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Abstract The diagnosis of bearing faults in rotating ma-
chines working with variable speed, such as wind turbines,
gearboxes, and mine excavators, represents a challenge
when using vibration analysis. In this paper, the feasibility
of an optimized hybrid method based on Empirical Mode
Decomposition (EMD) and Wavelet Multi-Resolution
Analysis (WMRA) is checked for rolling bearing fault di-
agnostic by analyzing non-stationary vibration signals ob-
tained from a variable speed rotating machine. An opti-
mized EMD analysis called Complete Ensemble Empirical
Mode Decomposition with Adaptive Noise (CEEMDAN) is
first used to decompose bearing signals. Amongst obtained
Intrinsic Mode Functions (IMF), the one that has the highest
kurtosis and covers the bearing natural frequency is chosen
to be used for the next step which, given a signal, calculates
its envelope by applying Hilbert Transform and then pro-
duces a new reconstructed signal using an Optimized

WMRA. An Order Tracking (OT) algorithm is then applied
on the envelope of the reconstructed signal to remove the
effects of speed variation. An envelope order spectrum is
finally calculated to bring out the fault characteristic order.
The results show that the proposed hybrid approach have
successfully highlighted the bearing faults in the non-
stationary conditions, with both simulated and experimental
signals.

Keywords Vibration analysis . Bearing defects . Variable
speed . Empirical mode decomposition .Wavelet
multi-resolution analysis . Order tracking . Intrinsic mode
function . Hilbert transform

Nomenclature
CEEMDAN Complete Ensemble Empirical

Decomposition with Adaptive Noise
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
FT Fourier Transform
HT Hilbert Transform
IMF Intrinsic Mode Function
MED Minimum Entropy Deconvolution
MFS Machine Fault Simulator
OT Order Tracking
OWMRA OptimizedWaveletMulti-Resolution Analysis
RMS Root Mean Square
WMRA Wavelet Multi-Resolution Analysis
WT Wavelet Transform
WM Wavelet Mother
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1 Introduction

Due to its effectiveness, vibration analysis is being increasing-
ly used for rotating machine surveillance and fault diagnostic.
The inspection and analysis of a vibration signal can reveal a
lot of information concerning the condition of different ma-
chine components, especially for bearings, where one can fig-
ure out the presence of faults, their location (outer race, inner
race, or ball), and their type (spalls, extended, etc.) [1].
However, for the majority of faults, this information cannot
be extracted directly through the visual inspection of signals
due to the randomness and the complexity of the physical
phenomena responsible of generating them.

In order to overcome this issue, dozens of methods have
been invented in a sort of mathematical tools that can be used
to derive useful information that help in the process of diag-
nosis. These tools can be sorted into different categories ac-
cording to their functional principle: time domain tools, fre-
quency domain tools, or time-frequency tools.

Despite their capability, most of these techniques share a
drawback which is that they all have been designed to work
with stationary signals measured from constant speed ma-
chines, although the industrial development have brought to
light a bunch of machines that work with variable speed
modes, such as wind turbines, gearboxes, and mine excava-
tors. The necessity of continuous surveillance and diagnostic
of that type of machines had put the researchers between two
choices: develop new diagnostic tools specifically for that
kind of machines, or simply adjust the classical tools to make
them useful in this special case.

In the previous literature, we can find that researchers’ deci-
sions vary between the two choices; in [2] for example, the tradi-
tional tool known as Fourier Transform (FT) which was recog-
nized to be capable of detecting faults in stationary case has been
extended to time-varying operation conditions by decomposing
the signal over a basis of elementary oscillatory functions whose
frequencies follow the speed variations. The result was a new
efficient tool called Speed Transform able to detect faults charac-
teristic frequencies under linear speed variations.

Scalar indicators have been proposed in some works, such
as [3] where Root Mean Square (RMS) has been used as an
indicator to monitor bearing state under variable speed; the
vibration signal is acquired simultaneously with a signal from
an optical encoder; the instantaneous speed has then been
estimated from the signal delivered by the optical encoder.
The vibration signal is divided by its corresponding instanta-
neous speed sample. The RMS value is finally applied to the
resulting signal. The state of the bearing has been found to be
correlated with the proposed RMS value, which means that
we can use this method to figure out whether the bearing is
defective or not, but we still cannot localize the fault.

The high efficiency of the known Empirical Mode
Decomposition (EMD) method under steady-state regime

has led the researchers to test it in the non-stationary case, as
in [4], where the bearing fault characteristics have been suc-
cessfully extracted from the time-frequency envelope spectra
of the vibration signal constructed using EMD and instanta-
neous frequency normalization.

Despite its efficiency, the users of EMD has faced the mode
mixing issue, where they may find that different scales may be
consisted in one Intrinsic Mode Function (IMF), or that sim-
ilar scales may reside in different IMFs, which could make
individual IMF devoid of physical meaning and lead to false
diagnostic [5]. Thus, a new version of EMD called Ensemble
Empirical Mode Decomposition (EEMD) was proposed and
used since then [5]. The EEMD consists in calculating an
ensemble of trials using the original EMD after the addition
of white noise. The mean of the result of each ensemble rep-
resents the true IMF. In this case, the accuracy of the result is
relative to the chosen number of ensembles; more ensembles
mean more accuracy, but more time to wait, which could be
considered as a drawback.

In [6], the authors presented an optimized EEMDalgorithm
that, comparing with the classical EEMD, requires less than
half iterations to determine all the IMFs. The key idea on the
new tool relies on adding a particular noise at each stage of
decomposition and a unique residue is computed to obtain
each mode. The new method named Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) has been tested with electrocardiogram signals
and proven to be effective with non-linear and non-stationary
signals.

For more efficiency, EMD and its optimized versions are
often combined with other techniques. In [7], for example, a
hybrid method based on EEMD and Spectral Kurtosis is used
to recover faulty bearing signals from large noise. In [8], the
Minimum Entropy Deconvolution (MED) is combined with
EMD and Teager Kaiser Energy Operator (TKEO) in order to
demodulate acoustic and vibration signals which is a key op-
eration for diagnosing bearing faults. In [9], EMD and EEMD
are used as a hybrid approach for misalignment diagnosis. In
dozens of papers, EMD was used together with artificial in-
telligence tools in order to automate the diagnosis process of
rotating machine faults including bearing faults; the works
[10, 11] could be considered as examples. In [12] EMD was
applied on wavelet denoised vibration signals for the diagno-
sis of roller bearing faults. The co-authors of this paper have
previously proved that a hybridmethod consisted of EMD and
WMRA get better time and frequency domain visualization of
the fault occurrence in steady-state regime compared to the
application of WMRA or EMD alone [13].

In this paper, CEEMDAN is tested together with WMRA
for the analysis of non-stationary bearing signals measured
under variable speed. First, CEEMDAN will be used to de-
compose bearing signals into Intrinsic Mode Functions (IMF).
The IMF having the highest kurtosis and covering the bearing
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natural frequency is chosen as the optimal one. The envelope
signal obtained by applying Hilbert Transform on the optimal
IMF is processed by an optimized WMRA to produce a new
reconstructed signal. An Order Tracking (OT) algorithm is
then applied on the envelope of the reconstructed signal to
remove the speed variation effects. An envelope order spec-
trum is finally performed to highlight the fault order.

2 Complete ensemble EMD with adaptive noise

A complex vibration signal is usually a combination of less-
complex signals generated by deferent components of the ma-
chine. The EMD is a self-adaptive technique that can be used
to decompose any complex signal into a set of signals called
IMFs that represent the natural oscillatory modes embedded in
that signal. An IMF must satisfy two conditions:

1. In the whole data set, the number of extrema and the
number of zero-crossings must either equal or differ at
most by one.

2. At any point, the mean value of the envelope defined by
the local maxima and the envelope defined by the local
minima is zero.

EEMD calculates an ensemble of trials using the
original EMD, adding in each trial a different realization
of white noise of finite variance. The mean of the result
of each ensemble represents the true IMF. This can be
summarized as follows [5]:

1. Generate xi(t) = x(t) + ni(t), where x(t) is the original signal
and ni(t) [i = 1 ….I] are different realizations of white
Gaussian noise

2. Each xi(t) is decomposed by EMD getting its modes
IMFi

k tð Þ, where k = 1… . I indicates the modes,

Fig. 1 Simulated signals: a) sine
signal, (b) noise signal, (c) sum of
sine + noise signals, (d) sine IMF,
e) noised IMF

Fig. 2 Number of iterations: (a) CEEMDAN iterations, (b) EEMD iterations
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3. Assign IMFk as the k-th mode of x(t), obtained as the
average of the corresponding

IMFk tð Þ ¼ 1

I
∑
I

i¼1
IMFi

k tð Þ ð1Þ

CEEMDAN uses the same EEMD algorithm to calculate

the first mode function IMF1 only, a unique first residue is
then calculated as [6]:

r1 tð Þ ¼ x tð Þ−IMF1 tð Þ ð2Þ
Then, compute the EMD mode over an ensemble r1(t) plus
different realizations of a given noise obtaining IMF2 tð Þ by
averaging. r2(t) is then calculated as:

r2 tð Þ ¼ r1 tð Þ−IMF2 tð Þ ð3Þ

This step is repeated with the other modes until the stop-
ping criterion is reached.

In order to summarize the procedure of CEEMDAN, Ej(.) is
defined as an operator which, given a signal, produces the j-th
mode obtained by EMD; εi represents the Signal to Noise Ratio
(SNR); the steps of the technique are then the following [6]:

1. Decompose I realizations of x(t) + ε0 ni(t) by EMD to

obtain the first IMF1 by averaging:

IMF1 tð Þ ¼ 1

I
∑
I

i¼1
IMFi

1 tð Þ ð4Þ

2. Calculate the first residue as:

r1 tð Þ ¼ x tð Þ−IMF1 tð Þ ð5Þ

3. Decompose I realizations of r1(t) + ε1 E1(n
i(t) ) until their

first EMD mode and calculate the second mode:

IMF2 tð Þ ¼ 1

I
∑
I

i¼1
E1 r1 tð Þ þ ε1 E1 ni tð Þ� �� � ð6Þ

4. For k = 2… .K, calculate the k-th residue:
rk tð Þ ¼ rk−1 tð Þ−IMFk tð Þ ð7Þ

5. For k = 2… .K, define the (k + 1)-th mode as:

IMFkþ1 tð Þ ¼ 1

I
∑
I

i¼1
E1 rk tð Þ þ εk Ek ni tð Þ� �� � ð8Þ

6. Go to step 4 for next k
Steps from 4 to 6 are repeated until the obtained residue

in no longer feasible to be decomposed and satisfies:

R tð Þ ¼ x tð Þ− ∑
K

k¼1
IMFk tð Þ ð9Þ

with K as the total number of modes. The original signal x(t)
can be expressed in the end as:

x tð Þ ¼ ∑
K

k¼1
IMFk tð Þ þ R tð Þ ð10Þ

Formore details about CEEMDAN, readers may refer to [6].

(a) (b)

Fig. 4 The similarity between the Daubechis Wavelet (a), and the zoomed shock signal (b)

Optimal 

Rotation Speed

Sampling Rate
Optimal 

Optimal 

Nbre Levels

Optimal 

Optimal  Vector

Fig. 3 The OWMRA process
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As mentioned previously, the power of CEEMDAN
relies on its capability of decomposing signals with less
number of iterations comparing with EEMD; this could
be verified by a simple test. The noised sinusoidal signal
of Fig. 1c is decomposed by both CEEMDAN and
EEMD. The result shows that despite the two approaches
having successfully separated the sinusoidal signal from
the noise Fig. 1d, e, CEEMDAN took less iterations; the
total number of needed iterations for EEMD was at about
2345, while it was only 1415 for CEEMDAN as shown
in Fig. 2.

3 Optimized wavelet multi-resolution analysis

The WMRA is based on the Wavelet Transform (WT), a
mathematical transformation which was first used by
Morlet [14] in order to overcome the limitations faced
when using FT for signal processing. While FT is known
as a transformation that decomposes a signal into a
weighted set of sine and cosine functions using the con-
cept of the cross-correlation, WT uses the same concept
but, instead, represents a signal x(t) in terms of shifted
and dilated version of impulse-like singular function
called Wavelet Mother (WM), generally represented as
a function of zero average:

∫
∞

−∞
ψ tð Þ dt ¼ 0 ð11Þ

which is dilated with a scale parameter a and translated by b

ψa;b tð Þ ¼ 1ffiffiffi
a

p ψ
t−b
a

� �
ð12Þ

The Continuous Wavelet Transform (CWT) of a signal x(t)
is then obtained by the cross-correlation with the conjugate
of ψ(t):

CWT a; bð Þ ¼ 1ffiffiffi
a

p ∫
þ∞

−∞
x tð Þψ* t−b

a

� �
dt ð13Þ

Up sampling 

Angular Display 

Angularly 

Resampled Signal 
Order Spectrum  UP 

Revolutions

Windowing 

FFT

Tachometer Signal 

Accelerometer 

Signal 

1 2 

3 

4 

5

Fig. 6 Order Analysis algorithm

Fig. 5 Faulty bearing’s FFT spectrum in case of constant speed

Vibration signal 

Decompose the signal 

by CEEMDAN 

Select the IMF that has the highest kurtosis 

and covers the natural frequency 

Apply OWMRA on the envelope of the 

selected IMF to obtain a reconstructed 

signal 

Perform the envelope order spectrum 

Calculate the envelope of the new signal and 

resample it angularly using OT algorithm 

Fig. 7 Flowchart of the proposed method
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Since measured signals are often digit ized, a
discretization of the CWT is needed. By replacing a
and b by 2m and n2m, respectively (m and n integers),
we can obtain the Discrete Wavelet Transform (DWT);
the above expression becomes:

DWT m; nð Þ ¼ 2
−m
2 ∫
þ∞

−∞
x tð Þψ* 2−mt−nð Þdt ð14Þ

The complexity of computing the DWT when having a
large-scale data led to the introduction of the more prac-
tical version known as WMRA by Mallat [15]. The
WMRA rapidly computes the DWT by convolving the
signal x(t) with low-pass (L) and high-pass (H) filters
to obtain two vectors, cAi and cDj, representing the low
frequencies and the high frequencies of x(t), respectively.

In order to overcome the down sampling experienced dur-
ing the decomposition, the elements of cAi and cDj are passed
through two reconstruction filters (LR) and (HR), which give
us two new vectors called approximations (Aj) and details (Dj)
with:

Aj−1 ¼ Aj þ Dj ð15Þ

x ¼ Aj þ ∑
n

i≤ j
Di ð16Þ

with i and j integers.
The WT is widely used for many applications and in dif-

ferent domains. Depending on the desired results, the user
have to choose between a lots of disparate parameters such
as the WM, the number of decomposition levels, and the

Fig. 9 Fault frequency variation under variable speed: a) acceleration, b) deceleration

Fig. 8 A simulated signal of a defective bearing working under constant speed
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optimal vector. The idea behind the implementation of an
Optimized WMRA (Fig. 3) is that the bearing signal requires
a tool specifically adapted to its impulse-like form. In the
works [13, 16, 17], it has been found that the results of the
application of WMRA on bearing signals are mainly affected
by four major parameters:

& The choice of the optimal measurement parameters
& The choice of the optimal analysis wavelet or the WM
& The choice of the optimal number of decomposition levels
& The choice of the optimal decomposition vector

The principal measurement parameters are rotation
speed ranges and sampling rate. In previous works
[16–19], a relation was found between the measurement
parameters and the capacity of the kurtosis which is im-
portant for our approach. The ranges of the rotation
speed and the values of the sampling rate have to be
chosen in a way that guarantees that the shock relaxation
time will not exceed the impact repetition period and
provoke the loss of the efficiency of the information
provided by the kurtosis.

As mentioned previously, the WT uses the concept of
cross-correlation, which is a mathematical way used to look
for similarity between two functions. So when used for bear-
ing fault detection, the optimal WM has to be the one that
most looks like the shock signal (Fig. 4). It is also proved that
the kurtosis can be used as a criterion for this choice since we
know that the wavelet that gives the reconstructed signal hav-
ing the highest kurtosis is the optimal one [16, 17].

In the final step of the OWMRA, we should only preserve
the levels which include information. The maximum frequen-
cy Fmax(An) of the final level’s approximation (An) must im-
peratively contain the shock frequency and at least some of its
harmonics in order to confirm that it is indeed the defect fre-
quency. Practically, one considers that three are rather suffi-
cient [16, 17]. Knowing that:

Fmax Aj
� � ¼ Fmax xð Þ

2 j ð17Þ

The maximum frequency of the final level n must thus
satisfy

Fmax Anð Þ ¼ Fmax xð Þ
2n

≥3Fcmax ð18Þ

Therefore, the number of levels must in its turn satisfy

n≤1:44log
Fmax xð Þ
3Fcmax

� �
ð19Þ

The decomposition optimal vector, called reconstructed
signal, is the one which allows the defect detection with the
best possible resolution, which leads to select the best filtered
one. The optimal vector will then be the one having the most
significant kurtosis.

4 Order analysis

In constant speed case, the FT is often used to calculate the
spectrum of a given signal in order to extract information
needed for the diagnosis of machines. A spectrum may reveal
shaft speed harmonics, gear meshing frequencies, bearing
characteristic frequencies, and other components which may
appear depending on the composition and the condition of the
machine. Figure 5 represents an envelope spectrum of a raw
vibration signal measured from a faulty bearing mounted on a
machine fault simulator, the rotation speed has been set to
about 30 Hz and the bearing fault characteristic frequency is
equal to 92 Hz. The harmonics of the fault characteristic fre-
quency are clearly visible.Fig. 11 Speed variation profile for the simulated signal

Fig. 10 Simulated bearing signal under variable speed (acceleration)
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When the speed is variable, the majority of signal compo-
nents follows the speed variation, which makes FT incapable
of detecting anything useful since it only detects oscillatory
functions whose frequencies are constant. To avoid such a
problem, it is often preferred to have a spectrum with x-axis
based on Orders instead of frequencies as shown in Fig. 6,
where orders are just harmonics of shaft speed. The process of
diagnosis is then performed by calculating the characteristic
orders of machine elements and looking for the corresponding
picks in the obtained order spectrum.

The order spectrum is obtained after a succession of math-
ematical operations that starts by resampling the temporal sig-
nal to angular domain using a tachometer signal and ends with
the calculation of the FFT. The whole operation is called
“Order Tracking” or “Order Analysis” and is often performed
as summarized in Fig. 7. More details about this technique
could be found in [20–22].

5 The proposed method

The proposed method represented in Fig. 8 can be summa-
rized in the following steps:

The raw signal is decomposed by CEEMDAN into a num-
ber of IMFs:

1. The kurtosis and the FFT spectra of all the IMFs are cal-
culated. The IMF having the most important kurtosis and
covering the relevant natural frequency is selected.

2. An envelope signal of the selected IMF’s energy is calcu-
lated from the Hilbert transform.

3. An optimized WMRA is applied on the envelope signal.
4. A reconstructed signal is obtained, from which is calcu-

lated a new envelope.
5. Order analysis is performed and an order spectrum

highlighting the defect characteristic order is obtained.

102 Hz 

219 Hz 

322 Hz 

Fig. 13 The envelope of the reconstructed signal with its spectrum

K = 5.64

K = 2.86

K = 3.92

K = 4.72

Fig. 12 The obtained IMFs and their corresponding FFTs
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6 The simulation model

Generally, a complex vibration signal of a faulty bearing
can be theoretically decomposed into a number of simple
parts. In the case of a single race defect, the main part is
the series of impulses generated by the impacts between
the rolling elements and the defected race surface, re-
peated at a certain frequency. The period between two
impulses can be determined by calculating the character-
istic frequencies of the bearing using a number of equa-
tions based on the knowledge of the bearing geometry
and the rotation speed as follows [23]:

Ball Pass Frequency Outer Race:

BPFO Hzð Þ ¼ S:C1 ð20Þ

Ball Pass Frequency Inner Race:

BPFI Hzð Þ ¼ S:C2 ð21Þ

Ball Spin Frequency:

BSF Hzð Þ ¼ S:C3 ð22Þ

Fundamental Train Frequency:

FTF Hzð Þ ¼ S:C4 ð23Þ
Where C1 ,C2 ,C3, and C4 are constants (which will be later
called as Orders) determined from the bearing geometry, and S
is the rotation speed.

Thus in the stationary case, the period between the gener-
ated impulses is theoretically constant, a simulated signal can
be easily constructed knowing that every impulse is an expo-
nentially decaying sinusoid in the form of [23]:

s tð Þ ¼ e−αtsin 2π f rtð Þ ð24Þ

where α is the damping ratio of the impulse, and fr is the
bearing resonance frequency.

Fig. 8 represents an example of a simulated signal of a
defective bearing working under constant speed.

In the non-stationary case, the fault frequency is variable
and follows the speed variation, which means that the period
between impulses is unequal. In the case of an acceleration,

3X 

3rd Order 

2X 

Fig. 14 The angularly resampled envelope with its envelope order
spectrum

Fig. 15 The used equipment: a) tested bearings, b) MFS

Fig. 16 RPM curve as measured with the tachometer
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the period decreases while speeding up. On the other hand, it
increases in the case of deceleration. Examples for both cases
are represented in Fig. 11.

In practice, bearing signals are often contaminated with
noise and modulated either by shaft speed, cage speed, or their
difference, depending on the fault location [24]. It is also often
that a time lag between impulses occurred due to the slippage
of the rolling elements between the two bearing rings. The
final obtained signal can be then mathematically expressed
as [24, 25]:

x tð Þ ¼ ∑
i
Aih n−iT−τ ið Þ þ n tð Þ ð25Þ

where Ai is the amplitude modulation of the i-th impact force,
T is the period between two successive impacts, τ is the time
lag produced by the slip, h(.) is the impulse response, and n(t)
is the white Gaussian noise. It should be noted that T is vari-
able in the non-stationary case.

The adopted model has been successfully used in the pre-
vious works to represent bearing signals [24, 25]. Figure 10

could be considered as an example of the final result obtained
by such a model in acceleration case.

7 Application on simulated signal

Before applying the proposed method on real measured signals,
it will be tested on simulated signals first; the latter are generated
using the model mentioned above. The signal shown in Fig. 10,
which simulate a faulty bearing with fixed outer race and rotating
inner race, will be analyzed with the proposed method. The fault
order is taken equal to 3, and the natural frequency is equal to
850 Hz. The rotation speed is varied from 2000 to 3300 rpm
within 0.35 s as shown in Fig. 11.

7.1 First step

The first step of the proposed method is the decomposition of
the signal by CEEMDAN. The results of the decomposition

K = 3.57

K = 38.40

K = 5.59

K = 3.20

Fig. 18 IMFs of the measured signal with their corresponding FFTs (Outer race fault)

Fig. 17 (a) the measured signal, (b) its corresponding FFT spectrum
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are shown in Fig. 12. According to Fig. 13, the IMF1 appears
to be the best IMF to be used for the next step, since it has the
most significant kurtosis (5.64) and covers the natural fre-
quency chosen for the simulation (850 Hz).

7.2 Second step

The second step consists in applying OWMRA on the enve-
lope of the selected IMF (IMF1); a reconstructed signal is
obtained. As shown in Fig. 13, a classical envelope spectrum
does not give anything significant when applied on the recon-
structed signal due to the speed conditions. Angular resam-
pling is then applied to remove the effects of speed variation.

7.3 Third step

In this step, an envelope order spectrum is applied on the
signal obtained from the second step. This clearly reveals
the fault order chosen for the simulation, a peak of order 3
with its harmonics, is clearly visible in the spectrum shown
in Fig. 14.

8 Application on real measured signals

\In signal processing, simulated signals generally repre-
sent an easy challenge for signal processing tools be-
cause of their simplicity. In order to prove the efficiency
of the proposed method, it will be tested with real sig-
nals. For that different signals are measured in the labo-
ratory using two similar faulty bearings, one having an
outer race defect, the other having an inner race defect
(Fig. 15a), mounted separately on SpectraQuest Machine
Fault Simulator (MFS) (Fig. 15b). The MFS is equipped
with an automatic and manual speed variator, which al-
lows to measure signals in both stationary and non-
stationary case.

8.1 Outer race fault

The first test is performed on a fixed outer race bearing with a
defect of order 3.048 situated in the outer race, the speed is
varied from 0 to 1800 RPM within 34.13 s as shown in
Fig. 16. The speed is measured with a tachometer simulta-
neously with the vibration signal shown in Fig. 17a, that has
been measured with a sampling rate of 15,360 Hz with
524,289 samples. Fig. 17b shows the FFT of the measured
signal, it is noticed that the natural frequency is at around
2800 Hz.

The CEEMDAN analysis gives the IMFs shown in
Fig. 18. The calculus of the FFT for each IMF shows that
the first three IMFs cover the natural frequency, but the ap-
propriate one is IMF2 since it has the most significant kurto-
sis (38.40).

Using Hilbert transform, the envelope of the chosen IMF
has been calculated and then passed through OWMRA to
obtain the reconstructed signal shown in Fig. 19. Impacts
are visible in the signal, but it is hard to tell whether they
correspond to the bearing fault or not before performing order
analysis.

After calculating the envelope of the reconstructed signal
and then angularly resampling it, the envelope order spectrum
is performed, the fault order has been successfully highlighted
with the proposed method, which prove its efficiency
(Fig. 20).

2X 

3rd Order 

3X 

Fig. 20 Envelope order spectrum of the reconstructed signal (Outer race
fault)

Fig. 19 The reconstructed signal of the chosen IMF envelope
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K = 2.49

K = 6.59

K = 2.46

K = 57.21

Fig. 22 IMFs of the measured signal with their corresponding FFTs (Inner race fault)

Fig. 21 The measured signal of the bearing with inner race fault

4.9th Order 

2X 

3X 

Fig. 23 Envelope order spectrum of the reconstructed signal (Inner race fault)
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8.2 Inner race fault

The second test has been done with a fixed-outer race bearing,
having adefect of order 4.95on the inner race.The speedprofile,
the sampling rate and the number of samples are similar to the
ones in the previous test. The natural frequency of the second
bearingshouldbealso thesame(2800Hz) since the twobearings
are similar.

The first remark to bemade on themeasured signal of Fig. 21
is that the amplitude does not vary somuchwith the variation of
the speed as in the first case (Fig. 17 a) due to modulation phe-
nomenon caused by the relative motion to the defect zone
[26–28]. When the fault was steady in the first case, the energy
of signalwas related to the kinetic energyof the rolling elements,
the more the speed rises, the more the energy of the impacts
increases. While in the second case, the defect is moving with
the rolling elements in a relative motion, which means that the

defect has been hit with almost constant force, and the energy of
the impacts is the same.

As in the first case, CEEMDAN is used to decompose the
measured signal, the obtained IMFs and their corresponding
FFTs are shown in Fig. 22. The chosen IMF is number 4 accord-
ing to the conditions made before, the kurtosis of the 4th IMF
reached57.21,anditsspectrumcovers thenatural frequency.The
reconstructed signal obtained after the application of OWMRA
and its envelope order spectrum are shown in Fig. 23. The peaks
over4.9thorderanditsharmonicsclearlyconfirmthepresenceof
the defect in the inner race

9 Results discussion

By the previous results, the efficiency of the proposed method
was proved with bearings outer and inner race defects. The

(a) (b)K = 38.40 K = 6.25

Fig. 24 IMF signal obtained from: (a) CEEMDAN, (b) EEMD

Fig. 25 Envelope Order spectrum obtained after: (a) CEEMDAN, (b) CEEMDAN + WMRA
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hybrid approach derives its power from the ability of
CEEMDAN in separating the natural oscillatory modes em-
bedded in the non-stationary bearing signal, even when the
speed is variable.

In comparison with EEMD, the CEEMDAN algorithm
seems better able to extract the series of impulse-like signal
components generated by defective bearings. In order to con-
firm that, the same signal generated from the defective bearing
(outer race) used above is analyzed by both EEMD and
CEEMDAN algorithms. The second IMF of each result is
chosen according to the previously mentioned criterions
(Highest Kurtosis, natural frequency coverage).

Notwithstanding that both algorithms were performed on
the same signal and with the same number of ensembles, the
result is much different as shown in Fig. 24. The CEEMDAN
gets clearer impulses visualization than EEMD, this could be
supported by the values of kurtosis obtained from each IMF.
CEEMDAN gave an IMF with a kurtosis of 38.40, while the
IMF given by EEMD had a kurtosis of 6.25 only. The result
could be explained by the nature of the adaptive noise added at
each stage in CEEMDAN algorithm.

On the other hand, the last result could be less accurate
without the use of the OWMRA, since it helps in the isolation
of the significant components from the chosen IMF by playing
the role of a filter. Figure 25 compares the envelope Order
Spectrum obtained after only performing CEEMDAN on the
signal of the defective bearing (outer race), with the one ob-
tained after performing both CEEMDAN and WMRA. One
can note that the defect order detection is easier using the
proposed hybrid method.

10 Conclusion

A hybrid method designed for the detection of rolling bearing
faults under variable speed is proposed in this paper. It is based
on Complete Empirical Mode Decomposition with Adaptive
Noise and an Optimized Wavelet Multi-Resolution Analysis,
with the assistance of Order Tracking Analysis. The
CEEMDAN is used in order to select the oscillatory mode
that best reflect the impulsive form of the defected bearing
signal. The OWMRA is then used to filter out the non-
significant components from the selected mode envelope
and gives a reconstructed signal. The role of OT analysis
was to remove the speed variation effects and to help in
performing an envelope order spectrum that successfully
highlights the characteristic order of the fault. The proposed
method is proven to be effective with both simulated and real
measured signals. For modern condition monitoring and real
time predictive asset management systems, the used hybrid
approach could be very helpful when making decisions since
it is designed for the surveillance of a critical component that
we find in almost every rotating machine, and that works

under a non-stationary condition which often represents a
challenge for engineers.
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