–13]. The above direct methods measure each error compo-
nents step by step, therefore requires high-precision measuring
instruments and trivial measurement procedures [14, 15].
However, the roll error in translational axis could not be mea-
sured directly using laser interferometer. In contrast to direct
methods, the indirect methods are usually used to obtain the
geometric errors from the identified model. The indirect method
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generally identifies the geometric errors using less measurement
paths than direct methods, and can identify all of error compo-
nents of machine tools. Lots of research works have been com-
pleted regarding the indirect method [16–18]. Chen et al. [19]
identified 21 geometric errors of three-axis machine tools using
the 15 lines method. Measurement techniques were simplified
by measuring the positioning errors along 15 lines in the ma-
chine workspace. However, the method is difficult and time-
consuming to implement, requiring extensive computation.
Wang et al. [20] used a laser tracking method to separate the
geometric errors from the measured results in CNC milling ma-
chine based on the global positioning system (GPS) method. A
multi-step identificationmethod of error components was devel-
oped by using cross grid encoder measurement technology in a
three-axis CNC vertical machining center [21]. Other commer-
cial instruments like laser tracker, laser diode, and optics are also
applied to measure geometric errors of translational axis
[22–25]. Nevertheless, these laser tracker instruments have low-
er accuracy than laser interferometers and are time-consuming to
operate, requiring highly skilled technicians.

The aforementioned studies mainly concerned how to iden-
tify geometric errors. Few research works have been conducted
with considering the influence of instrument installation errors.
The installation errors of instrument are inevitable and can affect
the measurement result in the process of measurement. As for
the indirect measurement method, the installation errors can
make the measured result inaccuracy or even not trustworthy.
However, in most of the studies, the installation position of the
laser interferometer is only decided by the empirical during the
measurement. These drawbacks can restrict the accuracy of error
identification of translational axis, especially for precision detec-
tion in ultra-precision machine tools. For improving the robust-
ness of identified approach of geometric errors, this paper pro-
poses a measurement method which is insensitive to installation
errors. Positioning errors and straightness errors of translational
axis are measured through the laser interferometer with serial
measurement paths. The corresponding identification model is
built based on the least squaremethod. During themeasurement,
a sensitivity analysis of identified matrix is also conducted to
optimize measurement positions. Hence, a more precise identi-
fication procedure can be proposed to compute translational
errors and rotational errors of translational axis from the mea-
sured results. The installation parameters of the measurement
instrument are adjusted to minimize the influence of the instal-
lation errors. Finally, a range of simulations and experiments are
conducted to verify the approach.

The structure of this paper is as follows. The geometric error
modeling is described in detail in Section 2. Section 3 discusses
the identificationmethod of translational axis of geometric errors
and Section 4 describes the sensitivity analysis of installation
position errors. The simulation and experiment are conducted
and their results are discussed in Section 5. Finally, the conclu-
sions are drawn in Section 6.

2 The geometric errors modeling

2.1 Error parameter definition

According to reference [26], it is well known that when a com-
ponent moves along an X-axis, it has six degrees of freedom. Its
position description contains six errors accordingly which include
three translational errors δx(X) , δy(X) , δz(X)and three rotational
errorsεx(X) , εy(X) , εz(X). Taking translational axis X as an exam-
ple, these symbols of six error components are shown in Fig. 1.

2.2 Transformation matrix of adjacent bodies

The position and attitude of one body relative to another body
could be expressed as the relative position and attitude of the
coordinates system of adjacent body. The relationship between
the platform and the base of themachine tool are shown in Fig. 2
which can be obtained by using the homogeneous transforma-
tion matrix. Figure 2 describes the motion relationship between
the platformBk and the adjacent baseBj.Bj carries the coordinate
frame Oj and Bk is with coordinate frame Ok. Qk is the motion
reference frame of Bk in the initial position. During the relative
motion between body Bj and Bk, kinematic components can
contribute to the actual position and the attitude of body Bk
involves ideal position offsetPl

kh, position errorP
e
kh, ideal motion

amount Slkh, and motion error amountS
e
kh. P

l
kh and P

e
kh are com-

bined into the actual position deviationPkh between bodyBk and
Bj. Slkh and Sekh are combined into the actual motion amount
Skhbetween body Bk and Bj; rk refers to the position vector of
the given point P (the laser measurement point) relative to Ok

and Pkp is the position vector that the point P relative to Qk.
In Fig. 2, the platformBkmoves relatively toBj along theX-

axis. Based on the theory of multi-body system [27–29]. The

transformationmatrix (jkT
k ) of the relativemotion between Bk

and Bj is obtained as follows:

j
kT ¼ j

kTp
j
kTpe

j
kT s

j
kT se ð1Þ

Fig. 1 Geometric error parameters of translational axis X
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where, jkTp refers to the initiative position matrix between

Bj and the motion reference frame, which denotes the initiative

position of Bk;
j
kTpe is the position error transformation matrix

between Bj and Bk;
j
kT s is the motion transformation matrix

between Bk and the motion reference frame, which denotes

motion of Bk relative to the Bj;
j
kT se is the motion error trans-

formation matrix between Bk and Bj:

j
kTp ¼

1 0 0 p1khx
0 1 0 plkhy
0 0 1 plkhz
0 0 0 1

2
664

3
775 ð2Þ

In Eq.(2), Pl
khx, P

l
khy, and Pl

khz are the three linear position

vectors of Pl
kh in the x, y, and z directions between coordinate

systems of motion body Bj and Bk, respectively .
By the assumption of minor angles and ignoring the high-

order deviations, the position error transformation matrix

(jkTpe ) is represented as follows:

j
kTpe ¼

1 −εkhpz εkhpy pekhx
εkhpz 1 −εkhpx pekhy
−εkhpy εkhpx 1 pekhz
0 0 0 1

2
6664

3
7775 ð3Þ

where, Pe
khx, P

e
khy, and Pe

khz are the three linear position errors

of Pe
kh in the x, y, and z directions between coordinate systems

of motion body Bj and Bk, respectively;εkhpx ,εkhpy andεkhpz are

three rotational errors in x-, y-, and z- axes between coordinate
systems of body Bk and Bj.

The motion transformation matrix (jkT s )is defined as fol-
lows:

j
kT s ¼

1 0 0 δlkhx
0 1 0 δlkhy
0 0 1 δlkhz
0 0 0 1

2
664

3
775 ð4Þ

In which, δlkhx, δ
l
khy, and δlkhz are the three linear mo-

tion vectors of the Slkh in the x, y, and z directions
between coordinate systems of motion body Bj and Bk,
respectively .

The motion error transformation matrix (jkT se ) is
follows:

j
kT se ¼

1 −εkhsz xð Þ εkhsy xð Þ δekhx
εkhsz xð Þ 1 −εkhsx xð Þ δekhy
−εkhsy xð Þ εkhsx xð Þ 1 δekhz

0 0 0 1

2
6664

3
7775 ð5Þ

where, δekhx, δekhy, and δekhz are the three linear motion

errors of the Sekh in the x, y, and z directions between
coordinate systems of motion body Bj and Bk, respec-
tively;εkhsx xð Þ, εkhsy xð Þ, and εkhsz xð Þ are the rotational mo-

tion errors of kinematics pair.
Assume that the coordinates of Bk is coincide with Bj

at the beginning when the platform Bk moves along the
X-axis. The relative position equation of the measure-
ment point P moves along the X-axis. Therefore, it
can be deduced as follows:

pkp
1

� �
¼ j

kT
k rk

1

� �
¼ j

kT
k
s
j
kT

k
se

rk
1

� �
ð6Þ

Referring to Eqs.(4) and (5), Eq.(6) can be represented as
follows:

xkh
ykh
zkh
1

2
664

3
775 ¼

1 0 0 δlkhx
0 1 0 δlkhy
0 0 1 δlkhz
0 0 0 1

2
664

3
775

1 −εkhsz xð Þ εkhsy xð Þ δekhx
εkhsz xð Þ 1 −εkhsx xð Þ δekhy
−εkhsy xð Þ εkhsx xð Þ 1 δekhz

0 0 0 1

2
664

3
775

X k

Y k

Zk

1

2
664

3
775

ð7Þ

Fig. 2 Kinematic notations of linear axis

Int J Adv Manuf Technol (2018) 94:2905–2917 2907



In which, xkh, ykh, and zkh are the vector components of pkp
in the x, y, and z directions between coordinate systems of Qk

and measurement point P; Xk, Yk,and Zk are the vector com-
ponents of rkin the x, y, and z directions between coordinate
systems of Ok and measurement point P.

Eq.(7) can be rewritten as follows:

xkh
ykh
zkh

2
4

3
5 ¼

δl khx
δl khy
δl khz

2
4

3
5þ δekhx

δekhy
δekhz

2
4

3
5þ

1 −εkhsz xð Þ εkhsy xð Þ
εkhsz xð Þ 1 −εkhsx xð Þ
−εkhsy xð Þ εkhsx xð Þ 1

2
64

3
75

X k

Y k

Zk

2
4

3
5

ð8Þ

When the platform Bk locates in the initial position (h = 0)
shown in Fig. 2, Eq.(8) can be expressed as follows:

xk0
yk0
zk0

2
4

3
5 ¼

δl k0x
δl k0y
δl k0z

2
4

3
5þ δek0x

δek0y
δekoz

2
4

3
5þ

1 −εk0sz xð Þ εk0sy xð Þ
εk0sz xð Þ 1 −εk0sx xð Þ
−εk0sy xð Þ εk0sx xð Þ 1

2
64

3
75

X k

Y k

Zk

2
4

3
5

ð9Þ

When the measurement point P moves from the initial po-
sition to the position m (h = m) shown in Fig. 2, the displace-
ment between the position m and the initial position is:

xkm−xk0
ykm−yk0
zkm−zk0

2
4

3
5 ¼

δlkmx−δlk0x
δlkmy−δlk0y
δlkmz−δlk0z

2
4

3
5þ

δekmx−δek0x
δekmy−δekoy
δekmz−δek0z

2
4

3
5

þ
0 −εkmsz xð Þ þ εk0sz xð Þ εkmsy xð Þ−εk0sy xð Þ

εkmsz xð Þ−εk0sz xð Þ 0 −εkmsx xð Þ þ εk0sx xð Þ
−εkmsy xð Þ þ εk0sy xð Þ εkmsx xð Þ−εk0sx xð Þ 0

2
64

3
75

X k

Y k

Zk

2
4

3
5

ð10Þ

Assume that Ok are coincide with Qk in the initial position
and there are no error in the initial position, the error
components(δ l k0x ,δ

l
k0y,δ

l
k0z ,δ

e
k0x ,δ

e
k0y,δ

e
k0z ,εk0sx xð Þ,

εk0sy xð Þ,εk0sz xð Þ ) in Eq.(9) are equal to zero when Bk is set in
the initial position (h = 0). Therefore, the displacement can be
simplified as:

xkm −xk0 −δlkmx
ykm −yk0 −δlkmy
zkm −zk0 −δlkmz

2
4

3
5 ¼

δekmx
δekmy
δekmz

2
4

3
5þ

0 −εkmsz xð Þ εkmsy xð Þ
εkmsz xð Þ 0 −εkmsx xð Þ
−εkmsy xð Þ εkmsx xð Þ 0

2
64

3
75

X k

Y k

Zk

2
4

3
5

ð11Þ

Eq.(11) can be rewritten as:

xkm−xk0−δlkmx
ykm−yk0−δ

l
kmy

zkm−zk0−δlkmz

2
4

3
5 ¼

0 −εkmsz xð Þ εkmsy xð Þ δekmx
εkmsz xð Þ 0 −εkmsx xð Þ δekmy
−εkmsy xð Þ εkmsx xð Þ 0 δekmz

0 0 0 1

2
664

3
775

X k

Y k

Zk

1

2
664

3
775

ð12Þ

From Eq.(12), it is obvious that three or more equations are
needed to solve the six geometric errors of X-axis.

3 The geometric error identification of translational
axis

In this paper, a redundancy measurement approach to identify
geometric errors of a translational axis is proposed. The mea-
surement paths for translational X-axis are shown in Fig. 3.
There are four measurement paths for translational axis, and
only one single translational axis is controlled during the mea-
surement in order to get the laser interferometer data. Four in-
stallation position P1(X1,Y1,Z1), P2(X2,Y2,Z2), P3(X3,Y3,Z3),
and P4(X4,Y4,Z4) are selected and installed in the workbench
as can be seem in Fig. 3. The distance between the P1 and P2 is
H in the Z direction. The distance between P3 and P1 isW in the
Y direction. The distance between P4 and P3 is H in the Z
direction. Measure points(n1,…, ni) are equally distributed on
the translational X-axis stroke. In the process of measurement,
comprehensive errors of mounting point Pi, including position-
ing errors in X direction and two straightness errors in Y and Z
direction, would bemeasured in everymeasure points(n1,…, ni),
respectively. After themeasurement of installation pointPi being
completed, other installation point would be selected to be mea-
sured following the same steps mentioned above until all of
installation points have been tested.

On each measurement Line(Line1, Line2, Line3, and
Line4), positioning errors (Δxi(X)), and straightness
errors(Δyi(X), Δzi(X)) on each installation position are mea-
sured by the laser interferometer. Δxi(X) are the positioning
errors of the Line i along X-axis direction.Δyi(X) refers to the
straightness errors of Line i along X-axis in Y-axis direction.
Δzi(X) is the straightness error of the line i along X-axis in Z
direction. Then, the identification model can be constructed
according to the 12 measured results Δx1 Xð Þ½ Δy1 Xð Þ Δz1
Xð ÞΔx2 Xð ÞΔy2 Xð Þ Δz2 Xð ÞΔx3 Xð Þ Δy3 Xð ÞΔz3 Xð Þ Δx4
Xð Þ Δy4 Xð Þ Δz4 Xð Þ� and the six error items δX Xð Þ½ δY Xð Þ
δZ Xð Þ εX Xð Þ εY Xð Þ εZ Xð Þ�.The position of installation point
Pi could be expressed as rpi , where rpi ¼ X i Y i Zi½ �T .

From Eq.(12), the relationship between comprehensive er-
rors measured by laser interferometer and geometric error pa-
rameters of machine tool can be deduced:

xkm
ykm
zkm

−
−
−

xk0−δlkmx
yk0−δ

l
kmy

zk0−δlkmz

2
4

3
5 ¼

Δxi Xð Þ
Δyi Xð Þ
Δzi Xð Þ

2
4

3
5 ð13Þ

Referring to Eqs.(12) and (13), Eq.(14) can be represented
as follows:

ΔPi Xð Þ ¼ I3 − rPi�½ �ð Þ δ Xð Þ
ε Xð Þ

� �
i ¼ 1; 2; 3; 4 ð14Þ

2908 Int J Adv Manuf Technol (2018) 94:2905–2917



In which, ΔPi(X) refers to the position error vector
of installation point Pi, ΔPi Xð Þf g ¼ Δxi Xð Þ½ Δyi Xð Þ
Δzi Xð Þ�T ; I3 is identity matrix; rPi�½ � is antisymmetric

m a t r i x o f v e c t o r rpi, rPi�½ � ¼
0 −Zi Y i

Zi 0 −X i

−Y i X i 0

2
4

3
5;

δ Xð Þf g ¼ δX Xð Þ δY Xð Þ δZ Xð Þ½ �T ; ε Xð Þf g ¼ εX Xð Þ½
εY Xð Þ εZ Xð Þ�T .

Positioning errors and two straightness errors on each
installation position are measured by the laser interfer-
ometer. The mathematical model could be deduced by
12 measurement results from Eq. (15).

Δ Xð Þf g ¼ Ex½ � δ Xð Þ
ε Xð Þ

� �
ð15Þ

In which, Δ(X) refer to comprehensive errors of four in-
stallation point Pi, Δ Xð Þf g ¼ ΔP1 Xð Þ½ ΔP2 Xð Þ ΔP3 Xð Þ
ΔP4 Xð Þ�T ;

Ex½ � ¼
I3 − rP1�½ �
I3 − rP2�½ �
I3 − rP3�½ �
I3 − rP4�½ �

2
664

3
775 ð16Þ

It has been found that they are over determined systems
from Eq. (15). In order to calculate their solution, both sides
should be multiplied with [Ex]

T.

Ex½ �T Δ Xð Þf g ¼ Ex½ �T Ex½ � δ Xð Þ
ε Xð Þ

� �
ð17Þ

The least square solution for the six geometric error items is
then applied by using the pseudo invert matrix.

δ Xð Þ
ε Xð Þ

� �
¼ Ex½ �T Ex½ �

� �−1
Ex½ �T Δ Xð Þf g ð18Þ

In Eq. (18), the selection of the coordinates (X1, Y1, Z1),
(X2, Y2, Z2), (X3, Y3, Z3), and (X4, Y4, Z4) should be able to
ensure that the coefficient of ([Ex]

T[Ex])
−1 matrix is

nonsingular to achieve an unique solution and to be identified
as the error items (δx(X), δy(X),δz(X), εx(X), εy(X), and εz(X)).
In this condition, the geometric errors of translational axis on a
five-axis machine tool could be identified. Redundancy mea-
surement method through increasingmeasurement parameters
to obtain more information can make the identified results
more reliable and stable, which have been applied in many
fields [30, 31]. The geometric error identification method pro-
posed in this article makes the identified results more reliable
and stable by increasing measurement parameters of compre-
hensive errors on a translational axis, which can reduce the
influence of accidental factors on the measurement. To a cer-
tain extent, the measurement result from above method can
reflect the characteristics of the machine tool accuracy be-
cause the measurement coordinate was selected in the ma-
chine tool working space.

As shown in Eq. (18), redundancy measurement identifica-
tion approach is expressed as the function of the position co-
ordinates of the measuring point P, the values of the compre-
hensive measurement errors and the six geometric errors of
one single axis. To ensure that Eq. (18) can be solved, the
matrix ([Ex]

T[Ex])
−1 must be nonsingular; thus, the installation

Fig. 3 Measurement paths for the
geometric errors of the
translational axis. a First
measurement. b Second
measurement. c Third
measurement. d Fourth
measurement
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parameters W and H have to satisfy the conditions W ≠ 0 and
H ≠ 0. Furthermore, the values of H and W should have sig-
nificant effect on the solution of Eq. (18). Therefore, the fur-
ther analysis of the influence of the parameters of H and W
will be conducted. A method based on the sensitivity analysis
of matrix ([Ex]

T[Ex])
−1 is proposed to find the optimal instal-

lation parameters for the measurement system in order to iden-
tify the error items more precisely.

4 Sensitivity analysis and optimization

The proposed method could effectively identify the geometric
errors of translational axis. However, the identified result ob-
tained from the above approach is influenced by the installa-
tion errors in some cases. Thus, in order to improve the mea-
surement accuracy, it is necessary to further analyze the influ-
ence of the position error. Assuming that the position of ideal
installation point Pi has slight offset (dX , dY, dZ exaggeration

shown in Fig. 4) from actual installation point P*
i . From Eq.

(16), due to the existence of the position errors, there are offset
existing between actual parameters and preset parameters of
(H,W). The identification result of six geometric errors which
derived from the inaccuracy of the measured results and the
installation parameters (H, W) would be affected. Therefore,
in this study, a mathematical model for the position error sen-
sitivity analysis is developed to provide a theoretical basis for
the suitable measuring position selection.

Referring to Eq. (18), let Ex
∗ = ([Ex]

T[Ex]), X ¼ δ Xð Þ½ ε
Xð Þ� and B = [Ex]

T{Δ(X)}. The redundancy measurement
identification model is represented as follows:

X ¼ Ex*ð Þ−1B ð19Þ

From Eq. (16), the installation errors will result in the per-
turbation in the coefficient matrix Ex

∗which can be expressed
as δEx*. The inaccuracy of the measurement system can also
cause the disturbance in vector Bwhich can be represented by
δB. Therefore,δEx* and δB will result in the change δX of the
solution. The relationship between disturbance and their cor-
respondence matrix can be shown below:

X þ δXð Þ Ex
* þ δEx*

� � ¼ Bþ δBð Þ ð20Þ

The change rate of the solution can be expressed by the
inequality in norm form according to the literature [32].

δXk k
Xk k ≤

Ex*ð Þ−1�� �� Ex
*

�� ��
1− Ex*ð Þ−1�� �� Ex

*
�� �� δEx*k k

Ex
*

�� ��
δBk k
Bk k þ δEx*k k

Exk k
	 


ð21Þ

The norm of coefficient matrix ‖(Ex∗)−1‖‖Ex
∗‖ reflects the

sensitivity of the solution of equations with respect to original

Fig. 4 The effect of installation position errors

Fig. 5 Simulation results for the
condition number according to
the changing with the value (H,
W)
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data errors. Theoretically speaking, it is also called condition
number. To simplify the calculation, the two norm is selected
to represent the condition number of the coefficient matrix
Ex

∗.

cond Ex
*� � ¼ Ex*ð Þ−1�� ��

2
Ex

*
�� ��

2
ð22Þ

From Eq. (22), the condition number cond(Ex
∗)is deter-

mined by the installation parameters (H, W). The parameter
H and W respectively depends on the height and the width of
the reflecting mirror relatively to the position of the first mea-
surement point. In order to obtain better measurement to the
machine tool, the first measurement point is usually chosen on

the position where machine tool processing frequently.
Therefore, selecting a proper value for parameter (H, W) to
minimize the condition number cond(Ex

∗) can diminish the
influence of the errors of the solution derived from the inac-
curacy of the measured results and the installation location.
Then , the op t imiza t ion ta sk i s r ep re sen t ed by
min(‖(Ex∗)−1‖2‖Ex∗‖2)|H ,W.

A program has been developed to evaluate the condition
number changing with the value (H, W) at the different posi-
tion of the translational axis (first measurement point was set
at (X1 = − 120, Y1 = − 60, Z1 = − 30)).

As shown in Fig. 5, the condition number decreases rapidly
when the value of H increases before about 115 mm in posi-
tive direction and W increases before about 163 mm in posi-
tive direction. After that, it increases again. Thus, there is an
optimum value of W and H (shown in Fig. 6 (H = 115 mm,
W = 163 mm)) that the minimum condition number can be
achieved at the first measurement point (X1 = − 120, Y1 = − 60,
Z1 = − 30) in the range ofW* and H* between 0 and 200 mm.

Obviously, there has different optimum value (H,W) at the
different first measurement point. In engineering practice, first
measurement point is usually selected on the position where
machine tool processing frequently in order to obtain better
compensation results. Once the first measurement point have
been chosen at the machine work zone, then the optimum
value (H, W) are selected as the installation parameter.

In this paper, a redundancy measurement approach is pro-
posed. By increasing measurement parameters, more informa-
tion can be obtained. The accuracy of identified results is
improved through redundancy measurement method. To a
certain extent, the method diminishes the influence of instal-
lation errors. However, the installation errors still exist in the
method. Sensitivity analysis was conducted to improve the
measurement accuracy. Through sensitivity analysis,

Fig. 6 Optimum installation parameters in machine tool

Fig. 7 Six geometric errors of translational axis Z. a Three translational errors. b Three rotational errors
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optimum installation position, which was not sensitive to the
influence of the position errors, has been chosen. The influ-
ence of installation errors could be decrease rapidly through
the method when measuring in the optimum positions.
Simulations and experiments are conducted to validate the
effectiveness of the proposed method.

5 Simulation and experimental verification

5.1 Simulation example

Simulation was used to validate the effectiveness of measure-
ment method proposed in this article. Two measurement strat-
egies using redundancy measurement and redundancy

measurement with sensitivity analysis are applied to validate
their effectiveness. Redundancy measurement is the method
that is conducted measurement in random positions, while the
redundancy measurement with sensitivity analysis is the
method that is measured in the optimum positions. The simu-
lation strategy consists of three steps is designed as follows:
(1) the six geometric errors of translational axis Z and set-up
errors of reflecting mirror were generated; (2) the six geomet-
ric errors of translational axis Z were identified through redun-
dancy measurement method and redundancy measurement
method with sensitivity analysis respectively; (3) two mea-
surement methods were applied to estimate positioning error
of Z-axis, and the result of positioning error deviation between
generated and estimated were compared. The generated six
geometric errors of translational axis Z are shown in Fig. 7.

Fig. 8 The six geometric errors of translational axis Z computing by r edundancy measurement method. a Three translational errors. b Three rotational
errors

Fig. 9 The six geometric errors of translational axis Z computing by redundancy measurement method with sensitivity analysis. a Three translational
errors. b Three rotational errors

2912 Int J Adv Manuf Technol (2018) 94:2905–2917



The simulation parameters are listed in Table. 1. Set-up error
(Δxi = ± 3 ,Δyi = ± 3 ,Δz = ± 3i ,mm) are applied to each in-
stallation position of reflecting mirror using Eq. 16 through
two measurement strategies. As can be seen in Fig. 8, the six
geometric errors of translational axis Z were identified using
redundancy measurement method. The six geometric errors of
translational axis Z were identified using redundancy mea-
surement method with sensitivity analysis as shown in
Fig. 9. Results of positioning error deviation between gener-
ated and estimated using two measurement method were
shown in Fig. 10.

Figures 8 and 9 show the translational and rotational error
components identified by redundancy measurement method
and redundancy measurement method with sensitivity analy-
sis respectively. According to the curves in Figs. 8 and 9, the

curves of geometric errors, which identified by both measure-
ment method, are approximately coincide with the curves of
geometric errors, generated in Fig. 7. The main difference
between Figs. 8 and 9 are the curves of δz(Z) and εy(Z). The
curves of δz(Z) and εy(Z) in Fig. 9 are more coincide with the
curves of geometric errors generated in Fig. 7 than in Fig. 8.
δz(Z) and εy(Z) play an important role in the positioning error
of axis Z. After identifying six geometric errors of translation-
al axis Z through both measurement methods, the positioning
error of axis Z has been calculated using Eq. 15 and the result
is shown in Fig. 10. Referring to Fig. 10, the generated error
means the positioning error of Z-axis, which is calculated
through the generated geometric errors. The estimated errors
expressed the positioning error of axis Z, which is calculated
through the identified geometric errors in Figs. 8 and 9,

Fig. 10 Deviation between generated and estimated errors. a The estimated errors computing by redundancy measurement method. b The estimated
errors computing by redundancy measurement method with sensitivity analysis

Fig. 11 The six geometric errors of translational axis Z computing by the general non-collinear three measurement lines method. a Three translational
errors. b Three rotational errors
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respectively. The residual error means the difference between
generated error and estimated error. The residual errors of two
methods are smaller when it gets close to the origin. On the
contrary, when it is far away from the origin, the curve of
estimated errors does not fit well with the curve of generated
errors (discrepancies within 1 μm with redundancy measure-
ment method). This is because, small estimate deviation of
rotational errors including (pitch, yaw, and roll) due to the
long distance would cause a large magnitude of positioning
error of axis Z. Compared with the result of positioning error
deviation between generated and estimated for two measure-
ment methods, the curve of estimated error identified by the
redundancy measurement method with sensitivity analysis
(discrepancies within 0.5 μm) are closer to the generated

curve than the one identified by the redundancy measurement
method (discrepancies within 1 μm). Since the residual errors
are in acceptable levels, the usefulness of the proposedmethod
can be shown.

To further validate the proposedmethod, other comparative
simulations are conducted to estimate the positioning error of
translational axis Z. Three non-collinear measurement points
P0(−118, −60, −30), Q0(−60, 70, −23), and K0(−20, −10, −39)
are selected according to the general non-collinear three mea-
surement lines method [25]. Set-up errors (Δxi = ± 1 ,Δyi =
± 2 ,Δzi = ± 3 , mm) are applied to each measurement posi-
tion through two measurement strategies. The six geometric
errors of translational axis Z (shown in Fig. 11) were identified
by using methods presented in the literature [25]. As shown in

Fig. 12 Deviation between generated and estimated errors. a The estimated errors computing by the general non-collinear three measurement lines
method. b The estimated errors computing by redundancy measurement method with sensitivity analysis

Fig. 13 Machine tool structure Fig. 14 Measurement at the four-axis machining center
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Fig. 12, the results of positioning error deviation through gen-
eral non-collinear three measurement lines method are com-
pared to the result generated by the redundancy measurement
method with sensitivity analysis. For the positioning errors of
Z-axis, the maximum deviation is 1.32 and 0.38 μm, respec-
tively. Compared with the result of positioning error deviation
between generated and estimated for two measurement
methods, the curve of estimated error identified by the redun-
dancy measurement method with sensitivity analysis (discrep-
ancies within 0.38 μm) are closer to the generated curve than
the one identified by the general non-collinear three measure-
ment lines method (discrepancies within 1.32 μm). The effec-
tiveness of the proposed method for measuring the geometric
error of linear axis is accordingly verified.

5.2 Experiment

To verify the effectiveness of the proposedmethod, a four-axis
machine tool (shown in Fig. 13) was utilized to measure the
geometric errors of translational axis Z. A laser interferometer
(RENISHAW XL–80) was used to measure the geometric
errors of axis Z. The translational range of translational axis
Z is [− 60, 60] as shown in Table. 2. Before the measurement,
the machine tool is warmed up for 20 min according to the
standard warming-up procedure recommended in [26]. By
applying the proposed method, the comprehensive geometric
errors, including positioning errors and straightness errors of
axis Z in a four-axis machine tool, are measured (shown in
Fig. 14), and the installation diagram of the experiment is

Fig. 15 The six geometric errors of translational axis Z identified by the redundancymeasurement method with sensitivity analysis. a Three translational
errors. b Three rotational errors

Fig. 16 Deviation between measured and predicted errors. a The predicted errors computing by redundancy method and redundancy method with
sensitivity analysis. b The residual errors computing by redundancy method and redundancy method with sensitivity analysis
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shown in Table. 2. The geometric errors calculation formula-
tions are shown as Eq. 18. The identified geometric errors of
axis Z using redundancy measurement method with sensitiv-
ity analysis are illustrated in Fig. 15. A correction NC code
was implemented in a four-axis machine tool from the result
of identified geometric errors of axis Z. Measured data, which
show deviations from nominal position, are shown in Fig. 16.

As shown in the Fig. 16, the measured errors is the posi-
tioning error of translational axis Z. It can be seem that the
values of positioning error of Z-axis are significantly im-
proved by using two different methods, especially through
the redundancy measurement method with sensitivity analy-
sis. Through the sensitivity analysis, optimum installation po-
sition, which was not sensitive to the influence of the position
error, has been chosen to measure geometrical error.
Meanwhile, the positioning error of axis Z can be reduced
from 5.94 to 0.18 μm with the proposed method within the
measuring range of 120 mm after error compensation which
shown in Fig. 16. A more precisely predicted result could be
obtained by the method with sensitivity analysis especially for
the high-precision occasion. Through the sensitivity analysis,
optimum installation position can be figured out and the mea-
surement result can be more accurate by conducting measure-
ment in that optimum position which was not sensitive to the
influence of the position errors. As shown in Fig. 16, it is
obvious that when the data is far from the origin, the curve
using the redundancy measurement method with sensitivity
analysis fit better than the curve without sensitivity analysis.
For the long distance, small estimate deviation of rotational
error including (pitch, yaw, and roll) would cause a large

magnitude of positioning error of axis Z. This is coincident
with the conclusion drawn in Section 5.1.

6 Conclusion

In this paper, a mathematical redundancy identification meth-
od with sensitivity analysis is established through the multi-
body system theory and the transformation matrix method.
The installation position of the measurement instrument is
presented in this study to investigate the factors which can
affect the position errors of high-precision machine tools.
Two experiments are conducted to study the effect of mea-
surement strategies on the error identification to verify the
developed position error sensitivity model. Based on the the-
oretical and experimental investigations, major findings are
summarized as follows:

(i). The precision of the proposed error identification meth-
odology is acceptable for precision machine tools;

(ii). Rotational error of translational axis should be paid
more attention in a large stroke ultra-precision occasion;

(iii). Installation errors of the measurement system in some
cases would have large influence on the identification
result of geometric errors;

(iv). The comparison of the installation parameters (Table. 2)
and the error identification precision (Fig. 14) between
the first and the second experiment indicates that the
adjust of the measurement lines helps to reduce the

Table 1 The simulation
parameters Parameters Unit Given value

First measurement point mm X = − 120, Y = − 60, Z = − 30

Translation range mm [− 60, 60]

Redundancy method parameter H mm 130

W mm 123

Redundancy method parameter with sensitivity analysis H mm 115

W mm 163

Set-up error (Δxi ,Δyi ,Δzi) mm [− 3,3]

Table 2 The installation
parameters Parameters Unit Given value

First measurement point mm X = − 70, Y = − 50, Z = 30

Translation range mm [− 60,60]

Redundancy method parameter H mm 40

W mm 110

Redundancy method parameter with sensitivity analysis H mm 90

W mm 100
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influence of installation errors of the measurement sys-
tem and improve the error identification precision;

(v). Positioning error of axis Z can be reduced dramatically
with the method proposed in this article after error
compensation.
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