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Abstract Quality control at every stage of manufacturing is a
key aspect of the quality management system of any organi-
zation. Inspection at different stages of manufacturing is es-
sential to achieve required quality of the product. This knowl-
edge area has been studied extensively in the past with respect
to inspection strategies, inspection location, and inspection
intervals to minimize inspection cost. However, there is a lack
of literature that examines the relationship between inspection
performance and factors related to human labor and inspection
time of different products. Here, offline inspection is investi-
gated to achieve the process target values by determining the
optimal number of inspectors for different products. Three
skill levels for inspectors are selected on the basis of their
inspection errors, inspection quantities, and inspection cost.
The purpose of this study is to achieve the optimum results
of objective functions that consist of inspection cost, outgoing
quality, and inspection quantity by determining the optimal
value of decision variables, i.e., the number of inspectors with
respect to their skill. A multi-objective optimization model is
developed using a stochastic approach to determine the opti-
mal results of the objective functions and decision variables.
Firstly, goal programming is employed to verify the optimiza-
tionmodel by using numerical examples. Secondly, sensitivity
analysis is considered to illustrate the effect of incoming quan-
tity on inspection performance and optimal combination of
decision variables.

Keywords Quality control . Offline inspection . Inspection
performance . Inspection time . Goal programming

1 Introduction

The inspection process and skill of inspector are important for
any manufacturing system [1]. Even though, the recent ad-
vancements in manufacturing systems have been character-
ized by precision of work through automation [2]. However,
it is very difficult to automate any manufacturing system due
to budget constraints, space constrains, or lack of skilled labor.
Thus, the inspection process is controlled by human labor and
it is the necessity that the judgment of the human labor is
skilled, semi-skilled, or low-skilled inspectors. The job, in
the complex manufacturing sector, should be assigned accord-
ing to the skill of the inspector such that different skill levels
may have different inspection loads [3]. Due to the availability
of funds, the manufacturing system can be made automated in
several countries. However, for other countries, the labor cost
is much cheaper due to the availability of manpower. Thus, for
some countries, manufacturing industries prefer to use human
labor for inspection purposes with minimum cost rather than
the automated system. Therefore, the skills of those inspectors
should be judged properly before assigning any job. That ma-
jor research gap is solved by this research problem.

Two types of inspections are most commonly used during
the manufacturing process: online inspection and offline in-
spection [4]. Online inspection facilitates to monitor quality
level during the manufacturing process, while offline inspec-
tion inspects the finished products [5, 6]. This study has in-
vestigated the offline inspection case, where human labor of
different skill levels performs the process of inspections.
Offline inspection has been extensively examined in past to
decrease inspection cost by considering inspection errors,
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inspection location, and inspection strategies [7]. Duffuaa and
Khan [8] revised previous research works and provided a gen-
eral repeat inspection plan for products that have critical com-
ponents with multi-characteristics [9, 10]. The optimum num-
ber of cycles was determined to reduce the total expected cost.
Similarly, the K-stage Inspection-Rework (K-IR) system was
also studied, and the optimum number of cycles was deter-
mined to minimize the inspection and rework cost [11, 12].
However, both studies considered different assumptions like
the effect of lot formation on the outgoing quality level [11]
and imperfect inspection with time-based flow analysis [12].
The present study has worked on the multi-objective optimi-
zation problem by considering the inspection skill of human
inspectors, and a solution is achieved by determining the re-
quired manpower with respect to their skill levels.

In the optimization problem, the inspection plan/strategy
plays an important part that defines how the process of inspec-
tion should be conducted. Since the optimal inspection rule is
not static for all type of manufacturing setups, different types
of inspection plans have been developed. The continuous
sampling plan (CSP) is one of the earliest methods to control
the quality of the product. It consists of 100% inspection
followed by a sampling inspection [13]. Studies have been
done to join the inspection policies between precise inspec-
tions and CSP-1 with inspection error and return cost [14]. On
the basis of parameters and decision variables, analytical re-
sults suggested three policies: no inspection, 100% inspection,
and any proportion of non-defective and non-inspected items
in CSP-1. Yu and Yu [15] assumed that each defective item
sent to the end customer would be the cause of a return cost.
The fifth variable, defects identified by CSP-1, was consid-
ered and suggested two inspection plans for CSP-1, one not to
inspect, and the other 100% inspection.

Development of the inspection policies, under different as-
sumptions and parameters, has been done in the recent past.
Anily and Grosfeld-Nir [16] and Wang and Meng [17] deter-
mined the optimal inspection policy and lot size for a batch
production process to minimize the expected total cost [16]
and total cost function [17]. The theoretical aspect was extend-
ed to inspection error to develop an optimal inspection policy
[4]. Vaghefi and Sarhangian [18] considered misclassification
errors but worked on the multi-stage manufacturing system.
Avinadav and Perlman [19] investigated a batch production
process to find the optimal inspection interval that minimizes
the total inspection cost.

Similarly, other types of inspection strategies that have
been discussed in literature are “inspection disposition” (ID)
policy and “inspection disposition and rework” (IDR) policy.
The pioneer ID policy was developed by Raz et al. [20] to
minimize the inspection cost of the batch. Their ID policy was
extended by many authors with different assumptions
[21–26]. This study has considered the inspection strategy,
which is similar to CSP where 100% inspection will be

performed by human labor of varying skill levels followed
by sampling inspection.

Multi-objective optimization models have been developed
in the recent past for process target values of offline inspec-
tion. These values are profit per item, income per item, and the
uniformity of product to increase customer satisfaction
[27–30]. The first model was developed using 100% inspec-
tion to control the quality of the product and maximized the
objective functions. Recently, a modification was proposed in
the inspection system by incorporating the measurement er-
rors [30]. An extension was done in the previous model to
optimize the same objective functions by considering inspec-
tion with a sampling plan [29]. Further, a study was conducted
to assess the impact of inspection error on the values of opti-
mal parameters and objective functions [28]. The present
study has also focused on three objective functions of the
offline station that include inspection cost, inspection quantity,
and outgoing quality. These objective functions are optimized
by determining the efficient combination of inspectors with
respect to their skill levels. Previous work on offline inspec-
tion has been summarized in Table 1, which shows a brief
comparison of published work and the present study.

Although offline inspection has been comprehensively
studied in last one and half decades (as shown in Table 1),
little attention has been given to human inspection skill and
inspection time. This study has contributed to the existing
literature by focusing on both of these factors and investigated
their effects on inspection performance. In spite of the defi-
ciencies of human fatigue and inconsistency in performance,
many manufacturing industries still rely on human labor for
the inspection process [39]. Thus, quality of the inspection
process depends much on the skill of inspectors that effect
inspection performance. A second factor is inspection time
[21], which can affect the performance of the individual in-
spector as well as the overall inspection station. Inspection
time depends on the product type and its complexity. As the
product type varies from basic to complex, its number of op-
erations performed, a variety of components, size, type, and
design will also change [44]. In this way, the inspector will
need to check more quality characteristics that will increase
the inspection time and affect its daily inspection
performance.

The present study optimizes the inspection performance in
terms of three indicators: cost, quantity, and average outgoing
quality. Mathematical expressions are formulated for each in-
dicator of inspection performance by considering three skill
levels of inspectors and inspection time. The objective of this
study is to propose an optimization model to obtain the opti-
mal number of inspectors with respect to their skill levels for
different products. This optimal combination will assure that
all the objectives have been achieved that include minimiza-
tion of the inspection cost, maintain outgoing quality, and
achieving daily inspection target.
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2 Model formulation

The details of the optimization model is described here by
defining the problem, model assumptions, model develop-
ment, objective functions, and solution methodology.

2.1 Problem definition

A brief flow chart of manufacturing setup is shown in
Fig. 1. The raw material is converted into the finished

goods by a production unit that has an imperfect
manufacturing process. Finished products move to an
offline inspection station, where two types of inspections
are performed: 100% inspection and sample-based inspec-
tion. One hundred percent inspection is performed by the
inspectors of quality control that have different skill levels.
Their skill levels are defined according to their inspection
errors and inspection quantities per day. The number of
inspectors and their skill levels vary as the product type
changes from a basic to a complex structure. Every

Table 1 Contributions of several authors

Authors Inspection Human
inspection
skill

Inspection
time

Study
objective

Strategy Error Cost

Finkelshtein et al. [25] Sampling ✓ ✓ Optimal inspection disposition policy

Duffuaa and Khan [9] 100% ✓ ✓ Performance measures of repeat inspection plan

Elshafei et al. [10] 100% ✓ ✓ Optimal inspection sequence for repeat inspection plan

Wang [24] Sampling ✓ ✓ Optimal inspection disposition policy

Grosfeld-Nir et al. [31] Both ✓ ✓ Optimal lot size

Duffuaa and Khan [8] Both ✓ ✓ Optimal inspection cycles

Wang and Hung [23] Sampling ✓ ✓ Optimal inspection disposition policy

Colledani and Tolio [32] Sampling ✓ Analytical method of evaluation

Tzimerman and Herer [4] Sampling ✓ ✓ Optimal inspection policy

Bendavid and Herer [22] Sampling ✓ ✓ Optimal inspection disposition policy

Wang et al. [21] Sampling ✓ ✓ ✓ Optimal inspection disposition policy

Yu et al. [14] Both ✓ ✓ Optimal inspection policy

Khan et al. [33] 100% ✓ Economic order quantity with learning in production

Yang [11] Both ✓ Optimize K- stage inspection system

Khan et al. [34] 100% ✓ ✓ Economic order quantity

Tsai and Wang [26] Sampling ✓ ✓ Optimal inspection disposition and rework policy

Yu and Yu [15] Both ✓ ✓ Optimal inspection policy

Khan et al. [35] 100% ✓ ✓ Effect on human factors on total cost of supply chain

Galindo–Pacheco et al. [36] Both ✓ Cost minimization of supply chain

Avinadav and Sarne [37] Both ✓ ✓ Selection of costly and unreliable inspections

Avinadav and Perlman [19] Sampling ✓ ✓ Optimal inspection interval

Duffuaa and El-Ga’aly [27] 100% ✓ Maximization of profit, income, product uniformity

Duffuaa and El-Ga’aly [29] Sampling ✓ Maximization of profit, income, product uniformity

Bouslah et al. [38] Sampling ✓ Joint production control and economic single sampling plan design

Khan et al. [39] 100% ✓ ✓ ✓ Integrated supply chain model

Liu et al. [40] Sampling ✓ Resubmitted sampling scheme based on the process yield index

Aslam et al. [41] Sampling ✓ Mixed acceptance sampling plan

Yang and Cho [12] 100% ✓ Optimal inspection cycles

Mohammadi et al. [42] Sampling ✓ ✓ Effective robust inspection planning

Duffuaa and El-Ga’aly [28] Sampling ✓ ✓ Maximization of profit, income, product uniformity

Sarkar and Saren [43] Sampling ✓ ✓ Product inspection policy

Ramzan and Kang [1] Both ✓ ✓ ✓ Minimization of inspection cost

Duffuaa and El Gaaly [30] 100% ✓ ✓ Maximization of profit, income, product uniformity

This paper Both ✓ ✓ ✓ ✓ Optimal inspectors for different products
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inspector classifies the incoming products as confirming or
non-confirming products. A lot of confirming products,
with fixed quantity N, is then moved for sample-based
inspection. Non-confirming products are either reworked
or rejected [45].

Sample-based inspection is performed by a highly
skilled quality assurance person. Sample size n is selected
from the presented batch of confirming products with
quantity N. The decision of acceptance and rejection will
be made on the basis of defective items d compared with
the threshold value c. If d ≤ c, then the lot is accepted and
moved to the next process; however, if d > c, then the lot is
rejected. The rejected lot is sent back to the same inspector,
and he will have to re-inspect the whole lot again. Non-
confirming products are replaced by confirming products
to complete the lot size N which is again presented for
sample-based inspection. The total number of accepted lots
is then used to calculate the quantity inspected per day by
individual inspector and the offline station. Labor cost per
day is calculated by using this accepted quantity of each
inspector. Similarly, sample-based inspection provides the
value of outgoing quality (OQ) of individual inspectors as
well as the offline station. Outgoing quality per day, ac-
cepted quantity per day, and labor cost per day depend on
the number of inspectors working in inspection station and
their skill levels.

In the abovementioned scenario, the number of inspec-
tors based on their skill level has a major contribution to
achieve the required inspection performance. If the offline
station consists of more low skill inspectors, then inspec-
tion cost may be minimized; however, the target of OQ and
inspection quantity cannot be achieved. On the other hand,
a high-skill inspector will increase the inspection cost even
though the target of OQ and inspection quantity will be
achieved. It is very rare to observe that an inspection sta-
tion only consists of high-skill inspectors. Thus, organiza-
tions always would like to maintain a combination of man-
power with respect to their skills to achieve required ob-
jectives of offline inspection.

2.2 Notation and assumptions

2.2.1 Notation

The nomenclature of model is stated below:

Index

jtype of inspectors
j = low, medium, and high skill
llow skill inspector
l = 1,2,3,…,L
mmedium skill inspector
m = 1,2,3,…,M
hhigh-skill inspector
h = 1,2,3,…,H

Parameters

Q quantity per day moved from manufacturing unit to
inspection station

N lot size (units)
n sample size (units)
V cost of inspection ($/min) according to the product

type
MI maximum number of inspectors
VCT target value of variable cost of all inspectors ($/day)
OQT target value of outgoing quality of all inspectors

(percentage/day)
IQT target value of accepted quantity of all inspectors

(units/day)

Input variables

E(dj) expected number of defective items in sample size n
inspected of jth inspector

E(qj) expected number of accepted lots inspected by a jth

inspector
d�1 deviational variable for cost of inspectors
d�2 deviational variable for outgoing quality
d�3 deviational variable for inspection quantity
E(OQj) expected value of outgoing quality of jth inspectors

Fig. 1 Flow chart of production
and inspection process of a
manufacturing setup
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E(IQj) expected value of accepted quantity of jth inspectors
VCj variable cost of jth inspectors ($/day)
OQO average outgoing quality of offline station

(percentage/day)
IQO total accepted quantity of offline station (units/day)
VCO total variable cost of all inspectors of offline station

($/day)

Decision variables

NIj number of jth type of skilled labor

2.2.2 Assumptions

In this study, the following assumptions have been made:

& A fixed quantity of finished products per day is moved
from production unit to inspection station in the form of
the batch with quantityQ [4, 19]. However, as the product
changes from simple to complex, the output of the pro-
duction unit is reduced and supply of finished products to
inspection station per day will also be reduced.

& The production unit is imperfect, and there is a definite
quantity of defective products in the finished quantity
[46]. Output received by inspection station has a varying
percentage of non-confirming quantity with respect to
products as assumed by Wang and Hung [23]. However,
this quantity will depend on the type of product as well.

& Inspection (100%) is performed by human inspectors of
three different skill levels (low, medium, and high). Their
skill levels are defined on the basis of their inspected
quantities and inspection errors reported by sample-
based inspection processes because of defective products
present in the inspected batch [28].

& It is assumed that inspected quantity by each inspector and
defective products found from each presented lot by sam-
pling process are random variables, and follow a triangular
distribution with parameters (a, b, c). The parameters a
and c are the inferior and superior values, respectively,
and b is the mode of the triangular distribution [47]. For
a triangular distribution, it is well known that the expected
value of E(OQ) or E(IQ) = (a + b + c)/3.

& The process of sample-based inspection is used for quality
assurance of batch/lot of confirming products with size N
and inspection is assumed to be error free [48]. Thus,
sample size n and threshold value c are also fixed for each
batch that will be used to decide the acceptance and rejec-
tion of lot [18].

& Non-confirming quantities are reworked. However, the
quantities that cannot be reworked are discarded with neg-
ligible cost. However, this discarded quantity also depends
on the product type as simple product has less rejection
percentage as compared to complex product.

& Different payment systems are used to pay the human
labor that includes fixed salary per month, the contractual
system, and fixed salary with incentives. This study has
considered the contractual system for calculating the daily
wages based on the accepted quantity of each inspector.
This quantity varies from inspector to inspector according
to their skill levels and product type that helps to calculate
the inspection cost of each inspector.

2.3 Model development

This section describes the basic relationship of manufacturing
system shown in Fig. 1. In the complete process, different
types of costs are involved and organizations like to keep their
expenditures in control by minimizing these costs. In this
study, the objective is not only to minimize the inspection cost
but also to maintain goodOQ and inspection quantity as well.
These objectives depend on the skill level of inspectors and
inspection time of the product being inspected. Therefore, we
present a model that considers both these factors. Basic rela-
tionships discussed here include inspection time, outgoing
quality, inspection quantity, and inspection cost.

2.3.1 Inspection time

Inspection time is related to the product type and its complex-
ity. As the complexity increases, inspection time will also
increase that will affect the inspection performance.
Therefore, this study has described the method for finding
the standard inspection time (ST) of a particular product in
three steps. Firstly, cycle time (CT), which is defined as “av-
erage inspection time (seconds) taken by an inspector for a
particular product,” is evaluated first by using Eq. (1).

CT ¼ 1

R
∑
R

r
tr r ¼ 1; 2……R ð1Þ

where tr is the inspection time of single reading and R is a set
of observations. Secondly, the value of CT is converted to
basic minutes (BM) using Eq. (2).

BM ¼ CT � Rating percentage RPð Þ
60

ð2Þ

Where the purpose of RP is to convert the actual time into
standard time that is appropriate and at a defined level of
performance. Finally, the ST is calculated Eq. (3).

ST ¼ BM 1þ PF
100

� �
ð3Þ

where PF is personal fatigue due to continuous inspection.
The allowance for PF is added to standard time to recover
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personal needs, fatigue, and unavoidable delays during the
inspection process. The complete equation to calculate the
ST for a particular product is given in Eq. (4).

ST ¼
1

R
∑R

r tr � RP
� �

60

8>><
>>:

9>>=
>>; 1þ PF

100

� �
ð4Þ

2.3.2 Outgoing quality

Organizations would like to maintain a good level of OQ of
finished products before going to end customers. The value of
OQ of the inspection station and each inspector can be deter-
mined by a sample-based inspection process. SupposeQ is the
total number of finished products per day moved from the
production line to inspection station, and Qj is the quantity
inspected per day by jth inspector. If pj is the probability of
separating the non-conforming products by jth inspector, then
the total non-conforming products per day NCj and
conforming products per day Cj can be calculated by Eqs.
(5) and (6), respectively.

NC j ¼ pj � Qj ∀ j ð5Þ

C j ¼ 1−p j

� �
� Qj ð6Þ

A part of NCj is sent for rework while rest are rejected/
disposed of. Thus, the rework quantity REj and rejected/
disposed quantity RDj separated by jth inspector can be deter-
mined using Eqs. (7) and (8), respectively.

RE j ¼ α j � NC j

RE j ¼ α j � pj � Qj

� �
∀ j ð7Þ

RDj ¼ 1−α j
� �� NC j

RDj ¼ 1−α j
� �� pj � Qj

� � ð8Þ

where αj is the probability of reworkable quantity in NCj. On
the other hand, confirming quantity Cj separated by each in-
spector is presented for sample-based inspection process in the
form of batches/lots of size N [49]. The value of “OQ” of jth

inspector is obtained as:

OQj ¼
Number of defective products

Sample size

OQj ¼
d j

n j
∀ j

It is assumed that the value of dj is a random variable and
follows a triangular distribution [47]. The expected value of
defective products E(dj) will vary.

E d j
� � ¼ d j;a þ d j;b þ d j;c

3

Thus, the expected value ofOQj of j
th inspector is calculat-

ed by Eq. (9).

E OQj

� �
¼ E d j

� �
nj

¼ d j;a þ d j;b þ d j;c

3nj
ð9Þ

As inspectors are divided into three groups (low, medium,
high) and the value of OQ vary as the skill level and product
type changes. Thus, (OQO) of offline station is obtained using
Eq. (10):

OQo ¼
OQL þ OQM þ OQH

NIL þ NIM þ NIH

¼ NIL � E OQlð Þ þ NIM � E OQmð Þ þ NIH � E OQhð Þ
NIL þ NIM þ NIH

ð10Þ

where NIL, NIM, and NIH are the total number of inspectors
with low, medium, and high skills, respectively. The value of
OQo can be calculated by Eq. (11):

OQo ¼
∑ jNI j � E OQj

� �
∑ jNI j

∀ j ð11Þ

2.3.3 Inspection quantity

Inspection quantity is the number of items accepted by
sample-based inspection and sent to the next stage. The value
of IQj by jth inspector is calculated by Eq. (12).

IQj ¼ qj � N j ¼ 1; ; 2…J ð12Þ

However, this value of IQ changes from one inspector to
other inspector because of their varying skills and follows
triangular distribution [47] as described above. Thus, the ex-
pected value of IQ can be calculated as:

E IQj

� �
¼ IQj;a þ IQj;b þ IQj;c

3

Total accepted quantity per day (IQo) of the offline station
can be calculated using Eq. (13):

IQo ¼ ∑ jIQj ¼ IQL þ IQM þ IQH
IQo ¼ NIL � E IQlð Þ þ NIM � E IQmð Þ þ NIH � E IQhð Þ

ð13Þ
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The value of IQo with all NIj number of inspectors can be
estimated by Eq. (14),

IQo ¼ ∑ jNI j � E IQj

� �
∀ j ð14Þ

2.3.4 Inspection cost

Total inspection cost of offline inspection consists of fixed
cost and variable cost VC. This study focuses more on VC,
which is calculated by using accepted quantity per day IQ. If
the accepted quantity per day of jth inspector is IQj, then total
time earned per day TEj and VCj can be calculated by Eqs. (15)
and (16), respectively.

VC j ¼ TE j � V
TE j ¼ IQj � ST j ¼ 1; ; 2…J ð15Þ

VC j ¼ IQj � ST
� �

V ð16Þ

As described in section 2.3.3, the value of IQ is a random
variable that follows triangular distribution [47]. Thus, using
E(IQj), the value of VCj can be calculated by Eq. (17):

VC j ¼ E IQj

� �
� ST

n o
� V ð17Þ

Thus, the total variable cost VCo of all inspectors can be
obtained by Eq. (18):

VCo ¼ ∑ jVC j ¼ VCL þ VCM þ VCH

VCo ¼ NIL � E IQlð Þ � STf g � V þ NIL � E IQlð Þ � STf g

� V þ NIL � E IQlð Þ � STf g � V

ð18Þ

while the inspection cost of all inspectors can be calculated by
Eq. (19):

VCo ¼ ∑
j
NI j � E IQj

� �( )
� ST

" #
� V ð19Þ

2.3.5 Objective functions

Objective functions are optimized by determining the ef-
ficient combination of decision variables in Goal
Programming (GP). This is a type of multi-objective de-
cision-making that achieves target values of each objec-
tive and minimizes unwanted deviation. GP has three
commonly used methods that includes pre-emptive, non-
preemptive, and fuzzy [50]. This study used the pre-
emptive GP method to determine optimum decision vari-
ables. In this method, each objective is given a priority
number with respect to its importance and the GP method
to find out the values of decision variables according to

the priority number. For this purpose, the three objective
functions are described below:

1. The first objective of this study is to minimize the total
inspection cost per day VCo of all inspectors (Eq. 21).
Reduction in inspection cost is given the first priority
(Eq. 20) because it helps the organization meet its goals
in terms of revenue and profit.

2. The second objective function is to maintain the daily
quality target of the inspection station (Eq. 22).
Minimization of inspection error is the second priority
of our model (Eq. 20) to keep the value of outgoing qual-
ity OQ less than the target value OQT.

3. The third objective is to meet the daily inspection target to
avoid a bottleneck in the inspection station (Eq. 23).
Maximization of inspection quantity is the third priority
of the presented model (Eq. 20).

Finally, the GP formulations for determining the optimal
values of the decision variables consist of two minimization
problems and one maximization problem as shown below:

Min Z ¼ p1d
þ
1 þ p2d

þ
2 þ p3d

−
3 ð20Þ

subject to

∑
j
NI j � E IQj

� �( )
� ST

" #
� V þ d−1−d

þ
1 ¼ VCT ð21Þ

∑ jNI j � E OQj

� �
∑ jNI j

þ d−2−d
þ
2 ¼ OQT ð22Þ

∑ jNI j � E IQj

� �
þ d−3−d

þ
3 ¼ IQT ð23Þ

∑
j
NI j ¼ MI ð24Þ

d−t ; d
þ
t ≥ 0 for all t ¼ 1; 2; 3

2.4 Solution methodology

The general pre-emptive GP model is written as

Minimize Z ¼ ∑
T

t¼1
pt d

−
t þ dþt

� � ð25Þ

subject to

∑
J

j¼1
atj x j þ d−t −d

þ
t ¼ bt ð26Þ

x j; d−t ; d
þ
t ≥ 0 for all t and j ð27Þ
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where Z is the sum of all deviations with respect to the
desired target T. The pt is the priority number given to each
deviation variables dt

− and dt
+. In this study, priority num-

bers (P1, P2, and P3) are given to each deviational variables
(d1

+, d2
+, and d3

−) as shown in Eq. (20). Here, atj shows
the constant value attached to each decision variables xj
and bt shows the target value of each goal constraint as
shown in Eqs. (21)–(24).

2.4.1 Solution algorithm

The solution methodology of GP works according to the fol-
lowing steps [51, 52]:

1. Based on the availability of resources that may restrict
achievements of the targets, the goals and constraints are
identified. A priority number is assigned to each goal with
respect to its importance, for example, priority number P1

is considered the most important target, similarly, P2 will
be the next most important target, and so on.

2. According to the research problem, decision variables and
constraints are defined. Formation of constraints is devel-
oped by adding deviational variables that indicate the pos-
sible underachieved or overachieved values of targets.
Finally, objective function is explained in terms of mini-
mizing a priority function of the deviational variables.

3. According to the priority number P1, P2, and P3 given in
Eq. (20), the value of each decision variable and cj-zj for
each priority is calculated separately because each ranked
goal has a different measuring unit. In the calculation of
cj-zj, cj values represent the priority factors assigned to
deviational variables, and zj values represent the sum of
the product of entries in cb column with columns of the
coefficient matrix. Thus, the cj-zj value for each column is
calculated [51]. These priority goals are listed from bot-
tom to top, i.e., P1 is shown at bottom and P3 is shown at
top as shown in Table 2.

4. If the value of cj-zj ≤ 0 for P1 row, then the optimal
solution has been obtained, whereas if cj-zj > 0 and
there is no negative entry at higher unachieved priority
levels, then optimal solution is not achieved.

5. The solution is optimal when the target value of each goal
is zero in xb column.

6. Examine the value of cj-zj row of highest priority P1 to
select the largest negative value and select that column as
key column. Otherwise, move to the next higher priority
P2 to select the largest negative value. Similarly, the key
row is the row with the minimum non-negative value,
which is obtained by dividing the xB value with the pos-
itive coefficient in the key column. This complete process
gives the idea of the key column, key row, and key ele-
ments which is the intersection point of key column and
key row.

7. To choose a variable that needs to leave the solution mix,
apply the usual procedure for calculating the minimum
ratio.

8. Any negative value in the cj-zj row that has a positive cj-zj
value under any lower priority rows is ignored. This is be-
cause deviations from the highest priority goal would be
increased with the entry of this variable in the solution mix.

Table 2 shows the 3 × 6 matrix to calculate the optimal
criterion cj-zj values by using the three priority levels and six
variables as shown in Eqs. (20)–(24). These variables include
both decision variables (L, M, and H) and deviational vari-
ables (d1

+, d2
+, and d3

−).

3 Results and discussion

This section is organized by describing the numerical example
and sensitivity analysis. Numerical example briefly discussed
the results obtained from the presented model for three

Table 2 The 3 × 6 matrix to
calculate the optimal criterion cj-zj
values

cj 0 0 0 P1 P2 P3 Min ratio (xb/ xi)

cb Variables in
basis

Solution values xB l m h d1
+ d2

+ d3
−

P1 d1
+ VCT VCl VCm VCh -1 0 0

P2 d2
+ OQT OQl OQm OQh 0 -1 0

P3 d3
− IQT IQl IQm IQh 0 0 1

0 0 MI 1 1 1 0 0 0

cj-zj P3 IQT IQl IQm IQh 0 0 1

P2 OQT OQl OQm OQh 0 -1 0

P1 VCT VCl VCm VCh -1 0 0
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different products. Sensitivity analysis is conducted to evalu-
ate the effect of incoming quantity on decision variables and
objective functions.

3.1 Numerical example

The application of the presented model is described in this
section. For this purpose, an offline inspection setup of a
manufacturing industry is selected which mainly depends on
human labor, i.e., the garment manufacturing industry. The
intense labor that is required in the garment industry makes
it a good sector to study the effect of human factors on process
improvement activities. This is because the productivity and
quality of these industries greatly depend on skill level, learn-
ing behavior, attitude, and qualifications of human labor [39].
For this study, three knitted items were used that includes the
basic T-shirt (A), the long sleeve shirt (B), and the hooded
shirt (C). These garments vary from each other in many ways
that increase inspection time and can affect the overall perfor-
mance of the inspection station. Relevant information of
offline inspection setup with respect to selected garments is
mentioned in Table 3.

Optimization software is required to analyze data (Table 3) to
obtain the optimal results for different products. For this purpose,
QM for Windows was used with the following system configu-
ration: Intel® Core™ i5-3570 CPU @ 3.40GHz, 8.00GB of
RAM. GP module was applied to determine the optimal results
of the decision variables along with the optimized values of the
objective functions. Optimized results for three different gar-
ments are summarized in Tables 4, 5, and 6. The results are
divided into three sections that include the decision variable anal-
ysis, priority analysis, and constraint analysis.

1. The decision variable analysis shows the optimal combi-
nation of decision variables by providing the number of
inspectors of low, medium, and high skill levels.
According to the results, the number of low skill inspec-
tors was less as compared to the medium and high-skill
inspectors (Tables 4, 5, and 6). This evidence is relatively
true because, with a greater number of low skill inspec-
tors, inspection cost of the offline station may be low but it
will be very difficult to achieve the daily inspection target
and quality level. Therefore, the inspection station must
consist of an efficient combination of inspectors of all
skill levels so that all the objectives can be achieved.

However, this efficient combination depends on the type of
product, i.e., the product complexity that effects the skill level
of inspectors along with the inspection costs and outgoing
quality. In order to meet the required inspection performance,
the results of decision variables changed from one product to
another due to the change in inspection time. The change in
the value of decision variables is shown in Tables 4, 5, and 6
for three different types of products. For basic/less complex
products, more low and medium skill inspectors can achieve
the required objective functions as mentioned in Table 4. On
the other hand, as product complexity increases, an inspection
station requires a greater number of high-skill inspectors to
meet required inspection performance (Tables 5 and 6).

2. The second section consists of priority analysis that
describes the achievement and non-achievement of
the already given priority targets. In the case of
achievement, analysis will give zero value while for
non-achievement, the analysis shows the value by
which the priority is not achieved. For the presented

Table 3 Data of garment
manufacturing industry Notation T-shirt (A) Long sleeve shirt (B) Hooded shirt (C)

ST (mins) 0.96 1.25 1.60

OQT 0.05 0.05 0.05

E(OQl , a) ,E(OQl , b) , E(OQl , c) 0.07, 0.08, 0.09 0.09, 0.10, 0.11 0.09, 0.10, 0.11

E(OQm , a) ,E(OQm , b) , E(OQm , c) 0.03, 0.04, 0.05 0.04, 0.05, 0.06 0.05, 0.06, 0.07

E(OQh , a) ,E(OQh , b) , E(OQh , c) 0.01, 0.02, 0.03 0.02, 0.03, 0.04 0.03, 0.04, 0.05

E(IQl , a) ,E(IQl , b) , E(IQl , c) 250, 300, 350 150, 200, 250 100, 150, 200

E(IQm , a) ,E(IQm , b) , E(IQm , c) 450, 500, 550 300, 350, 400 200, 250, 300

E(IQh , a) ,E(IQh , b) , E(IQh , c) 650, 700, 750 450, 500, 550 300, 350, 400

IQT (units) 6000 5500 4000

VCT ($) 5500 7000 8500

VCl ($) 249 250 300

VCm ($) 415 438 500

VCh ($) 581 625 700

V ($/min) 0.86 1.00 1.25

N (units) 100 50 32
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model, the analysis shows zero value for all priorities.
This means that the goal programming module gave
such optimal results that all our set targets were
achieved for all three products (Tables 4, 5, and 6).

3. Finally, the constraint analysis shows the difference be-
tween the actual values and the target values of each goal.
There are some underachieved and exceeded values for
inspection cost and inspection quantity, but these values
do not violate the given priorities. Tables 4 and 5 show the
exceeded value of the inspection quantity (d+) 50 and 150
for product A and B, respectively. However, it still fulfills
the constraints mentioned in Eqs. (20) and (23).
Inspection quantity per day should not be less than the
target value, but our result shows exceeded value, which
is a positive aspect of the results. Similarly, Tables 4, 5,
and 6 indicated underachieved values of inspection cost
(d−) as 520, 63, and 200 for product A, B, and C, respec-
tively. Since the requirement of the model is to keep in-
spection cost as low as possible, these underachieved
values show good results.

To validate the results of the proposed model, the value of
each objective of the research problem was determined for all
three products using one type of inspector only. The results are
shown in Tables 7, 8, and 9. Then, a comparison was done
with the optimized results shown in Tables 4, 5, and 6 to verify
the importance of using manpower with respect to their skill.

For example, Tables 7, 8, and 9 indicate that if the variable
cost is to be minimized only, then this target can be achieved
by taking all low skill inspectors. However, outgoing quality
and inspection quantity will be overlooked in that case. If the
offline station consists of inspectors with medium skills only,
then results are quite satisfactory, but it is hard to believe that
all inspectors of an organization have same skills. Lastly, the
target of both outgoing quality and inspection quantity is well
achieved if all inspectors belong to the high skill level.
However, in this case cost will be very high and there is al-
ways a lack of high-skill labor in the organization. Thus, an
efficient combination of human labor with respect to their skill
level should be determined to achieve all the targets
simultaneously.

Tables 4, 5, and 6 show optimized results of decision vari-
ables for which all the objectives have been achieved for three
different products. Thus, the proposed model enables the man-
ufacturers to determine the efficient combination of human la-
bor for offline inspection based on their skill. This study has
focused on inspection performance that is evaluated on the
basis of three parameters: quality, quantity, and cost associated
with human labor. It is observed that overall inspection perfor-
mance is significantly affected by the individual performance of
inspectors. This fact is briefly described in Fig. 2 which indi-
cated how these varying factors (VC, IQ, and OQ) of human
resource affect the performance for three different products.
Thus, Fig. 2 indicates that as the product type changes inspec-
tion cost, OQ and inspection quantity change because of the
changing contribution of each group of inspectors.

Figure 2a shows that inspection cost of offline station in-
creases as product changes from basic to complex. The main

Table 4 Optimum values of objective functions and decision variables
for product A

Decision variable analysis Value Priority analysis Non-achievement

Low 5 Priority 1 0

Medium 2 Priority 2 0

High 5 Priority 3 0

Constraint analysis RHS d+ (exceed) d− (underachieved)

Inspection quantity (units) 6000 0 0

Outgoing quality 0.05 0 0

Inspecting cost ($) 5500 0 520

Table 5 Optimum values of objective functions and decision variables
for product B

Decision variable analysis Value Priority analysis Non-achievement

Low 3 Priority 1 0

Medium 7 Priority 2 0

High 5 Priority 3 0

Constraint analysis RHS d+ (exceed) d− (underachieved)

Inspection quantity (units) 5500 50 0

Outgoing quality 0.05 0 0

Inspecting cost ($) 7000 0 63

Table 6 Optimum values of objective functions and decision variables
for product C

Decision variable analysis Value Priority analysis Non-achievement

Low 3 Priority 1 0

Medium 5 Priority 2 0

High 7 Priority 3 0

Constraint analysis RHS d+ (exceed) d− (underachieved)

Inspection quantity (units) 4000 150 0

Outgoing quality 0.05 0 0

Inspecting cost ($) 8500 0 200

Table 7 Values of objective functions with inspectors of same skill for
product A

When all inspectors are TVC ($) AOQ TIQ (units) L M H

Low skill 2988 0.08 3600 12 0 0

Medium skill 4980 0.04 6000 0 12 0

High skill 6972 0.02 8400 0 0 12
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reason behind this change is the increasing contribution of
high-skill inspectors as compared to low and medium skill
inspectors. Figure 2b indicates the contribution of different
inspectors to maintain the required OQ of the offline station.
Since low skill human labor is more prone to inspection error
as compared to medium and high-skill labor, to maintain the
required quality level, an inspection station must have suffi-
cient high-skill labor as compared to low or medium skill
labor. A further increase in high-skill labor is observed as
the product type changes from basic to complex.

Figure 2c shows how inspectors of different skill levels
contribute to achieving the required target of inspection quan-
tity. Low skill inspectors do not have enough experience, and
their inspection quantity is less than experienced inspectors.
Thus, to attend the required target of the offline station, the
contribution of high-skill inspectors increases with the in-
crease in product complexity.

3.2 Sensitivity analysis

Sensitivity analysis was conducted to evaluate the effect of the
daily inspection target on the optimal results of the presented
model. It was observed that finished items coming from a
production line increase with the passage of time. For sensi-
tivity analysis, the value of IQT changed from − 50 to + 50%
and the variation in decision variables, inspection cost, and
outgoing quality are measured with respect to the originally
optimized results obtained in Tables 4, 5, and 6. The results of
the sensitivity analysis for three different products are summa-
rized in Table 10, and some insights of the sensitivity analysis
are as follows:

(1) For the presented model, total inspection cost, outgoing
quality, and optimal values of decision variables are sen-
sitive to incoming inspection quantity. As the demand for

inspection station increases, there is a need to increase
the manpower to meet the target of inspection quantity.
Similarly, a decrease in target value of inspection station
will decrease the involvement of labor and target can be
achieved with lesser labor.

(2) This fact is again cleared that products with high inspec-
tion time required a greater number of high-skill labor as
compared to low-skill labor to meet OQ. This result
shows that as the complexity increases, there is a higher
demand of high-skill labor and less of low-skill labor.
But in actuality, organizations always have human labor
of different skills. This gap means that there is a need to
work on the fragmentation of complex product so that all
type of human labor can be utilized efficiently.

(3) According to sensitivity analysis, both inspection cost
and outgoing quality are sensitive to inspection quantity
as well. As the required inspection quantity changes from
+ 50 to − 50%, inspection cost also changes at an almost
similar rate. On the other hand, good outgoing quality

Table 8 Values of objective functions with inspectors of same skill for
product B

When all inspectors are TVC ($) AOQ TIQ (units) L M H

Low skill 3750 0.10 3000 15 0 0

Medium skill 6570 0.05 5250 0 15 0

High skill 9375 0.03 7500 0 0 15

Table 9 Values of objective functions with inspectors of same skill for
product C

When all inspectors are TVC ($) AOQ TIQ (units) L M H

Low skill 4500 0.10 2250 15 0 0

Medium skill 7500 0.06 3750 0 15 0

High skill 10,500 0.04 5250 0 0 15
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has been maintained against change in inspection quan-
tity. In fact, this change is likely to change the optimal
value of decision variables that affect the inspection cost
and outgoing quality. Organizations like to achieve such
an efficient combination of inspectors with respect to
their skills to keep inspection cost minimum with good
outgoing quality.

4 Conclusions

This study has investigated the human-based offline inspec-
tion station with inspectors of different skills. The objective
was to meet the required inspection performance by efficient
use of the available human labor of different skills. A multi-
objective optimization model is presented to obtain the num-
ber of inspectors of each skill level to meet demands of an
inspection station. This model considered three levels of skill
(low, medium, and high) and inspection time to measure the
inspection cost, inspection error, and inspection quantity. The
goal programming was used to obtain the optimal values of
decision variables that achieved all the objective functions.
Numerical examples with three different types of products,
graphical illustration, and sensitivity analysis were presented
to point out the significance of model for human-based offline
inspection. From the results, it can be concluded that the skill
levels of inspectors significantly affect the inspection perfor-
mance. An inspection station must have a suitable combina-
tion of inspectors with different skill levels tomeet the require-
ments of inspection performance. The managers of different

industries will be benefited from the results of this model
because it is helpful for efficient use of human labor in an
offline inspection setup for products of different complexities.
However, further work should be done in this research area by
considering the effect of time-varying factors like improve-
ment in skill level with the passage of time. It is also observed
that efficient combination of human labor with different skill
levels creates an environment of competition that will encour-
age low skill inspectors to learn quickly, so they will be able to
increase their skill level at a faster rate. Thus, the effect of such
competitive environment, i.e., learning behavior must also be
considered in future for human-based manufacturing systems
to propose a more realistic model [53]. Moreover, as the skill
level and learning behavior improves, the inspection cost and
quality levels are significantly affected. It highlights the im-
portance of developing training methods to improve the skill
and the learning process.
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