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Abstract Laser Powder-Bed Fusion (L-PBF) metal-based
additive manufacturing (AM) is complex and not fully
understood. Successful processing for one material, might
not necessarily apply to a different material. This paper
describes a workflow process that aims at creating a material
data sheet standard that describes regimes where the pro-
cess can be expected to be robust. The procedure consists of
building a Gaussian process-based surrogate model of the
L-PBF process that predicts melt pool depth in single-track
experiments given a laser power, scan speed, and laser beam
size combination. The predictions are then mapped onto a
power versus scan speed diagram delimiting the conduction
from the keyhole melting controlled regimes. This statisti-
cal framework is shown to be robust even for cases where
experimental training data might be suboptimal in quality, if
appropriate physics-based filters are applied. Additionally,
it is demonstrated that a high-fidelity simulation model of
L-PBF can equally be successfully used for building a surro-
gate model, which is beneficial since simulations are getting
more efficient and are more practical to study the response
of different materials, than to re-tool an AM machine for
new material powder.
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1 Introduction

Additive manufacturing (AM) technologies have evolved
over the past two decades from being limited to producing
prototypes geared towards accelerating the product devel-
opment cycle to the production of end-use parts in a range
of applications such as aerospace, biomedical, and defense.
Among the key drivers of this evolution are the research
and technological advances in metal-based AM technolo-
gies which enabled the fabrication of direct end-use parts
from a variety of metallic alloys such as stainless steels,
titanium alloys, and nickel-based super alloys [1, 2]. Seven
sub-categories of additive manufacturing technologies have
been defined to date, four of which are capable of producing
metallic parts [3]. Among these, powder-bed fusion pro-
cesses tend to be the most common due to their capability
of producing parts with improved density, resolution, and
surface finish that require less post-processing compared to
other processes such as binder jetting [1, 4].

Laser powder-bed fusion (L-PBF) AM processes employ
a high-energy laser beam to selectively fuse fine metal-
lic powder particles in a layer-by-layer fashion. Although
the mechanism appears to be simple, the challenge lies in
the underlying complex physical phenomena involved in
the process such as rapid melting, evaporation, solidifica-
tion, recoil, and re-heating upon successive passes of the
laser beam within the same layer or across successive lay-
ers. This makes the end part susceptible to defects like
porosity, residual stress, and micro-cracks due to the very
high thermal gradients and cooling rates. These defects can
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be detrimental to the mechanical properties of the parts.
Moreover, the current limited understanding of the under-
lying physical phenomena hinders our ability to predict the
microstructure and properties of the parts in an effort to
ensure that they meet design specifications. This is further
exacerbated because some of these phenomena occur over
multiple lengths and time scales.

Due to the complexity of L-PBF processes, the major-
ity of recent road-mapping efforts have strongly emphasized
the need for developing modeling and simulation tools
to foster our understanding of the process and ultimately
serve as predictive tools to optimize the process and miti-
gate defects [5–8]. Indeed, many research efforts have been
conducted to address this technical need, many of which
have focused on modeling and predictive simulation using
finite element methods (FEM). Modeling and simulation
efforts using FEM are summarized and reviewed in King et
al. [9]. Other research efforts followed different modeling
approaches, such as [10–14] that have focused on devel-
oping high-fidelity mesoscopic simulation models to study
the physics of complex melt flow and the mechanisms that
drive the formation of pores and spatter in L-PBF. The key
challenge in using both FEMmodels and high-fidelity mod-
els is the computational burden associated with running
the simulations. Although these models are still invaluable
for understanding the physics of the process, their direct
use in process optimization is impractical and sometimes
unfeasible.

Other works followed an experimental approach towards
process optimization to circumvent these computational
challenges. For example, King et al. [15] present exper-
imental observations of keyhole mode laser melting in
L-PBF and identify process conditions under which favor-
able conduction controlled melting occurs. The underlying
challenges with experimental approaches are the fact that L-
PBF experiments are time- and cost-intensive. Furthermore,
in most cases experimental approaches are not machine-
or material-agnostic. Changing the material system or the
build platform requires a new set of experiments. Ideally,
a combination of physics-based simulation models with
experimental data is desired to conduct effective process
optimization.

An attractive alternative that can be used to reduce some
of the hurdles associated with computationally expensive
simulation models and costly experiments is through the
use of surrogate modeling. This is a key functional area
in the field of uncertainty quantification (UQ) that focuses
on constructing computationally efficient approximations or
surrogates that can be used in lieu of the original simula-
tion model (i.e., a model of the model [16]). In the case
of L-PBF, a carefully constructed surrogate model can be
used to replace a FEM model for instance to generate the
sufficiently large number of simulations needed to draw

meaningful insight into the L-PBF process or to conduct
process optimization. Moreover, in addition to the original
focus of surrogate modeling on approximating physics-
based simulation models, it can also be leveraged as an
effective tool to construct response surfaces from exper-
imental data as opposed to simulations. These response
surfaces can be subsequently used to predict the process
output at other unobserved experimental settings. In other
words, given a limited number of experimental observations
with finite accuracy at particular settings, a surrogate model
can be used to predict the output at other settings of interest
instead of conducting further experiments.

In this paper, we focus on developing surrogate models
to enhance L-PBF process optimization. More specifically,
we start by constructing an efficient Gaussian process-based
(GP) surrogate for a high-fidelity physics-based model pro-
posed in [9, 10, 17] to study the physical mechanisms of
AM processes. Next, we use predictive Gaussian process
models to construct a surrogate response surface model for
experimental data acquired from measuring the depth of the
melt pool in L-PBF processes. The melt pool is the region
at the laser-powder interface at which metallic powder par-
ticles fuse to form a pool of molten metal then solidify after
the laser beam moves to another location. The depth of the
melt pool (d) has been of much interest in several prior stud-
ies since it gives an indication of how well successive layers
bond to one another [18], as well as a way to prevent keyhole
mode [15]. Careful selection of the combination of laser
power (P), scanning speed (v), and beam size (σ ) is needed
to achieve the latter [15], which in turn prevents pore defects
in fabricated parts. Our Gaussian process-based response
surface model leverages single track experimental data to
determine processing windows that meet these conditions
while reducing the need for large numbers of experimental
observations.

A Gaussian process-based surrogate modeling frame-
work is employed in this work, motivated by the attractive
properties offered by Gaussian processes such as analy-
sis and quantification of uncertainty of functions, appealing
mathematical and computational properties based on the
broad in-depth knowledge of multivariate statistics and
Gaussian distributions, flexibility and richness in modeling
dependence among data observed in space, and the ability to
incorporate a wide range of smoothness assumptions [19–
21]. It is important to point out that a wide variety of
powerful data-driven predictive modeling techniques exists,
such as artificial neural networks, support vector machines,
and logistic regression. These techniques are more com-
monly used in the context of the classification problem in
machine learning [22], and typically rely on the availabil-
ity of datasets with large enough sizes, since with small
datasets there may exist gaps between samples, or only
limited different classification cases may be provided [23].
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Furthermore, GP models are characterized by the ability to
quantify uncertainty in model predictions, and have been the
most commonly used surrogate modeling tool [24].

The paper is organized as follows: we provide a high-
level overview of the statistical UQ framework in Section 2.
The core of the paper is presented in Sections 3, 4, and 5,
where all these models and theories are applied to experi-
mental and simulated L-PBF data to create statistical sur-
rogate models and processing windows. These statistical
models, results, and validations are reported before finaliz-
ing the paper with conclusions and future work directions in
Section 6.

2 Statistical surrogate modeling framework

Our surrogate modeling approach is centered on Gaus-
sian processes modeling. GP has been used for surrogate
modeling of large-scale simulation models [25–30]. In this
section, we briefly present the theory underlying these mod-
els and present the details of a Bayesian framework for cal-
culating predictions, confidence intervals, and conducting
model validation. Readers interested in the application of
GP-based surrogate modeling in L-PBF without the under-
lying details of the statistical model can proceed directly to
Section 3.

2.1 Gaussian processes

The GPmodel is a non-parametric statistical model in which
a stochastic process f (·) is assumed to have all of its finite-
dimensional distributions as multivariate normal [31]. In
other words, the joint probability distribution of the outputs
from the stochastic process at any finite set of inputs X =
{x1, . . . , xn} is modeled as an n-dimensional multivariate
normal distribution:

p (f (x1) , . . . , f (xn)) ∼ Nn (μ, C) , (1)

where the mean vector μ and the covariance function C are
defined by a mean function μ (·) and covariance function
C (·, ·), respectively, with the following properties:

μ (xi ) = μi = E [f (xi )]

C
(
xi , xj

) = Ci,j = cov
[
f (xi ) , f

(
xj

)]
.

Within this context, we will denote a Gaussian process
as f (·) ∼ GP (μ,C). A further and detailed explana-
tion on this type of stochastic processes is provided in
references [19, 31].

2.2 Gaussian process-based statistical model

We start by defining some notation to adequately describe
the model. Let Y be the quantity of interest (QoI); that is the

output of the simulation model or process for which we wish
to build a surrogate model. Our task is to find a function f
such that f : x → Y . Formally, Y (x) ∈ R is a univariate
output of the model or process observed at a given input
x ∈ X ⊆ R

q , where X is a q-dimensional study region
or domain of interest. These inputs x can be thought of as
locations on the q-dimensional space.

The statistical model is defined as follows,

Y (x) = f (x) + ε (x) , (2)

where f (·) ∼ GP (μ,C) is a Gaussian process that captures
the dependence of outputs Y (x) at different locations x,
and ε (·) is a measurement error term that captures inherent
noise associated with experimental measurements. It must
be noted that when building a surrogate for a simulation
model, no measurement error is present, and therefore, this
term is disregarded.

The choices of mean and covariance functions μ (·) and
C (·, ·), respectively, are important since they characterize
the probability distribution on the outputs of the stochastic
process f (·) given in Eq. 1. Although providing guides for
selecting these functions is outside of the scope of this study,
the interested reader should refer to previous works like [19,
31, 32]. In the current study, we employ the approaches
described in Higdon et al. [33, 34].

Under these settings, we define an n × q input matrix X
and a corresponding n−dimensional output vector Y as

X =

⎡

⎢⎢⎢
⎣

x�
1

x�
2
...

x�
n

⎤

⎥⎥⎥
⎦

, Y = Y (X) =

⎡

⎢⎢⎢
⎣

Y (x1)
Y (x2)

...

Y (xn)

⎤

⎥⎥⎥
⎦

,

which represent the dataset that has been acquired through
simulation (or observed through experimental observa-
tions).

Since the q columns of the matrix X typically have dif-
ferent units, we normalize the elements of the matrix to the
unit hypercube [0, 1]q . We also standardize the elements of
the vector Y to have mean 0 and variance 1 for mathematical
convenience related to subsequent estimation of parame-
ters [33]. In particular, with this step we establish a constant
mean function μ (x) = 0, and only focus our attention to the
covariance function and error term.

The role of the covariance function is to capture the spa-
tial dependence between two different locations xi , xj ∈
X . We employ a re-parametrized form of the well-known
power exponential covariance function given by:

C
(
xi , xj

) = 1

λ

q∏

k=1

δ
4(xik−xjk)

2

k , (3)

where λ is the precision (also known as inverse variance) of
the stochastic process f , and δ = {

δ1, . . . , δq

}
is a set of
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parameters that control the strength or relevance of each of
the input space dimensions. The resulting n × n covariance
matrix is calculated from the input set,

C = [
C

(
xi , xj

)]
i,j=1:n .

The error terms ε (·) are commonly assumed to be inde-
pendent and identically distributed (iid) normal random

variables with zero mean and variance 1
τ
, ε (x) ∼ N

(
0, 1

τ

)
.

These error terms (sometimes known as the white noise
component) are more relevant to the case of using the model
to construct a response surface for experimental data to
capture measurement errors. They are less relevant in the
case of building a computationally efficient surrogate for
a simulation model because we make the assumption that
the simulation model is deterministic. In other words, run-
ning the simulation model multiple times using the same
inputs will give the same output. Nonetheless, they are still
occasionally used when building surrogates for determinis-
tic simulation models in the case of large datasets to provide
numerical stability in calculating the covariance matrices
and their inverse [35].

2.3 Bayesian estimation

The statistical model given in Eq. 2 is fully defined by the
set of model parameters � = {λ, δ, τ }. Our task is to esti-
mate these parameters given the observed dataset using a
Bayesian framework, which has been previously used in
predictive modeling for L-PBF [20, 21, 36].

Under the Bayesian scheme, model parameters are
treated as random variables that follow a joint probability
distribution p (�), thus, we estimate their probability dis-
tribution after having observed the data using Bayes rule:

p (�|X, Y) ∝ p (Y|X,�) × p (�) , (4)

where the left-hand side is termed the posterior distribution,
the first term on the right-hand side is the likelihood func-
tion, and the last term is the prior distribution of the para-
meters �.

Likelihood function refers to the probability of observing
the dataset Y given the set of model parameters �. From the
statistical model in Eq. 2, and the definitions of the mean
function, covariance function, and error terms, it can readily
be shown that the likelihood is given by

p (Y|X,�) ∼ Nn (0, �) , (5)

with the covariance matrix � = C + 1
τ

In1{ε(·)}, where In is
the n × n identity matrix and 1{ε(·)} is an indicator function
that is equal to 1 if the error term is included (in the case of
modeling experimental data) and 0 otherwise (in the case of
modeling simulation model output).

Prior distribution captures our knowledge or prior belief
of the model parameters � before having observed any data.
It is not uncommon to have cases where no previous knowl-
edge is available, in which case the use of uninformative
prior distributions is employed.

We first assume statistical independence among the
model parameters,

p (�) = p (λ, δ, τ )

= p (λ) p (δ1) · · · p (
δq

)
p (τ) (6)

and set individual distributions to each parameter.
Following Higdon et al. [33], we specify independent

gamma distributions for the precision parameters {λ, τ } and
beta distributions for range (also known as scale) para-
meters δ.

p (λ) ∼ Gamma (aλ, bλ) ∝ λaλ−1 exp (−bλλ)

p (τ) ∼ Gamma (aτ , bτ ) ∝ τaτ −1 exp (−bτ τ )

p (δi) ∼ Beta (aδ, bδ) ∝ δ
aδ−1
i (1 − δi)

bδ−1 , i = 1, . . . , q.

These choices of these prior distributions present some
features that improve the estimation process. First, the
gamma family of distributions is conjugate to the normal
family in the likelihood function which provides compu-
tational advantages [20, 31]. Second, the variance of the
process is expected to be close to 1 due to the standardiza-
tion of vector Y, hence we set aλ = bλ = 5 to give more
probability weight to values close to λ = 1. In contrast, we
assign an uninformative prior distribution for τ by setting
aτ = 1 and bτ = 0.0001, which will make τ tend to have
large values, equivalent to modeling low noise [33].

The covariance function in Eq. 3 provides further infor-
mation beyond spatial dependence. In particular, if covariate
i has no influence on the output, then parameter δi should
be estimated to be equal to 1. Thus, under this parameter-
ization, we are also able to identify the inputs that really
influence the process and these that do not (active or inac-
tive inputs). Consequently, we set aδ = 1 and bδ = 0.1 in
the prior beta distribution such that there is substantial prior
mass near 1 [33].

Posterior distribution Combining Eqs. 4, 5 and 6, the
posterior distribution of the model parameters � (up to a
normalizing constant) can be calculated as follows:

p(�|X, Y)∝|�|−1/2exp

(
−1

2
Y�−1Y

)
p (λ)p (δ1)· · ·p

(
δq

)
p(τ) .

(7)

Since the probability distribution in Eq. 7 does not have
an explicit form, we employ Markov Chain Monte Carlo
(MCMC) methods to estimate it numerically.
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2.4 Prediction

The end goal after building a statistical surrogate model is to
make predictions of the QoI at new previously unobserved
inputs. Since we use a GP-based model, we utilize the
Kriging estimator (also known as the Best Linear Unbiased
Predictor–BLUP) [37]. One of the benefits of the Kriging
estimator is that it is not limited to providing a point esti-
mate, but rather a predictive distribution which is important
for constructing confidence intervals on the predictions.

It is well established in the literature that the predictive
distribution of the model output (or QoI) at a previously
unobserved input x0 in a GP framework is normal with the
following mean and variance:

E [Y (x0) |X, Y,�] = h��−1Y, (8)

var[Y (x0)|X, Y,�] = C(x0, x0) − h��−1h + 1

τ
1{ε(·)}, (9)

where,

h = [C (x1, x0) , . . . , C (xn, x0)]� .

3 Surrogate modeling of L-PBF experimental data

The aim of the current work, as stated in Section 1, is to pro-
vide an efficient alternative, through surrogate models, to
computationally expensive physics-based simulation mod-
els or to costly L-PBF experiments. In this section, we will
utilize the statistical surrogate model developed in Section 2
to construct a GP-based response surface for experimental
L-PBF data.

3.1 Experimental datasets

The data used in this study represents experimental mea-
surements of the melt pool depth from L-PBF single track

deposits of 316L stainless steel. In L-PBF, a single track is
one single straight laser scan with a specific combination
of laser power, scanning speed and laser beam size, on the
very first powder-bed layer placed on top of the substrate
plate. The melt pool is then defined as the region at the
laser-powder interface where powder particles melt and then
subsequently solidify to bond to the substrate plate (or to a
previous layer when building a complete part). The depth
of the melt pool is an important quantity of interest (QoI)
that dictates the degree to which the current layer being pro-
cessed bonds to the previous layer, and has been the focus
in many previous studies [38–41]. In our experiments, sin-
gle tracks of 316L stainless steel are first deposited under
different process parameter settings, and then the substrate
on which the tracks are deposited is sectioned, etched, and
examined under an optical microscope to measure the depth
of the melt pool.

We combined three different experimental datasets in this
study. The first two datasets were acquired by coauthors of
the current study and previously published in King et al. [15]
and Kamath [35]. These are henceforth referred to as King
and Kamath datasets respectively. An additional dataset was
generated in the current study from similar single-track
experiments conducted on a commercial Concept Laser M2
system, and will be distinguished as Exp1. Figure 1a shows
a sample micrograph of a characterized single track from
the experiments. The combined datasets include a total of
n = 139 melt pool depth measurements over a wide range of
values for laser power P and scanning speed v, at laser beam
size 52μm (see note below Table 1 regarding this measure).
We have maintained a constant layer thickness of 50μm in
this study since it is the manufacturer recommended value.

The color coded experimental melt pool depth measure-
ments are depicted in Fig. 1b. Table 1 shows a summary of
each dataset. An important note is the fact that only dataset
Exp1 included replications over the same combinations
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Fig. 1 Experimental melt pool depth measurements. a Optical micrograph of a characterized single track. b Data gathered from King [15],
Kamath [35] and additional measurements Exp1 made in this study
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Table 1 Summary of experimental datasets

Name Source n nunique Pmin Pmax vmin vmax σ t

King [15] 52 52 73 395 0.15 3.0 52 50

Kamath [35] 14 14 150 400 0.50 1.8 54 50

Exp1 Measured 73 31 50 250 0.03 2.5 52 50

n the number of data points in the dataset, nunique the number of unique combinations of laser power and speed in the set, P laser power in W,
v scanning speed in m/s, σ the width in μm of the laser beam with a Gaussian profile specified at 4 times its standard deviation (often named
D4σ ), t the layer thickness in μm

of process parameters, hence some data pre-processing is
implemented and presented in the next subsection.

3.2 Data pre-processing

Since we combine different datasets with variations in ex-
perimental settings, we start by conducting pre-processing
of the data before implementing the statistical model in
order to account for anomalies. We start with the dataset
Exp1, the only dataset that includes replications, we analyze
the data points for each different combination of power and
speed, and remove obvious outliers. A point is flagged as
outlier if the melt pool depth does not decrease with increas-
ing scanning speed for a given constant laser power and
beam size (Filter 1). Furthermore, within the same replica-
tion we flag points that lie outside a symmetric 10% range
centered around the mean melt pool depth of that replica-
tion (Filter 2). It is very important to point out that since the
collective data for this study (displayed in Table 1) is com-
piled from different studies, it was not feasible to revisit and
examine the physical samples in order to identify the root
cause of these anomalies. Hence, these ad hoc filters were
devised based on domain knowledge of the process and
expert judgment. More specifically, Filters 1 and 2 imply

that melt pool depth should decrease as scanning speed is
increased at a fixed power setting, given the fact that less
energy is being input into the powder. It remains true how-
ever that upon the availability of the physical samples, the
reason for these anomalies and outliers should be carefully
studied and identified. The implementation of these two
filters are visually depicted in Fig. 2a.

A subsequent pre-processing step is to consider experi-
mental data points with close values of L-PBF processing
parameters. We define these as points that are within a circle
with a pre-specified threshold radius in the P −v parameter
space. We expect these points to have very similar melt pool
depths, otherwise this flags an anomaly. To implement this
filter, we first select a subset of data points with similar laser
beam sizes. Next, we scale the P − v axes to the unit hyper-
cube, and then flag those points that are within a 0.01-radius
circle from one another. This area corresponds approxi-
mately to 7 W and 0.06 m/s. The identified data points are
then clustered using a k-means unsupervised learning algo-
rithm (see Fig. 2b). Finally, after determining these clusters,
if the standard deviation of the points within a cluster is
relatively low compared to its mean, then no change is
needed. Otherwise: (1) if the cluster contains only two data
points, the whole cluster is discarded, or (2) if the cluster
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Fig. 2 Demonstration of data pre-processing. a Flagging outliers based on Filter 1 and Filter 2 for a constant laser power P = 250 W. b k-means
clustering of points with close combinations of processing parameters. Different colors correspond to separate clusters found by the k-means
algorithm
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contains more than two data points, we iteratively identify
and remove outliers following the same procedure previ-
ously explained for the replication case until low standard
deviation is obtained or the whole cluster is discarded.

The end result of the pre-processing procedure outlined
above consists of n = 96 points with no replications
(nunique = 96) after combining all individual datasets.

3.3 Constructing the response surface

A response surface is fitted to the pre-processed dataset
using the model explained in Section 2. The posterior dis-
tribution of the model parameters � is obtained using
an adaptive Metropolis-Hastings MCMC algorithm with
25,000 iterations, burn-in period of 40%, and thinning every
5th iteration. An adaptive Metropolis-Hastings algorithm is
used due to its capability of tuning up the parameters of
the proposal distribution in order to improve mixing, explo-
ration of the statistical parameters space, and convergence
of the chain. After obtaining the posterior distribution, pre-
dictions were made over the whole range of the L-PBF
processing parameters space as depicted in Fig. 3.

It can be seen that the standard deviation of the predic-
tions is within a value of less than 20μm for most of the
points within the training data points range. It is worth point-
ing out that areas with larger values of the standard deviation
(rightmost corner in Fig. 3b) are attributed to extrapolation
errors, which is a typical characteristic of GP predictions.
The same holds true for the small peak observed at the
P = 50 W and v = 1m/s combination referring to Fig. 3a,
since it can be seen that this combination lies outside the
data range, which results in an expected extrapolation error
represented by that small peak. It is common practice in GP
predictions to overcome this by employing a space-filling
sampling design such that observations are uniformly spread
over the entire domain of interest.

3.4 Cross-validation of the statistical model

To assess the predictive performance of the model, we
carry out cross-validation (CV). We denote the data used
to estimate the parameters of the statistical model as the
training dataset and keep a portion of the data, denoted as
the test dataset, to test the prediction accuracy of the model
by comparing predictions to the actual observed values. We
employ k-fold cross-validation, which is an iterative proce-
dure whereby the entire dataset is randomly partitioned into
k disjoint subsets of approximately the same size. The model
is then trained with all but one subset, which is kept as the
test dataset. This process is then repeated until all k subsets
have been left out once, and then the resulting prediction
errors are evaluated. A special case is when k = n, called
Leave-One-Out (LOO) cross-validation, where the model is
trained with all but one data point.

Results from the validation of the training set and a
10-fold cross-validation are presented in Fig. 4. The plots
represent a comparison between the experimental melt pool
depth observations at a specific combination of laser power
and speed (abscissa) and the predicted value calculated from
the statistical GP model at the same combination of power
and speed (ordinate). Ideally, we would want these two val-
ues to be equal, which corresponds to the red line on the
plots show on Fig. 4a, b. Therefore, a preliminary visual
indicator of model performance is how closely the points
follow this ideal red line. To quantitatively assess model
performance, we define the mean absolute prediction error
(MAPE) as the average deviation from the red line, given by
the following equation,

MAPE = 1

n

n∑

i=1

∣∣Yi,obs − Yi,pred
∣∣ , (10)

Fig. 3 Predictions calculated from the GP model trained with the pre-processed dataset. a Mean value of the predictions over the processing
parameter space. b Standard deviation of the predictions; black dots represent the locations of the training data points showing very low values of
the standard deviation
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Fig. 4 Validation results for the GP model. a Training set validation results (MAPEtrain). b Tenfold cross-validation results (MAPE10CV)

where n is the number of data points used for validation pur-
poses, Yi,obs is the observed value for data point i, and Yi,pred

is the GP predicted value for data point i.
Figure 4a plots the validation results using the whole

training dataset of the GP model, and its corresponding pre-
dictions. As a first indicator, we want the MAPE for the
training set (MAPEtrain) to be as close to zero as possible,
indicating adequacy of the statistical model. In contrast, if
this error is high a reformulation of the model might be
required. In our case, MAPEtrain = 6.023μm, implying
that the model is adequate and acceptable because this mag-
nitude of error is comparable to errors of our measurement
capabilities (i.e. optical microscopy). Furthermore, it can be
visually seen that all of the points follow the ideal red line
and the error bars are relatively narrow which confirms our
result.

Figure 4b shows the results after carrying out a 10-fold
cross-validation procedure. Notice that the ith data point in
Eq. 10 is plotted in the graph only when its partition is left
out (in other words, it was not used for training the model).
Therefore, these results are interpreted as the ability of the
model to generalize the process to unobserved combinations
of laser power and speed. We see again for this case that the
results closely follow the ideal red line, with a low cross-
validation MAPE10CV = 10.91μm.

4 Surrogate modeling of a high-fidelity L-PBF
simulation model

In Section 3, we presented a framework for using GP-based
surrogate modeling to construct a response surface from
L-PBF experimental observations. As mentioned earlier,
surrogate modeling is also an effective tool for providing
a computationally efficient and accurate approximation of
computer simulation models with high computational bur-
den. In this section, we employ GP-based framework to
construct a surrogate model for a high-fidelity powder-scale
simulation model developed in Khairallah et al. [10] to study
the physics of complex melt flow in L-PBF processes. This
model will be referred to as the PowderModel in the remain-
ing of the paper. One simulation dataset was generated,
denoted as Sim1, and it is summarized in Table 2 and shown
in Fig. 5.

We implement the GP-based model, in a similar fash-
ion to what was implemented in Section 3, using the Sim1
dataset. Plots from Fig. 6 present the results after fitting and
validating the GP model for this dataset of simulations.

Our results reflect again that the GP predictive model
represents a good approximation of the high-fidelity simula-
tion model. An important observation is the behavior of the
training set validation plot (Fig. 6c). All points lie directly

Table 2 Summary of the simulation dataset

Name Source n nunique Pmin Pmax vmin vmax σ t

Sim1 PM 26 26 150 400 0.80 2.5 54 30

Same notation as explained in Table 1; PM denotes the Powder Model
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Fig. 5 Dataset showing simulated melt pool depth using the Powder
Model

on the ideal red line, MAPEtrain ≈ 0μm and no error bars
are shown. This means that the model is predicting the exact
same depths as the training dataset with no uncertainty in

predictions. As explained in Section 2.4, this is not a coinci-
dence but rather a property of GP models, which represents
a good verification of our developed framework.

The 10-fold cross-validation results also show good per-
formance of the model, MAPE10CV = 6.91μm, and thus
this surrogate model can be subsequently employed to make
quick predictions, within a degree of confidence, for process
optimization purposes. This is an important step forward
since it would take less than 1 second to make predic-
tions using the GP model as opposed to up to several
days using the high-fidelity Powder Model even using high
performance computing facilities.

5 L-PBF process planning

In this section, we will use the tools developed in previ-
ous sections for L-PBF process planning. More specifically,
we will use two different criteria from the L-PBF litera-
ture to identify windows of processing parameters within
which keyhole laser melting or thermal conduction modes
occur. This is important since it has been suggested in the
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Fig. 6 Visualization of results for the GP model trained with sim-
ulation dataset Sim1. a Mean value of the predictions. b Standard
deviation of the predictions; black dots represent the locations of the

training data points showing very low values of the standard devi-
ation. c Training set validation results. d Tenfold cross-validation
results
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literature that keyhole mode conditions can potentially lead
to the presence of voids and porosity in L-PBF parts [42–
44]. Consequently, starting with identification of processing
windows for 316L stainless steel, we would like to advocate
the concept that every material should have a standardized
datasheet that distinguishes the preferred conduction mode
processing from the undesirable keyhole mode based on
L-PBF parameters, such as a laser power–scanning speed
phase diagram.

In this section, we make use of the statistical model
that we presented previously, the experimental observations
and high-fidelity computationally-expensive simulations to
demonstrate consistency and validity of the UQ framework.

5.1 Validating the surrogate model of the high-fidelity
simulation model with experimental observations

The statistical surrogate model from Section 4 (which was
trained with L-PBF high-fidelity simulations and success-
fully cross-validated) is now validated against experimental
observations using the pre-processed dataset described in
Section 3. It is important to distinguish between the cross-
validation conducted in Section 4, and the experimental
validation being conducted in this section. Cross-validation
refers to ensuring that the surrogate model predictions rep-
resent an accurate approximation of the predictions made
using the high-fidelity simulation model. This does not
involve any comparison with experimental observations.
The validation in this section, on the other hand, refers to
ensuring that the surrogate model predictions are in agree-
ment with experimental observations. This step is important
since the surrogate model will be used in lieu of the high-
fidelity simulation model henceforth.

To proceed with this assessment, predictions from the
surrogate model were calculated at the same L-PBF process-
ing parameters from the pre-processed experimental dataset
in Section 3. These predictions are then compared with
the actual experimental measurements. The results are pre-
sented in Fig. 7 where the abscissa is the experimental
measurement and the ordinate is the GP surrogate model
prediction at the corresponding combination of L-PBF pro-
cessing parameters. It should be noted that predictions were
only calculated for experimental datapoints that lie within
the domain of dataset Sim1, in order to avoid extrapolation
error as a misleading indicator of inadequate performance.

It is clear from Fig. 7 that most points are close to the
ideal red line, indicating that the surrogate model is in good
agreement with the experiments. The computed mean abso-
lute predictive error MAPE = 9.35μm, confirming that
the surrogate model trained with computationally-expensive
simulations is able to adequately capture the L-PBF process
and generalize over different settings. The error magnitude
is acceptable since it is comparable to those of experimental
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Fig. 7 Comparison between predictions of GP surrogate model
trained with high-fidelity simulations and experimental observations

measurement techniques. It is also important to point out
that these validation results are achieved after using only
a limited number of high-fidelity simulations to train the
statistical surrogate model.

5.2 Processing windows

The final step in the methodology is to determine distinct
windows of processing parameters within which keyhole
laser melting or thermal conduction modes occur. Based on
the works by King et al. [9, 15, 17] and King et al. [10],
the depth of the molten pool is controlled by conduction of
heat into the underlying solid material and vapor recoil pres-
sure that creates a small depression. However, under high
energy deposition, the mechanism of melting changes from
conduction to keyhole laser melting. In this mode, the depth
of the molten pool is controlled by evaporation of the metal
and higher vapor recoil pressures. Keyhole mode laser melt-
ing results in melt pool depths that can be much deeper
than observed in conduction mode. To build parts with good
quality, it is desired to avoid deep keyhole mode during
L-PBF fabrication.

King et al. [15] presented two different criteria to identify
keyhole mode in L-PBF:

• When melt pool depth is equal or larger than half of the
melt pool width, that is: d ≥ w

2 , or
2d
w

≥ 1.
• When normalized enthalpy is �H

hs
≥ 30.

In the first bullet, the quantity 2d
w

can be thought of as a
stochastic process due to the random nature of both melt
pool depth and width, and therefore can be modeled through
a GP statistical framework as in previous sections. Con-
sequently, we can use prediction results from a statistical
surrogate model based on 2d

w
to identify combinations of
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laser power and speed (processing windows) within which
either conduction or keyhole mode occur.

The second bullet follows from a physics-based analysis
and derives the following equation,

�H

hs

= AP

ρhsm

√
πDv

(
σ
4

)3
, (11)

where A is absorptivity of the laser into the material, ρ is
density, hsm is enthalpy at melting per unit of mass, D is
thermal diffusivity, and processing parameters: P is laser
power, v is scanning speed, and σ is laser beam size (beam
width at 4 times its standard deviation).

Both criteria are taken into consideration in order to iden-
tify the processing windows. For the first case, we used the
same experimental dataset introduced in Section 3, given
that the single tracks experiments had been already charac-
terized for melt pool width, in addition to depth. Therefore,
the exact same process was followed, with the only differ-
ence that instead of training the statistical model with melt
pool depth, it was fitted with the quantity 2d

w
. Figure 8a dis-

plays contour lines corresponding to different values of 2d
w

that can be readily used to identify processing with 2d
w

≥ 1.
For the second criterion, Eq. 11 was calculated over

the same domain used in the first case, with the follow-
ing values of constants for 316L stainless steel [15]: A =
0.4, ρ = 7.98 kg/m3, hsm = 1.2 × 106 J/kg and D =
5.38 × 10−6 m2/s. Additionally, the laser beam size was
held constant at σ = 52μm in order to keep consistency
with the single-track experiments used. Figure 8b shows the
corresponding contour map for normalized enthalpy at com-
binations of laser power and scanning speed and identifies
those with �H

hs
≥ 30.

Both panes from Fig. 8 aim to provide windows of L-
PBF parameter settings that will produce melt pools within

a desired thermal mode. It is clear that conduction-mode
regions in both maps ( 2d

w
< 1 and �H

hs
< 30) are very sim-

ilar for laser powers up to 225 W, which can be seen in
Fig. 8a by comparing the dashed line with the contour line
at level 1.

The normalized enthalpy criterion is derived from a
physics-based perspective and it is a reduced order model
that does not capture all the complicated physics and phe-
nomena that occur during the L-PBF process. This is a
strong reason for the disparity with the results from the 2d

w

criterion, whose nature is completely experimental. How-
ever, normalized enthalpy is useful as an indicator of accept-
able consistency and strong performance of the whole GP
statistical surrogate modeling framework.

Therefore, we finalize by defining results from Fig. 8a
as the mentioned datasheet for L-PBF processing of 316L
stainless steel for combinations of laser power and scanning
speed, at laser beam size σ ≈ 52μm and layer thickness
t = 50μm.

Finally, we emphasize the following aspect regarding
generality of the proposed framework: the GP model for
determining processing windows was trained using single-
track experiments, where the melt pool and, in turn, the
thermal profile have attained a steady state. Therefore, the
current model cannot be generalized to every material or
scan pattern.

During an AM process, the conditions of melting can
change due to thermal history effects, such as when doing
adjacent tracks, overhangs, thin walls, etc. In the case
when material properties are such that the heat is dissipated
quickly (materials with high thermal conductivity) and the
residual heat has no significant effect, single track data can
help in narrowing the window of optimal process parame-
ters (corresponding to the contour line at value 1 in Fig. 8a).
In the case when the material properties or the scan pattern
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is such that the thermal profile has not reached a steady state
or is exhibiting residual thermal history effect, the model
would need to be re-trained using data relevant to the new
conditions.

In this study, we have dealt with the former case and for-
mally validated our results. For the latter case, it would be an
interesting and meaningful avenue to explore in the future,
and one definitely within the capability of the proposed
Gaussian process framework.

6 Conclusion

Process planning in L-PBF additive manufacturing for
determining optimal process parameter settings has been the
focus of many recent research efforts. Most of the exist-
ing approaches rely either on conducting large numbers of
experiments to identify optimal parameter windows or on
utilizing high-fidelity simulation models to assist in process
planning. Both approaches are either cost- or time-intensive,
and sometimes both. Statistical surrogate modeling can be
an effective approach to alleviate some of these burdens
by offering a computationally efficient alternative to expen-
sive experiments or computationally intensive high-fidelity
simulation models. We develop Gaussian process-based sur-
rogate modeling to achieve this task, with limited available
experimental data and high-fidelity simulations in L-PBF
process.

The melt pool depth for a series of 96 single-track 316L
stainless steel deposits at different processing parameters
was first experimentally characterized. The data was used
to create a GP-based response surface that can be used
to predict melt pool depths at new unobserved parameter
settings.

Next, a computationally efficient GP surrogate model
was developed for a high-fidelity L-PBF simulation model
using a training dataset of 26 simulations at different pro-
cessing parameter settings. The surrogate model was cross-
validated, showing good performance demonstrated by a
low mean absolute predictive error MAPE ≈ 6μm.

Finally, the developed and validated surrogate modeling
frameworks were used for L-PBF additive manufacturing
process planning through identifying processing windows
within which the melt pool at the laser-powder interface
exhibits the desirable thermal conduction mode as opposed
to the keyhole mode, based on two different criteria from lit-
erature. Both criteria resulted in similar processing windows
which confirms the validity of our framework.
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14. Gürtler F-J, Karg M, Leitz K-H, Schmidt M (2013) Simulation of
laser beam melting of steel powders using the three-dimensional
volume of fluid method. Phys Procedia 41:881–886

http://www.astm.org/Standards/F2792.htm
http://www.astm.org/Standards/F2792.htm
www.tms.org/multiscalestudy
https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL- 2.pdf.
https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL- 2.pdf.


Int J Adv Manuf Technol (2018) 94:3591–3603 3603

15. King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW,
Hahn DE, Kamath C, Rubenchik AM (2014) Observation of
keyhole-mode laser melting in laser powder-bed fusion addi-
tive manufacturing. J Mater Process Technol 214(12):2915–
2925

16. Kleijnen JPC (1975) A comment on blanning’s metamodel for
sensitivity analysis: the regression metamodel in simulation. Inter-
faces 5(3):21–23

17. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C,
Khairallah SA (2015b) Overview of modelling and simulation of
metal powder bed fusion process at Lawrence Livermore National
Laboratory. Mater Sci Technol 31(8):957–968

18. Dai Donghua, Dongdong Gu (2014) Thermal behavior and den-
sification mechanism during selective laser melting of copper
matrix composites: simulation and experiments. Mater Des 55:
482–491

19. Rasmussen CE, Williams CKI (2006) Gaussian processes for
machine learning. MIT Press, Cambridge

20. Tapia G, Elwany AH, Sang H (2016) Prediction of porosity in
metal-based additive manufacturing using spatial Gaussian pro-
cess models. Addit Manuf 12:282–290

21. Tapia G, Johnson L, Franco B, Karayagiz K, Ma J, Arroyave
R, Karaman I, Elwany A (2017) Bayesian calibration and uncer-
tainty quantification for a physics-based precipitation model of
nickel-titanium shape-memory alloys. J Manuf Sci Eng 139(7):
071002

22. Friedman J, Hastie T, Tibshirani Rt (2001) The elements of
statistical learning, vol 1. Springer Series in Statistics, New York

23. Mao R, Zhu H, Zhang L, Chen A (2006) A new method to assist
small data set neural network learning. In: Sixth international con-
ference on intelligent systems design and applications, ISDA06,
2006, vol 1. IEEE, New York, pp 17–22

24. O’Hagan A (2013) Polynomial chaos: a tutorial and critique from
a statistician’s perspective. SIAM/ASA J Uncert Quantif 20:1–
20

25. Liu Pu, Lusk MT (2002) Parametric links among monte carlo,
phase-field, and sharp-interface models of interfacial motion. Phys
Rev E 66(6):061603
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