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Abstract The numerical forecasting of car body construction
processes is already being used in industry to provide support
in the ramp-up process. However, long calculation times are
stretching the finite element method (FEM) to the limit, in
particular when analyzing the effect of the variation of an
input variable on one or more dependent variables.
Moreover, there is still a need for experienced users to separate
relevant from irrelevant parameters and to determine their var-
iation. This paper presents a method that makes it possible,
based on stochastic experimental design (DOE) in combina-
tion with both principle component analysis (PCA) and sin-
gular value decomposition (SVD), to create mathematical
models that separate relevant from irrelevant input variables
and that represent the effect of individual variables on all part
or assembly areas by means of a variance-based sensitivity
analysis. The method is verified in a case study based on
realistic front hood geometry. The study examines the deep-
drawing process steps as well as the geometrical accuracy in a
measuring device. It is shown that it is possible to represent
the effects of the most important variables from these process-
es on the strain and geometry parameters of the car body part
and to vary these, based on a model function, interactively.

Keywords Finite element method (FEM) . Principal
component analysis (PCA) . Singular value decomposition
(SVD) . Car body process . Sensitivity analysis

1 Introduction

A middle-class car body is made of up to 500 sheet metal
components which are aligned and joined in up to 120 fixtures
[1] with the objective of realizing a tolerance of between ±
0.35 and 1 mm in geometrical accuracy [2]. Many iterative
adjustments of the deep-drawing process parameters and tool
surfaces are needed to achieve this. Nearly 30% of the [2]
overall tooling costs are caused during these optimizations [3].

To reduce iteration and the associated costs, the finite ele-
ment method (FEM) is being used increasingly in industry to
forecast failure and springback for deep-drawing processes,
even if calculation speed and accuracy are not always satis-
factory at present [4]. Accordingly, the producibility of com-
ponents via deep drawing is already the subject of numerical
analysis, yet there are currently almost no conclusions from
the automotive industry with regard to springback [5]. Aside
from the long calculation times for springback steps, the main
factor responsible for this is result inaccuracies caused by
excessive model simplifications (for example, simplification
of the forces acting on the metal sheet) [6]. Thus, it has been
shown that when the same paths are used in experiment and
simulation, the represented forces vary widely, but the quality
of results improves by up to 80% [7]. Even though it is not
possible to draw conclusions about the absolute dimensional
stability of a component on this basis, it is possible to identify
areas of influence of parameter variations. The quality of re-
sults achieved in the clamping process step is significantly
higher due to lower model complexity. Lee [8] demonstrated
that the frictional contact behavior between clamping
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elements and component can be adequately represented using
FEM. Based on these findings, shell-based FEM was used to
develop methods that make it possible to represent dimension-
al stability influences in the clamp-and-join car body construc-
tion process with sufficient accuracy [9].

Siekirk [10] identified 30 process variables for the deep-
drawing process and showed experimentally that blank size,
blank position, material thickness, and binder force are the
most significant factors for the drawn part strain. Similarly,
Zhang [11] investigated the influence of process forces and
shut height on the waviness of the car body shell part. Majeske
and Hammet [12] presents a variance analysis-based system,
which makes it possible to classify variations that occur dur-
ing deep drawing and thus to initiate measures to compensate
for dimensional variations.

Naceur [13] and Wei [14] used the response surface method
to conduct initial parameter studies based on simple sample
geometries tominimize springback behavior during deep draw-
ing. Naceur focuses on the optimization of active tool surfaces,
whereas Wei optimizes process parameters. Meinhardt [15]
presents an option for interactively optimizing tool geometry
parameters based on a side panel segment. The focus is on the
forecast of producibility of the deep-drawn part for various
parameter combinations. Input and output variables are linked
via a metamodel generated on the basis of FE = finit element
variant calculations. Emrich [16] investigated the robustness of
the deep-drawing process with a focus on the influence of
material characteristics. Both used the strain of the nodes in
relation to the FLC = forming limit curve as the output.

Wärmefjord [17] used FEM-based variant simulations to
forecast the effect of process and control variables in deep
drawing (e.g., friction, forming speed) on the component ge-
ometry as well as the eventual effect on the assembly process.
The component variation is evaluated on the basis of PCA.
The PCA results are then used as source data for the functional
description of the relationships between component deforma-
tion and input parameters via a metamodel. The metamodel
makes it possible to generate Monte Carlo simulations to de-
termine the 6-sigma levels, as well as to identify parameter
influences by correlation analysis.

Wolff [18] and Gerbino [19] presented, independently of
one another, an investigation of the effect of deep-drawing
process variations on the drawn part, based on a PCA. Wolff
based his investigations on the numerical variation of material
characteristics, friction, sheet thickness, position, and geome-
try variation. Gerbino determined his data experimentally.
Both were able to demonstrate that PCA is capable of describ-
ing variations that occur using a small number of orthogonal
error modes. The geometric error modes are then used as a
starting point for determining process interrelationships and
sensitivities.

Youcef-Toumi [20] carried out the first optimization for the
low-stress fixation of parts. This was followed by various

methods of need-based optimization of clamping points, such
as those presented by Menassa and DeVries and Franciosa
[21]. The metamodel-based optimization of the dimensional
stability of an assembly at discrete points by means of
clamping point adjustment was first published by Schwarz
[22].

Previous literature has demonstrated that the ramp-up of a
car body production line can be particularly time and cost
intensive, but FEM can be used to reduce this effort and to
generate good results. The main problem is that, even though
FEM analyses are much faster than experimental tests, they
still require a large amount of time. The approach to solve this
problem is to substitute single variance simulation by
representing the complete parameter space with DOE-based
models.

The use of numerical sensitivity analysis to analyze the
relationship of inputs and outputs in car body production is
widely known. For example, it is used in a user-friendly for-
mat in the AutoForm-Sigma software. The use of an SVD-
based PCA in combination with a variance-based sensitivity
analysis has not previously been documented.

This paper presents the mathematical formulation and ver-
ification of a method that makes use of this combination. The
objective is to determine the influence of variable input pa-
rameters with respect to their effects on any number of post
variables from deep-drawing simulations for the entire com-
ponent area. So, it is possible to differentiate relevant and
irrelevant parameters. In this case, relevant parameters are
defined as having more than 2% influence on the local or
global variation value. Parameters with less than 2% influence
are defined as irrelevant, as they are highly likely to be some
form of noise from the FEM model or the solver.

2 Multivariate analysis of variance

2.1 Principal component analysis

Principal component analysis (PCA) is a multivariate statisti-
cal method for identifying trends and patterns in large
amounts of data [23]. It was formulated by Pearson 1901
[24] and Hotelling 1933 [25]. The basic idea of the PCA
consists in a linear transformation of the high-dimensional
data into a new coordinate system with lower dimension.
The variance-covariance structure of the source data can be
described with a small number of “new” variables, the so-
called principal components, in the result. The mutually or-
thogonal principal components are uncorrelated and are sorted
in such a manner that the first principal components can rep-
resent the largest proportion of the total variation of the orig-
inal variables [26].

Let X be a data matrix of dimension n × d and zero mean,
where d is the number of variables and n is the number of
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observations. The objective of the PCA is the orthogonal lin-
ear transformation of the high-dimensional X into a low-
dimensional score matrix Y

Y ¼ X V ð1Þ
where Y is an n × n matrix and V is a d × n matrix. To deter-
mine the score matrix Y, first the principal axes or even princi-
pal components of the new coordinate system, which are com-
piled in matrix V as column vectors, must be found. The prin-
cipal components are arranged by variance proportion. The first
principal component in the first column of V explains the larg-
est proportion of the total variation, the second principal com-
ponent in the second column of V has the second largest vari-
ance, which is orthogonal to the first principal component, and
so on. The principal components are equal to the eigenvectors
of the matrix of all paired covariances of the variables of data
matrix X. To analyze the variance-covariance structure of data
matrix X, the covariance matrix C is established first

C ¼ 1

1−n
XTX : ð2Þ

In this case, C is a symmetric matrix of dimension d × d.
Note that the dimension of the covariance matrix C has an
exponential dependence on the number of variables of the data
matrix X. Therefore, for a large number of variables it can be
difficult in terms of computation time to calculate the d2 ele-
ments ofC explicitly. One option for calculating the eigenvec-
tors of covariance matrix C without forming the matrix prod-
uct XTX from (2) is the method known as singular value
decomposition (SVD). By this method, the data matrix X can
be represented as the product of three matrices [27]:

X ¼ U Γ VT ð3Þ

In this case, U is the matrix of the left singular vectors with
the dimension n × n, V is the matrix of the right singular vec-
tors with the dimension d × d, and Γ is the n × d -diagonal
matrix of the singular values. Plugging (3) into (2) yields

C ¼ 1

1−n
XTX ¼ 1

1−n
V Γ TUT
� �

U Γ VT
� �

: ð4Þ

The orthogonality of U (UTU = I) and the symmetry of
Γ (Γ =ΓT) finally result in the following spectral decomposi-
tion of covariance matrix C [28]:

C ¼ 1

1−n
XTX ¼ V Γ TUT

� �
U Γ VT
� � ¼ V Γ Γ TVT ð5Þ

C ¼ V Γ 2 VT ð6Þ

Formula (6) shows the spectral decomposition of the covari-
ance matrix. Accordingly, the vector of the back singular values
V corresponds exactly to the eigenvectors of the covariance ma-
trixC. Furthermore, square root

ffiffiffiffi
σi

p ¼ λi of the singular values

of Γ gives the corresponding eigenvalues of C. A useful require-
ment for applying the SVD is the symmetric property of covari-
ance matrix C from (2), which means that C is positive
semidefinite and only n eigenvalues of C are greater than or
equal to zero. Since

ffiffiffiffi
σi

p ¼ λi, the dimension of Γ can be re-
duced from n × d to n × n and the dimension of V from d × d to
d × n. The size of the n eigenvalues from C exactly matches the
proportion of the total variance of the data matrix X, which can
be described via the associated principal axis direction in V.
Given that, based on Formula (7), the highest-percentage vari-
ance occurs with the first p principal components, a further re-
duction of the data can be achieved by specifically ignoring the
low-variance principal components. The proportion of the ith
principal component in relation to the total variance is given by:

Var λið Þ ¼ λi

∑
n

j¼1
λ j

∙100% ð7Þ

After determining the new transformation basis, the origi-
nal data must be projected to the principal components in the
final step. Using Formulas (1) and (3), this data projection is
defined as [29]

Y ¼ X V ¼ U Γ VT V ¼ U Γ ð8Þ

An important characteristic of the PCA is that the original
data can be fully recovered from the projection data in the
following way:

X ¼ Y VT ð9Þ
The eigenvectors V, arranged according to their explicable

variance, are called principal components or even geometric
eigenmodes.

2.2 Variance-based sensitivity analysis

According to Saltelli [30], the objective of a global sensitivity
analysis is to be able to quantify the influence of varying input
factors on the variance of the associated output independently
of the model. In this case, as opposed to a local sensitivity
analysis, the influence of the input parameters on the variation
of the source variables is not determined for an individual
point but rather across the entire range of variation of the input
factors [30]. For a robust estimate of global sensitivity, it is
particularly advisable to use variance-based sensitivity analy-
ses that can determine the global sensitivity independently of
the linearity or additivity of a model [31]. In summary,
variance-based methods have the following advantages [30]:

& Variance-based methods are independent of the model
& Determination of influence is possible across the entire

range of input factors
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& It is possible to identify interactions among the input
factors

& Determination of non-influent input factors

Variance-based sensitivity methods have a long history of
development, from the analysis of variance using multiple
Fourier series [32, 33], through Sobol’s [34] variance decom-
position formulas, to the quantification of variance using total
sensitivity indices discussed in [35]. According to Sobol [34],
the output variance V(Y) of a model output Y = f(X1, X2, ⋯ ,
Xk) with k -uncertain input factors is decomposed as:

V Yð Þ ¼ ∑
i
V i þ ∑

i
∑
j>i

V ij þ⋯þ V
12…k

ð10Þ

Where

Vi ¼ VX i EX∼i Y jX ið Þ½ �
Vij ¼ VX ij EX∼ij Y│X i;X j

� �� �
−Vi−V j

and so on. The terms Vi and Vij in function (10) can be
interpreted as follows [36]:

& Vi is the reduction of variance to be expected if the ith
input factor Xi of the model could be fixed. The mean EX∼i

Y│X i
� �

is taken over all possible values of X~i while Xi
keep fixed. The outer variance VX i is taken over all pos-
sible values of Xi. In this context X~i denotes the matrix of
all factors but Xi.

& Vij is the reduction of variance to be expected if both the i
th

input factor Xi and the jth input factor Xj of the model

could be fixed simultaneously. The mean EX∼ij

Y│X i;X j
� �

is taken over all possible Values of X~ijwhile
Xi and Xj keep fixed. The outer variance VX ij is taken over

all possible values of Xi and Xj. In this context, X~ij de-
notes the matrix of all factors but Xi and Xj.

Dividing both sides of Eq. (10) by the total variance V(Y)
leads to variance-based sensitivity indices [34]:

∑
i
Si þ ∑

i
∑
j>i

Sij þ⋯þ S
12…k

¼ 1 ð11Þ

where Si is the well-known first-order sensitivity index. The
first-order sensitivity index measures the main effect contri-
bution of each input factor to the output variance. Sij is the
second-order index, which represents the interaction effect of
the factor pair (Xi, Xj) on the output variance V(Y). An analo-
gous procedure is done for estimating higher-order indices.
The development in (11) provides an estimation of the sensi-
tivity of all the input factors and their interactions, whereby for
k -input factors a total number of 2k − 1 indices have to be

evaluated. However, when the number of input factors is
large, the estimation of all first-order and interaction effects
from (11) can be very intensive in terms of computing time. To
reduce the computational afford the total sensitivity index STi

described in [35, 37] has proven to be an effective measure-
ment tool for the determination of global sensitivities:

STi ¼
EX∼i VX i Y│X∼i

� �� �
V Yð Þ ¼ 1−

VX∼i EXi Y│X∼i
� �� �

V Yð Þ ð12Þ

Here, EX∼i VX i Y│X∼i
� �� �

is the variance to be expected if all

input parameters except Xi could be fixed. VX∼i EX i Y│X∼i
� �� �

is the reduction of variance to be expected if all input parameters
except Xi could be fixed [36]. Like Formula (11), the total sen-
sitivity index STi provides the total contribution of the input
factor Xi to the output variance V(Y), including its interactions
with all other input parameters [38]. In contrast to 2k − 1 indices
from (11), only the evaluation of k indices is necessary. A con-
dition of STi is:

∑
k

i¼1
STi≥1 ð13Þ

The sum of all terms of the total sensitivity index STi from
condition (13) is either equal to 1 when the model is purely
additive or greater than 1 when there are interaction effects
among the input factors. Furthermore, a total sensitivity index
STi > 0 indicates that the input variable Xi has a quantitative
influence on the output variance. In contrast, a total sensitivity
index STi ¼ 0 is a necessary condition for Xi having no por-
tion of the output variance across its entire range of uncertain-
ty, which makes it possible to contemplate a reduction of the
non-influent input factors from the model [31]. The calcula-
tion of the total sensitivity index based on a Monte Carlo
integration procedure first proposed by Homma and Saltelli
[35] and extensively discussed in [31, 36]:

STi ¼ 1−
VX∼i EXi Y│X∼i

� �� �
V Yð Þ ¼ 1−

yB∙yCi
− f 20

yA∙yA− f
2
0

¼ 1−

1

NS
∑NS

j¼1y
jð Þ

B y jð Þ
Ci
− f 20

1

NS
∑
j¼1

NS

y jð Þ
A

� �2
− f 20

ð14Þ

Where

f 0 ¼
1

NS
∑
j¼1

NS

y jð Þ
A ð15Þ

and yA = f(A), yB = f(B), yCi
¼ f C ið Þ are three vectors of mod-

el outputs generated from the associated matrices A,B, and
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Ci. A and B are two matrices with random samples of the k
input factors formed by a low-discrepancy sequence such as
Latin hypercube sampling. Ci is a matrix that contains all
columns from B except the column of the ith input factor,
which is from A. NS is the number of random samples.

3 Methodology

The basis for the method is data reduction by means of SVD-
based PCA technique. The use of PCA allows the element-
rich FE meshes of the deep-drawing simulation to be replaced
by a few principal components. Based on the identified prin-
cipal components, a variance-based sensitivity analysis is then
performed in the reduced characteristic space. The back-
transformation of the reduced data finally enables the
element-specific visualization of the sensitivities on the entire
component surface. Figure 1 shows the flow of the method.

3.1 Stamping simulation

The first step is to define the input parameters (e.g., blank-
holder force, draw beads, initial blank position, etc.) that have
to be varied during the various deep-drawing simulations. A
sample matrix SInput with n simulation variants is created on
the basis of the selected i input parameters.

SInput ¼
s11 s12 ⋯ s1i
s21 s22 ⋯ s2i
⋮ ⋮ ⋱ ⋮
sn1 sn2 ⋯ sni

2
664

3
775 ð16Þ

The random numbers for the sample matrix can be gener-
ated, for instance, by Latin hypercube sampling. Next, the n
entries of the sample matrix are calculated. After every simu-

lation run, the distances of the simulation meshes in normal
direction as well as process-relevant post variables such as
thinning, principal strains, and principal stresses are evaluated
and compiled in a field-data matrix. The field-data matrix Xu

is defined as follows for the uth post variable

Xu ¼
x11 x12 ⋯ x1d
x21 x22 ⋯ x2d
⋮ ⋮ ⋱ ⋮
xn1 xn2 ⋯ xnd

2
664

3
775 ð17Þ

where n is the number of simulation variants and d is the
number of mesh elements.

3.2 Dimension reduction by PCA

Due to the high dimensionality of field-data matrix Xu, prin-
cipal axis transformation is performed by SVD-based PCA.
The projection of the field-data matrix Xu onto the related
principal components V is given by Formula (8):

Y Score ¼ Xu V ¼ U Γ ð18Þ

The result is a low-dimensional projection-data matrixYScore
of dimension n × n. Since the first m principal components
according to Formula (7) explain most of the variance, it is
advantageous in terms of calculation time to limit the number
of principal components. A constraint for the reduction of the
principal components is that at least 99% of the source variance
of Xu should be maintained. Therefore, YScore can be written as

Y Score ¼
y11 y12 ⋯ y1m
y21 y22 ⋯ y2m
⋮ ⋮ ⋱ ⋮
yn1 yn2 ⋯ ynm

2
664

3
775 ð19Þ

PCA

stamping
simulation

- input parameters
(e.g. Blank holder force,...)

variance-based
sensitivity analysis

interactive process
visualization

back-transformation

− simulations

Dimension reduction
in low-dimensional space

in original space

2

1

3

4

5

Fig. 1 Method description
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where m is the number of principal components and n is the
number of samples.

3.3 Variance-based sensitivity analysis based on PCA data

Next, the sensitivity analysis is performed on the basis of
the reduced PCA data set YScore. To determine how a
change of the input parameters affects the dependent var-
iables under consideration, a regression analysis is used to
establish a functional connection between the sample ma-
trix SInput and the projection-data matrix YScore. The re-
gression approach gives the regression formula for the
projection vector of the jth principal component in matrix
notation:

Ŷ Score j ¼ ŜInput∙β ð20Þ

where

Ŷ Score j ¼
y1
y2
⋮
yn

2
664

3
775; ŜInput ¼

1 s11 s12 ⋯ s1i
1 s21 s22 ⋯ s2i
1 ⋮ ⋮ ⋱ ⋮
1 sn1 sn2 ⋯ sni

2
664

3
775;

β ¼
β0

β1

⋮
βi

2
664

3
775:

ŜInput pt?>is the regression basis formed from the sample

matrix ŜInput, β is the vector with the estimated regression

coefficients, and Ŷ Score j is the jth approximated projection

vector in the jth row of YScore. The regressors β of the
model are determined by least-squares minimization [39].
It must be noted that not everyregression basis can equally
explain the interactions between the projection vector

Ŷ Score j and the sample matrix ŜInput. For this reason, de-

pending on the complexity, it may be necessary to use
linear polynomial approaches as shown in Formula (20)
as well as non-linear polynomial approaches for the ap-

proximation. For example, the regression basis ŜInput of

a second-order polynomial regression model is defined
as follows:

ŜInput ¼
1 s11 s12 ⋯ s211 s212 ⋯ s11s12 ⋯
1 s21 s22 ⋯ s211 s212 ⋯ s21s22 ⋯
1 ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
1 sn1 sn2 ⋯ s2n1 s2n2 ⋯ sn1sn2 ⋯

2
664

3
775

ð21Þ

The model selected for the paper is the one that can
best explain the relationship between projection vector

Ŷ Score j and the input parameters, meaning it has the best

forecasting accuracy. To estimate the prognostic quality of
each model the multiple coefficient of determination
(COD) R2 is used [39]:

R2 ¼
∑
n

i¼1
ŷi−�yð Þ2

∑
n

i¼1
yi−�yð Þ2

ð22Þ

Here, �y denotes the mean, yi is the ith score of the jth
projection vector Ŷ Score j and yi is the forecast of the regression

model for the ith score of the jth projection vector Ŷ Score j. If

the underlying regression model can explain a majority of the
variance of the model output, the result is an R2 value close to
1. However, if the R2 values are small, the output variation

cannot be explained via the examined regression model and

the R2 value tends toward 0 [30]. In addition, as opposed to the
COD, cross-validation methods can be used to further check
the model quality of the regression models. It has to be taken

into account that for each projection vector Ŷ Score j a total
number of m regression models must be build.

After the regression analysis, the variance-based sensitivi-
ty analysis has to be performed. The projection vector Ŷ Score j

has approximately the same variance structure as the field
matrix Xu, so the total contribution of the ith input parameter
to the output variance of the jth approximated projection

Tool Deep Drawing Part and Fixture

left bead

front bead

right bead

backside bead

stamp

blank holder
pin / round hole

pin / long hole 
(direction Y)

“Inner Hood” 

(material DC06) 

clamp backside leftclamp backside right

clamp front left
clamp front right

Z X

Y

Fig. 2 Experimental setup
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vector via the total sensitivity index STi from Formula (12)
can be directly estimated in the low-dimensional characteris-
tic space using the regression model from Formula (20):

STij ¼ 1−
V E Ŷ Score j│SInput∼i

� �h i

V Ŷ Score j

� � ð23Þ

Formula (23) also makes it possible to determine the rele-
vant and irrelevant process parameters. If the value for STi≈0,
the ith input parameter of the sample matrix SInput has no
influence on the total output variation and can be removed
from the regression model.

3.4 Back-transformation in original space

To visualize the sensitivity results of the ith input parameter on
the component geometry in an element-specific manner, a
back-transformation of the data from all m principal compo-
nents into the original space is necessary using Formula (9)
and (23):

SFieldT i
¼ ∑

m

j¼1
STij ⋅

V YScore jV
T
j

� �

V Xuð Þ

0
@

1
A ð24Þ

SFieldT i
is a (d × 1) vector of elementwise sensitivity results of

the ith input parameter. STij is the total sensitivity index of the

jth principal component from (23). V YScore jV
T
j

� �
is the pro-

portion of variance that is explained by the j-principal compo-
nent and V(Xu) is total variance of the field matrix Xu.

3.5 Interactive process visualization

The mathematical description of the projection matrix via a
regression model (see Formula (20)) also offers the opportu-
nity to connect the process parameters in their range of varia-
tion interactively by means of graphical animation tools such
as sliders (see Fig. 7, left) with visualization of results. The
back-transformation of the model-based projection vector

Ŷ Score j is given by Formulas (9) and (20):

X̂u j ¼ Ŷ Score j V
T ¼ ŜInput∙β

� �
∙VT ð25Þ

Formula (25) creates a direct functional relationship be-
tween input and output variables. If the slider is used to set a
previously unknown parameter combination, the model-based

field-data matrix X̂u j can be interpolated and updated in the

graph of results in milliseconds. The elementwise evaluation
of deep-drawing sensitivities can help in attaining a profound
process understanding and in deriving faster measures to

Table 1 Parameter variation

Parameter Variation range Parameter Variation range

Thickness 0.95 to1.05 mm Friction (blank to all) surfaces) 0.1 to 0.2 (Coulomb)

Blank holder/die distance 2 to 3.5 mm (Z direction) Clamp level, front left − 0.5 to 0.5 mm (Z direction)

Right bead level − 0.5 to 2.5 mm (Z direction) Clamp level, rear left − 0.5 to 0.5 mm (Z direction)

Left bead level − 0.5 to 2.5 mm (Z direction) Clamp level, front right − 0.5 to 0.5 mm (Z direction)

Front bead level − 0.5 to 2.5 mm (Z direction) Clamp level, rear right − 0.5 to 0.5 mm (Z direction)

Rear bead level − 0.5 to 2.5 mm (Z direction) Blank insertion X position − 5 to 5 mm (X direction)

Blank insertion Y position − 5 to 5 mm (Y direction)
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Fig. 3 Strain distribution
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compensate for dimensional variations in the deep-drawing
process.

4 Case study

4.1 Experimental setup

The presented methods were verified based on the deep-
drawing and clamping process steps for the inner part of a front
hood. The basis was the geometry from the ESI PamStamp 2G
Tutorial “Standard Forming Hood Inner.” Four beads were
added in the deep-drawing tool. In addition, during the cutting
process, a long hole and a round hole were introduced, which
enable definition in space in a measuring device with four
variable clamping points and two pins (see Fig. 2).

The model was calculated in the PamStamp 2G 2015.1
solver with explicit, non-linear contact algorithms and adaptive
mesh refinement. The component size of 1600 × 1500 mm,
represented by up to 1.1 million elements makes it possible to
compare the results with real analysis in car body ramp-up. The
simulation attribute file was built parametrically, so that an
external ASCII-based modification of the input parameters by
external scripts was possible. The evaluation of the observed
output parameters strain and accuracy was realized by an
element-based contour plot.

In conformity with other experiments from the technolog-
ical state of the art, 12 process input parameters as well as the
sheet thickness were evaluated with respect to the influence on
strain and geometrical accuracy of the clamped part (see
Table 1). Variations in material characteristics were intention-
ally omitted, since according to Berry [40], they are less rele-
vant to deep-drawing results than are other parameters. To
ensure a high forecasting quality for the PCA, the DOE of
the 13 process parameters was based on Latin hypercube sam-
pling (LHS) with 100 simulation samples (see Chapter 3.1).

4.2 Sensitivity analysis of component strain

Figure 3 shows the distribution of numerical post variables,
using plastic strain as an example, on the uncut deep-drawn
part in the bottom dead center. Similar evaluations using other
post variables (thinning, stress, etc.) are also possible. Here,
the range is the absolute value of the difference between the
largest and smallest component strain value across the 100
simulations. The uncertainty describes the expected average
error of the mathematical model. This is calculated as the
square root of the variance proportion that cannot explained
by the COD (see Formula (22)).

It is clear that some of the given parameters (see Table 1)
and their variation have a significant effect on component
strain and some do not. By using cross-validation methods,
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it was possible to isolate irrelevant from relevant parameters
and to find the best-fitting model which has uncertainties of, at
maximum, approximately 10% of the range achieved.

This can also be seen in Fig. 4, right. The prognostic
quality (see Formula (22)) within the area of the beads is
between 85 and 100%. The waviness in the outer plate area
that occurs arbitrarily depending on the parameter settings,
as well as the different plate indentation, means that it is
not always possible to assign the post variables to a spe-
cific node of the reference, with the result that there is
reduced model accuracy in these areas in particular.

Figure 4, left, shows and compares the principal influenc-
ing variables for global strain distribution and for a local point.
As previously stated, it is clear that friction and the distance
from the blank holder to the die have the greatest influence on
the strain, both globally and locally. However, these parame-
ters have a significantly higher effect on the selected local
point than on average across the entire component.
Furthermore, it is found that although the selected point is
on the left side of the component, the left bead has a scarcely
higher influence on strain than the right bead. This is also
reflected overall in the relatively low influence of the beads
on the average strain across the component as well as on the
local selected point. It can be seen that friction blurs the influ-
ence of the other parameters due to the high range selected and
the resulting high influence on the component strain. It can be

concluded that the method presented is able to reliably repre-
sent, in high quality, the post variable distribution on a deep-
drawn component; however, the selection of input parameters
and their range has a substantial influence on the significance.

4.3 Sensitivity analysis of springback

Furthermore, the method presented was investigated with re-
spect to its prognostic quality for springback processes and di-
mensional stability analysis. To this end, the virtually deep-
drawn components were also cut, inserted into a measuring de-
vice, clamped, and loaded with gravity. As shown in Fig. 5 a
high level of forecasting ability was also achieved in this case. In
turn, the absolute uncertainty of the model was less than 10% of
the range.

It was even possible to represent the influences of the asym-
metrical determination by mounting on a round hole on the
right side and on a long hole that permits relative movement
on the left side. This is significant in that, despite a different
range in the area of the holes, the uncertainty remains identical.

An influence analysis and an accuracy analysis were also
performed for the springback process step (see Fig. 6, right). It
can be seen that the global prognostic quality, at 92%, has
improved, while the local prognostic quality at the selected
point has worsened to 82%.
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It is also clear that the adjustment of the front clamp has
reduced the importance of the blank holder-to-die distance pa-
rameter; thus, its influence on the dimensional stability of the
component is greater. The influence of the sheet thickness on
the springback behavior of a component is also clearly higher
than it is on the component’s percentage strain (see Fig. 6, left).

4.4 Interactive influence analysis

Using the calculation method presented as Formula (25), it is
possible to manipulate the input variables manually and to
evaluate the influence, individually or in combination with
each other, on the dependent variables. The function-based
representation of the interactions allows an interpolation be-
tween recorded values and thus enables a continuous selection
of values. In Fig. 7, this was carried out using the example of
the dimensional stability of the component. The influence of
the presented parameter variation on the original condition
was evaluated. The schematic representation of sliders is
intended to serve as an example for a user-friendly implemen-
tation of this method.

A back-transformation of the modes can be used at any
time to regenerate the original data, or the post variable-
related simulation mesh; thus, it is possible to export a manu-
ally varied mesh and to use it as input data for further simula-
tions (e.g., for assembly process simulation).

This was used to generate the comparison shown in Fig. 7.
Where a set of input values was defined arbitrarily (see Fig. 7,
left) and following the response (geometrical set of nodes,
which represents the body part) was generated by running a
simulation and by using the described mathematical approach
on the previous generated model. Fig. 7, right, shows the
distance between the simulated mesh and the function-based
mesh for the given parameter combination in Fig. 7, left. It can
be seen that both meshes are in good agreement.

5 Discussion and conclusion

A mathematical approach of using the SVD-based PCA in
combination with a variance-based sensitivity analysis and
its capability for analysis of car body processes was docu-
mented. The case study showed that the mathematical and
numerical methods presented can be used to represent inter-
actions in car body construction, based on mode-based
models.

The low uncertainty levels show that it was possible, with
the PCA method, to generate a model which represents the
interaction of the nine continuous input parameters with ref-
erence to the output parameters strain and geometry based on
50 simulations. The applicability of the prognosis model for
real problem-solving in the ramp-up of a car body line, of
course, depends on how well the respective simulation model

is able to depict reality. As explained in the state of the art, this
is certainly possible for strain, stress, and thinning, but only a
qualitative—not quantitative—statement is possible for
springback. Another positive aspect of using the PCA is that
it was possible to perform the calculation of the eigenmodes
(100 meshes with 1.2 million elements each) on a standard
Quad-Core PC with 8 GB RAM. The total computation time
was approximately 2 min.

In the next steps, the method should be verified based on
further car body components. The extension of the numerical
process chain to clamping and joining or hemming is also
planned.

As shown in Chapter 4.4, with sufficient model quality, it is
possible to generate new design variants mathematically in-
stead of numerically, as has previously been done. So, after a
teaching phase of 100 simulations that can be run in parallel, it
is possible to obtain information regarding effects on car body
process adjustments in a matter of seconds instead of hours of
simulation time or days of experiments. This would allow car
body construction measures to be checked just in time before
implementation based on metamodels, thus saving on cost-
intensive experiments.

Furthermore, there is the potential to generate realistic var-
iations of drawn parts for the simulation of assembly process-
es or later process steps without simulating the drawing
process.

As presented in the introduction chapter, FEM simulation
is capable of representing influences of variation in car body
processes, but it requires too much time to be useful for urgent
problems. Using the method described, it is possible to trans-
fer FEM-generated knowledge into a mathematical model that
is able to generate answers just in time. This will increase the
use of FEM during the planning or ramp-up processes of car
body production lines, because it can now be used to solve a
problem instead of just to analyze it.
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