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Abstract Two main popular cutting methods for bevel gear
mass production, face milling and face hobbing, both require
dedicated tools and machines available from only a few ma-
chine tool companies, which makes production more costly.
This paper thus proposes a cheaper, more flexible alternative
for producing small or medium batches of large bevel gears, a
disk tool cutting method using a five-axis machine. In this
method, the machine coordinates are derived based on tooth
surfaces. The target’s topographic points of tooth surface are
applied to construct a fitted surface which is then used to
further refine the cutter-contact points to improve the preci-
sion of the gear produced. At the same time, mathematical
models are established for both the tool and the machine. A
coordinate transformationmatrix is then generated by aligning
the coordinate system of the tool’s reference point with each of
the work gear cutter-contact points. Because different ma-
chines employ identical transformationmatrices for producing
the same workpiece, the machine’s five-axis coordinates can
be derived using inverse kinematics. These coordinates are the
resource to generate the NC machining data that allows NC
verification software to perform cutting simulations. The sim-
ulation results verify the correctness of the mathematical
models.

Keywords Bevel gear . Disk tool cutting method . Five-axis
machine . Fitted surface

1 Introduction

Because the tooth surfaces of spiral bevel and hypoid gears are
too complicated for manufacture, they have traditionally been
generated on five- or six-axis machines. The most efficient
cutting methods for producing these gears are face milling
(FM) and face hobbing (FH), both of which require expensive
dedicated machines and special cutting tools. Disk tools and
five-axis machines, in contrast, are more affordable and more
flexible for manufacturing large gears in small or medium
batches. Hence, the Heller company, in cooperation with
Gleason, recently introduced a new method for cutting bevel
gears on its five-axis machines that replaces a dedicated FM or
FH cutter head with a disk milling cutter. The company has
not, however, revealed its mathematical model because of
commercial considerations. This paper thus proposes a cutting
method that reduces current costliness by replacing the multi-
ple heads required for different size gears with one disk tool,
making gear manufacture cheaper, more flexible, and able to
produce a larger range of gear sizes. This tool can be either a
cutter or a wheel for milling or grinding, respectively.

The main mathematical models of FM bevel gears, derived
based on a cradle-type bevel gear cutting machine, were
established by Litvin and Gutman [1–3], after which Fong
[4] proposed a universal mathematical model for simulating
all primary bevel gear cutting methods, including FM and FH.
These models provide the equations for determining bevel
gear tooth surfaces. More recently, Álvarez et al. [5] intro-
duced a flexible cutting method for large-sized spiral bevel
gears using a general five-axis machine; however, this method
adopted a ball milling cutter that resulted in low productivity.
Hence, Shih and Zhang [6] and Shih et al. [7], in establishing
both their mathematical model of bevel gear manufacture on a
five-axis machine and their flank correction method to reduce
manufacturing errors, employed a face milling cutter as the
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special cutting tool. In previous work, Deng et al. [8] had
developed a mathematical model for producing bevel gears
using a disk cutter on a five-axis machine but only provided
the cutter’s tilt and yaw angles, not the five-axis coordinates
for gear production. Chiu and Shih [9] thus proposed a disk
tool cutting method for bevel gears on a trunnion-table type
five-axis machine with the five-axis coordinates derived vir-
tually based on a cradle-type machine. The tooth surfaces
produced by this method, however, still deviated slightly from
the theoretical ones because different tools were used.

The disk tool cutting method proposed here is for a five-
axis machine whose five-axis coordinates for gear production
are derived based on the target tooth surface. First, based on
this surface’s given topographic points, a B-spline fitted sur-
face is constructed that can then be used to refine the cutter-
contact (CC) points on the tooth surface to improve the preci-
sion of the gear produced. Mathematical models are also
established for both the disk tool and five-axis machine.
Next, based on the tool’s reference points and the work gear’s
CC points, all the five-axis coordinates for gear production are
derived through inverse kinematics. These coordinates are
then used to generate the NC codes that allow the NC verifi-
cation software to perform simulations and error checks. The
results of the cutting simulation verify the correctness of the
mathematical models.

2 Construction of fitted surface

Because bevel gear tooth geometries are complicated and de-
pend on cutting method, they are derived from the mathemat-
ical models given in references [1–4]. The nominal data for
the bevel gears include the gear blank parameters and the
position and normal of the topographic points, which are
employed for further gear manufacturing or measurement.
These specifications can either be calculated from the mathe-
matical models or taken directly from commercial bevel gear
design software. To refine the tooth surface CC points for
better gear precision, the fitted surface is constructed based
on the given topographic points (see Fig. 1) using the B-
spline surface fitting technique detailed in reference [10].

The position r1(u,w) of the fitted tooth surface is a function
of parameters u and w dependent on the defining polygon net
(control points Bi , j) expressed by Eq. (1). First, however, the
fitting parameters must be given, including the degrees of the
polynomials in the u−direction and w−direction (k, l) and the
numbers of the polygon net edges n ×m:

r1 u;wð Þ ¼ ∑
nþ1

i¼1
∑
mþ1

j¼1
Ni;k uð ÞM j;l wð ÞBi; j; ð1Þ

where Ni , k and Mj , l are B-spline basis functions of degrees k
and l with respect to parameters u and w. The control points

are determined from the known surface data (topographic)
points [D], which are then interpolated to produce the basis
functions whose products [C] are constructed into a matrix:
Ci , j =Ni , kMj , l. If [C] is not square, the number of control
points is smaller than the number of data points, so the control
point position vectors [B] can be solved using the least squares
method:

B½ � ¼ C½ �T C½ �
� �−1

C½ �T D½ �: ð2Þ

Figure 2 shows the fitting tooth surface with one of CC
points M, position r1 and the three orthogonal unit vectors
τ1, t1, and n1 of the axes, with n1 being the surface normal
vector obtained from the cross product of the surface’s two
tangent vectors. Determination of these three axes vectors,
which define coordinate system Srg, enables derivation of
the machining coordinates.

According to the differential geometry, vectors Q1 and T1,
which are tangent to the surface at a given point, can be eval-
uated by differentiating r1 with respect to parameters u and w
as follows:

Q1 u;wð Þ ¼ ∂r1 u;wð Þ
∂u

¼ ∑
nþ1

i¼1
∑
mþ1

j¼1
N

0
i;k uð ÞM j;l wð ÞBi; j

T1 u;wð Þ ¼ ∂r1 u;wð Þ
∂w

¼ ∑
nþ1

i¼1
∑
mþ1

j¼1
Ni;k uð ÞM 0

j;l wð ÞBi; j

8>>><
>>>:

⋅ ð3Þ
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The three orthogonal vectors (τ1, t1, n1) of the axes are then
given by

q1 u;wð Þ ¼ Q1 u;wð Þ
Q1 u;wð Þj j ; t1 u;wð Þ ¼ Τ1 u;wð Þ

Τ1 u;wð Þj j ¼ t1x t1y t1z
� �T

n1 u;wð Þ ¼ t1 u;wð Þ � q1 u;wð Þ
t1 u;wð Þ � q1 u;wð Þj j ¼ n1x n1y n1z½ �T

τ1 u;wð Þ ¼ n1 u;wð Þ � t1 u;wð Þ ¼ τ1x τ1y τ1z½ �T

8>>>><
>>>>:

⋅

ð4Þ

3 Mathematical model of the disk tool

The tool used here (see Fig. 3) is a milling cutter with
inner (IB) and outer (OB) blades, whose coordinate

systems Sl and St are rigidly connected to both the cut-
ting blade and the tool. Parameters r0 and βare the
tool’s reference radius and rotation angle, whileαb, αv,
wp, ht, and u denote the blade’s profile angle, reference
angle, point width, reference height, and profile param-
eter, respectively.

The cutting blade consists of a straight-lined edge and a
fillet radius, represented as the following vector equations:

rl uð Þ ¼ xl uð Þ 0 zl uð Þ 1½ �T : ð5Þ

The coordinates xl and zl of the straight-lined edge and fillet
radius, respectively, are

xl uð Þ ¼ −ucosαb

zl uð Þ ¼ ∓
wp

2
þ usinαb

� �(
and

x fð Þ
l uð Þ ¼ −ρb þ ρbcosu

z fð Þ
l uð Þ ¼ ∓

wp

2
−ρbtan π=4−αb=2ð Þ þ ρbsinu

� �
8<
: ⋅

where symbol ∓ indicates the inner and outer blade edges. In
transition from coordinate system Sl to St, the tool position is

rt u;βð Þ ¼ Mtl βð Þrl uð Þ ¼ xt yt zt 1½ �T : ð6Þ

The corresponding coordinate transformation matrix is

Mtl βð Þ ¼
cosβ sin β 0 0
−sinβ cos β 0 0
0 0 1 0
0 0 0 1

2
664

3
775

1 0 0 r0
0 1 0 0
0 0 1 ρb−ρb sin αv þ cz cos αv

0 0 0 1

2
664

3
775

cos αv 0 sin αv 0
0 1 0 0

−sin αv 0 cos αv 0
0 0 0 1

2
664

3
775;
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Fig. 3 Coordinate systems for
the disk tool
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where

cz ¼ wp

2
−ρbcot

αb þ π=2
2

� �
⋅

As Fig. 4 shows, point M'on the tool is selected as the
reference cutting point, with nt as the surface normal vector.
The three orthogonal unit vectors (τt, tt, nt) of the axes, which
define coordinate system Srt, are expressed as Eq. (7), which
enables derivation of the cutting coordinates.

τt u;βð Þ ¼ ∂rt u;βð Þ
∂u

. ∂rt u;βð Þ
∂u

����
���� ¼ τ tx τ ty τ tz½ �T

tt u;βð Þ ¼ ∂rt u;βð Þ
∂β

. ∂rt u;βð Þ
∂β

����
���� ¼ ttx tty ttz½ �T

nt u;βð Þ ¼ tt u;βð Þ � τt u;βð Þ ¼ ntx nty ntz½ �T

8>>>><
>>>>:

ð7Þ

4 Coordinate systems of the five-axis machine

Because a five-axis machine has enough degrees of freedom
to manufacture complicated bevel gear tooth surfaces, it is
flexible enough to replace a dedicated machine, thereby
lowering cost. At present, industry employs three main
types of five-axis machine: rotary table with tilting head,
trunnion table, and double pivot spindle head. The first
two have a workpiece rotation axis and so are highly suit-
able for producing cylinders or cones with features around
the periphery, including gears. The tilt head rotary table is
particularly suited to manufacturing large gears and is thus
adopted here as a numerical example. One such machine,
from the Gleason Heller CP series, is illustrated in Fig. 5,
which shows its three orthogonally arranged linear axes.
The workpiece is positioned on the rotary table and travels
along the X axis while the tilting spindle head rotates on the
A axis and travels along the Yand Z axes. Because the work-
piece table is positioned horizontally, the machine is espe-
cially suitable for manufacturing heavier parts.

Before the workpiece can be cut, the program zero for gear
production must be defined, as illustrated in Fig. 6 by a right
side view of the machine. This reference origin is derived by
first aligning the tool axis with the workpiece axis so that the
tool can move along the z-axis until its reference point a
touches workpiece point b. The coordinates for this location
are then recorded as the program zero. The other parameters
areMd, the mounting distance of the work gear; Hf and ht, the
height of the fixture and tool, respectively; and kz, the offset
between pivot point Q and the reference point of tool arbor c.

The coordinate systems of the example machine are shown
in Fig. 7, in which the coordinate systems St and S1 are rigidly

1

3

2
5

4

1. Translational axis X

2. Translational axis Y

3. Translational axis Z

4. Work spindle C

5. Head rotary axis A

6. Head tilting angle

7. Offset

8. Cutter spindle

6

7

8

Fig. 5 Configuration of the tilt head rotary table five-axis machine
(Gleason Heller CP series)
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connected to the disk tool and work gear, respectively, which
themselves are positioned by the auxiliary coordinate systems
Sa to Se. Here, Cx, Cy, and Cz are three coordinates for the
translational axes, φa and φc are two coordinates for the rota-
tional axes, and ϕm is the tilt angle for the head that, when it
equals 45°, enables the tool tilting around the zc , b axis, which

is on the x − z plane at a 45° angle to the Z axis. Not shown in
the figure is φb, the rotation angle of the tool.

The transitional coordinate transformation matrix from co-
ordinate systems St and S1 is represented by

M1t φa;φb;φc;Cx;Cy;Cz
	 


¼ M1e φcð ÞMed Cx;Cy;Cz
	 


Mdt φa;φbð Þ; ð8Þ

with each matrix of the right-hand side of the equation as
follows:

Mdt φa;φbð Þ ¼
cosφb sinφb 0 0
−sinφb cosφb 0 0

0 0 1 − ht þ kzð Þ
0 0 0 1

2
664

3
775

cosϕm 0 sinϕm 0
0 1 0 0

−sinϕm 0 cosϕm 0
0 0 0 1

2
664

3
775;

cosφa sinφa 0 0
−sinφa cosφa 0 0

0 0 1 0
0 0 0 1

2
664

3
775

cosϕm 0 −sinϕm 0
0 1 0 0

sinϕm 0 cosϕm 0
0 0 0 1

2
664

3
775

Med Cx;Cy;Cz
	 
 ¼

1 0 0 −Cx

0 1 0 Cy

0 0 1 Cz þ ht þ kz
0 0 0 1

2
664

3
775; and M1e φcð Þ ¼

cosφc sinφc 0 0
−sinφc cosφc 0 0

0 0 1 0
0 0 0 1

2
664

3
775

5 Derivation of the five-axis coordinates for bevel
gear tooth surface production

The five-axis machine coordinates for cutting a gear are
derived based on the CC points on the target tooth sur-
face. Figure 8 shows the relative position of the disk tool
and work gear during the cutting process, with the former
tangent to the work gear tooth surface at point M.
Aligning the position vector rt and three unit vectors (r-

t(xt, yt, zt), tt, τt, nt) of the axes of the disk tool reference

point with those (r1(x1, y1, z1), t1, τ1, n1)of the tooth sur-
face CC point yields the transitional transformation matrix
from coordinate systems Srt and Srg(Eq. (9)). To produce
the same work gear using the same tool, the relative po-
sition between the tool and work gear should be as shown
in Fig. 8 no matter which machine is used, meaning that
the five-axis machine’s coordinate transformation matrix
M1t and matrix M Uð Þ

1t must be identical (Eq. (9)). Because
each element of the matrix M Uð Þ

1t is derived from known
axes parameters ((rt, tt, τt, nt) and (r1, t1, τ1, n1)), the five
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Fig. 8 Relative positions of the disk tool and work gear
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coordinates can be solved using inverse kinematics as
shown in Eq. (10). The tool rotation angle φb, however,

is irrelevant to the translational coordinates in a milling
process.

M1t φa;φb;φc;Cx;Cy;Cz
	 
 ¼ M Uð Þ

1t

¼
t1x τ1x n1x x1
t1y τ1y n1y y1
t1z τ1z n1z z1
0 0 0 1

2
664

3
775

ttx tty ttz 0
τ tx τ ty τ tz 0
ntx nty ntz 0
0 0 0 1

2
664

3
775

1 0 0 −xt
0 1 0 −yt
0 0 1 −zt
0 0 0 1

2
664

3
775 ¼

e11 e12 e13 e14
e21 e22 e23 e24
e31 e32 e33 e34
0 0 0 1

2
664

3
775;

ð9Þ

φa ¼ cos−1 −csc2ϕm cos2ϕm−e33
	 
	 


φb ¼ tan−1 x; yð Þ−δc ¼ tan−1 e32;−e31ð Þ−δc
φc ¼ tan−1 −e23;−e13ð Þ−δc
δc ¼ tan−1 sinφa; 2cosϕmsin

φ2
a

4

� �
8>>>><
>>>>:

and

Cx ¼ −e14cosφc þ e24sinφc þ sin 2ϕmð Þsin φ
2
a

4
ht þ kzð Þ

Cy ¼ e14sinφc þ e24cosφc−sinφasinϕmsin
φ2
a

4
ht þ kzð Þ

Cz ¼ e34−2sin2ϕmsin
φ2
a

4
ht þ kzð Þ

8>>>>><
>>>>>:

⋅ ð10Þ

6 Numerical examples and discussion

The numerical example used here is a spiral bevel gear pair
generated by the duplex-helical method (SGDH), whose basic
parameters and gear blank data are listed in Table 1. The
nominal gear data are determined according to references [4,
11, 12]. In the proposed method, the 11 × 7 topographic points
of the tooth surface are further fitted based on a B-spline
surface with the 11 × 7 control points of the pinion and ring
gear calculated from Eq. (2) (see Table 2 for a partial listing).

Degrees k and l of B-spline basis functions are four. A refined
set of 15 × 7 CC points on the tooth surface is then generated
from Eq. (1) to satisfy the demand for manufacturing preci-
sion. The orthogonal unit vectors of each point (partially listed
in Table 3) are further calculated based on Eqs. (3) and (4).
The symbols i and j in the following tables indicate row and
column numbers (see Fig. 1).

The parameters of the disk tool and five-axis machine are
given in Table 4. As stipulated in reference [8], the cutter
radius must be neither too large nor too small to avoid

Table 1 Basic parameters for the
example pair Pinion Ring gear

Items Convex Concave Convex Concave

(A) Basic gear data
Number of teeth z 20 40
Outer module met 6.000
Pressure angle αn 20.000o

Spiral angle βm 35.000o L.H. 35.000o R.H.
(B) Gear blank data

Pitch angle δ 26.565o 63.435o

Face angle δa 31.274o 65.728o

Outer diameter dae 133.010 243.167
Outer whole depth he 12.118
Face width b 40.000
Mounting distance Md 128.000 76.000

(C) Assembly data
Shaft angle Σ 90.000o

Offset V 0.000 −
Axial setting H 0.000 0.000

(D) FM cutter data
Profile angle αb 22.667o 17.333o 22.667o 17.333o

Cutter radius r0 133.008 135.608 133.008 135.608
Fillet radius ρb 1.200 1.200 1.200 1.200
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overcutting on the concave or convex side. Figure 9 shows the
cutter profiles of the pinion and ring gear disk tools, in which
the former must be arranged in the opposite direction to the
latter for solving machine coordinates. Tool wear can be

reduced by selecting different disk tool reference points for
different cutting depths. The position vector and three unit
vectors of the cutting tool reference points are calculated from
Eqs. (6) and (7) and those for the pinion and ring gear are

Table 2 Control points on the gear’s fitted tooth surfaces: pinion and ring gear (partial list)

Pinion Ring gear

Convex Concave Convex Concave

j i x1 y1 z1 x1 y1 z1 x1 y1 z1 x1 y1 z1

1 1 −39.287 8.516 42.821 −38.259 12.491 42.845 −81.745 −9.650 30.068 −81.216 −13.824 30.212

1 4 −42.318 7.876 44.243 −40.521 14.576 44.252 −83.275 −8.600 32.877 −82.363 −15.212 32.953

1 7 −45.183 6.645 45.556 −42.362 17.063 45.556 −84.770 −7.367 35.623 −83.419 −16.778 35.623

6 1 −48.653 −3.477 24.207 −48.845 1.013 24.301 −99.905 2.551 19.582 −99.987 −2.147 19.852

6 4 −52.434 −5.594 26.181 −52.667 2.918 26.247 −101.776 4.321 23.443 −101.81 −3.808 23.594

6 7 −55.729 −8.532 28.002 −56.067 5.609 28.046 −103.562 6.358 27.215 −103.542 −5.764 27.238

11 1 −53.747 −18.542 6.428 −55.267 −13.941 6.499 −115.302 18.227 9.468 −116.166 13.132 9.813

11 4 −57.639 −22.507 8.936 −60.604 −12.781 8.966 −117.347 20.867 14.373 −118.743 11.271 14.552

11 7 −60.607 −27.381 11.253 −65.678 −10.451 11.253 −119.223 23.842 19.167 −121.250 8.999 19.167

Table 3 CC points on the gear’s fitted tooth surfaces: position and vectors (partial list)

Position Tangential vector, u Tangential vector, w Normal vector

j i x1 y1 z1 τ1x τ1y τ1z t1x t1y t1z n1x n1y n1z

(a) Convex flank of pinion

1 1 −39.287 8.516 42.821 −0.852 −0.043 0.522 −0.46 −0.418 −0.784 −0.252 0.908 −0.336
1 7 −45.183 6.645 45.556 −0.687 −0.257 0.679 −0.505 −0.503 −0.701 −0.522 0.825 −0.216
8 4 −52.365 −5.66 26.183 −0.679 −0.378 0.63 −0.316 −0.624 −0.715 −0.663 0.684 −0.305
15 1 −53.747 −18.542 6.428 −0.698 −0.465 0.544 −0.117 −0.676 −0.728 −0.706 0.572 −0.417
15 7 −60.607 −27.381 11.253 −0.433 −0.546 0.717 −0.071 −0.772 −0.631 −0.899 0.324 −0.296

(b) Concave flank of pinion

1 1 −38.259 12.491 42.845 −0.829 0.47 0.304 −0.503 −0.386 −0.773 0.246 0.794 −0.556
1 7 −42.362 17.063 45.556 −0.667 0.712 0.217 −0.608 −0.353 −0.711 0.43 0.607 −0.669
8 4 −52.607 2.905 26.247 −0.899 0.375 0.226 −0.414 −0.562 −0.716 0.141 0.737 −0.661
15 1 −55.267 −13.941 6.499 −0.954 −0.069 0.291 −0.172 −0.67 −0.722 −0.245 0.739 −0.628
15 7 −65.678 −10.451 11.253 −0.958 0.232 0.171 −0.287 −0.704 −0.649 0.03 0.671 −0.741

(c) Convex flank of ring gear

1 1 −81.745 −9.65 30.068 −0.367 0.24 0.899 −0.792 0.426 −0.437 0.488 0.872 −0.033
1 7 −84.77 −7.367 35.623 −0.236 0.275 0.932 −0.81 0.475 −0.345 0.537 0.836 −0.11
8 4 −101.745 4.369 23.443 −0.25 0.288 0.924 −0.7 0.605 −0.378 0.669 0.742 −0.05
15 1 −115.302 18.227 9.468 −0.267 0.311 0.912 −0.573 0.71 −0.41 0.775 0.632 0.011

15 7 −119.223 23.842 19.167 −0.132 0.293 0.947 −0.558 0.767 −0.315 0.819 0.57 −0.063
(d) Concave flank of ring gear

1 1 −81.216 −13.824 30.212 −0.561 −0.31 0.768 −0.809 0.402 −0.429 0.176 0.862 0.476

1 7 −83.419 −16.778 35.623 −0.492 −0.433 0.756 −0.861 0.371 −0.348 0.13 0.822 0.555

8 4 −101.782 −3.782 23.594 −0.589 −0.287 0.755 −0.749 0.545 −0.377 0.303 0.788 0.536

15 1 −116.166 13.132 9.813 −0.636 −0.109 0.764 −0.602 0.689 −0.403 0.483 0.717 0.504

15 7 −121.25 8.999 19.167 −0.619 −0.261 0.741 −0.668 0.67 −0.323 0.412 0.695 0.589
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listed in Table 5. Each matrixM Uð Þ
1t can be calculated from the

selected disk tool reference point and those (r1, t1, τ1, n1) of

each work gear CC point. The five-axis coordinates for these
latter are then determined according to Eq. (10) and partially
listed in Table 6.

The numerical control (NC) codes for cutting are generated
based on the five coordinates listed in Table 6, whose posi-
tions are tested for errors using the NC verification software
VERICUT. The NC codes are also used to perform cutting
simulations for the pinion and ring gear (displayed in Fig. 10).
After simulation, the finished gears are exported as STL
(StereoLithography) files whose left side is shown in
Fig. 11. The flank topographic deviations between the STL
and theoretic tooth surfaces are then evaluated using a pro-
gram developed by the authors. Figure 11a, b (right side) show
the results for the pinion and ring gear: average error = 0.0 and
0.0μm, sum of the square = 4 , 048and 5 , 457μm2, and tooth
space error = −0.2and −0.9μm, respectively. These errors,
which could result from simulation error (with an interpola-

Table 5 Disk tool reference
points (partial list) Parameter Position, rt Tangent, τt Tangent, tt Normal nt

i u β xt yt zt

(a) Inner blade for the convex flank of pinion

1 1.5 0.0 48.153 0.000 −0.192 (−0.982, 0, −0.191) (0, −1, 0) (0.191, 0, −0.982)
4 1.6 0.0 47.858 0.000 −0.249
7 1.7 0.0 47.564 0.000 −0.307

(b) Outer blade for the concave flank of pinion

1 1.8 0.0 49.194 0.000 −2.563 (−0.656, 0, −0.755) (0, −1, 0) (0.755, 0, −0.656)
4 1.9 0.0 48.997 0.000 −2.790
7 2.0 0.0 48.800 0.000 −3.016

(c) Inner blade for the convex flank of ring gear

1 1.5 0.0 48.153 0.000 0.192 (−0.982, 0, 0.191) (0, −1,0) (−0.191, 0, −0.982)
4 1.6 0.0 47.858 0.000 0.249

7 1.7 0.0 47.564 0.000 0.307

(d) Outer blade for the concave flank of ring gear

1 1.8 0.0 49.194 0.000 2.563 (−0.656, 0, 0.755) (0, −1, 0) (−0.755, 0, −0.656)
4 1.9 0.0 48.997 0.000 2.79

7 2 0.0 48.800 0.000 3.016

IB

OB

(a) Pinion 

IB

OB

(b) Ring gear 

Fig. 9 Disk tool profiles in gear
cutting

Table 4 Disk tool and five-axis machine parameters

Items Pinion Ring gear

(A) Disk tool

Point width wp 1.500

Profile angle αb 19.000o

Reference angle αv 30.000o

Cutter radius r0 50.000

Fillet radius ρb 0.800

Reference height ht 14.000 27.000

(B) Five-axis machine

Head tilt angle ϕm 45.000o

Machine offset kz 95.000 75.000
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Table 6 Five-axis coordinates for finish cutting the gears (partial list)

Convex flank Concave flank

j i φa φc Cx Cy Cz φa φc Cx Cy Cz

(a) Pinion

1 1 133.898 −136.465 78.335 34.832 −44.833 106.625 −92.308 95.816 22.585 −24.993
1 4 123.997 −123.047 86.556 27.654 −42.400 113.207 −101.706 94.466 22.005 −33.597
1 7 112.891 −107.067 96.042 19.025 −39.645 127.979 −119.247 90.548 26.275 −48.342
8 1 140.818 −122.914 84.857 32.988 −33.805 111.436 −77.426 99.939 14.940 −13.337
8 4 129.957 −109.053 92.196 24.377 −30.903 118.311 −87.217 98.911 16.437 −21.667
8 7 117.814 −92.474 100.098 14.435 −27.111 133.340 −105.367 95.413 23.993 −35.675
15 1 146.618 −107.270 91.031 30.549 −20.749 116.736 −62.271 102.711 7.848 −1.058
15 4 135.028 −93.352 97.114 20.525 −17.506 123.098 −71.679 102.222 10.779 −8.381
15 7 122.667 −77.198 102.991 9.898 −13.276 136.769 −88.658 99.960 20.042 −20.545

(b) Ring gear

1 1 121.048 7.353 199.512 −34.342 −14.569 130.908 −8.640 202.414 −8.040 −20.336
1 4 126.539 2.486 202.234 −22.410 −23.496 126.819 −3.073 200.339 −18.477 −22.984
1 7 132.299 −2.650 204.029 −8.953 −32.673 120.491 4.228 196.065 −33.212 −24.341
8 1 117.726 −1.738 179.371 −33.891 −4.571 128.207 −17.263 182.933 −10.985 −10.885
8 4 123.281 −6.368 182.797 −23.706 −12.637 124.244 −11.932 181.316 −19.566 −12.619
8 7 129.057 −11.246 185.417 −12.118 −20.923 118.416 −5.087 177.973 −31.301 −13.292
15 1 115.326 −11.482 159.108 −34.108 5.234 126.012 −26.450 163.261 −14.918 −1.347
15 4 120.601 −15.673 163.026 −25.930 −1.697 122.572 −21.575 162.26 −21.191 −2.429
15 7 126.254 −20.252 166.407 −16.207 −8.954 117.696 −15.513 160.045 −29.555 −2.730

Fig. 10 Cutting simulation for the gear using VERICUT
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tion tolerance of 0.05 mm in VERICUT), are small enough to
confirm the correctness of the five-axis coordinates (videos of
the cutting simulations for the pinion and gear are available on
the web, see [13, 14]).

7 Conclusions

A five-axis machine with a disk tool is a good choice for
manufacturing small or medium batches of large bevel gears
because it is less costly and more flexible than a dedicated
machine. This paper therefore proposes a disk tool cutting
method for bevel gears in which the dedicated tool is replaced
by a disk tool on a tilt head rotary table five-axis machine.
Once the mathematical models for the tool and machine are
established, the coordinate transformation matrices for all CC
points on the tooth surface are determined by aligning the
coordinate system of the disk tool reference point with that
of each work gear CC point. No matter the machine type, the
coordinate transformation matrices are identical whenever the
same tool is used to produce the same workpiece, allowing
derivation of the five-axis coordinates for gear production
through inverse kinematics. These CC point coordinates are
necessary for generating the NC codes, which are used by the

NC verification software VERICUT to perform cutting simu-
lations for both pinion and ring gear. This software also gen-
erates STL gear files for further evaluation of the extent to
which the simulation outcomes deviate from the theoretical
ones. According to this error analysis, the deviations are small
enough to successfully confirm the correctness of the mathe-
matical models.

αb, profile angle of the blade; αv, reference angle of the
blade; β, rotation angle of the disk tool; Cx ,Cy ,Cz, translating
coordinates for the five-axis machine; φa ,φc, rotation coordi-
nates for the five-axis machine; φb, spindle angle for the five-
axis machine; ht, reference height of the disk tool; kz, distance
between the pivot pointQ and the reference point of tool arbor
c; Mij, homogeneous transformation matrix from coordinate
system Sj to coordinate system Si; n1 , t1 , τ1, three orthogonal
unit vectors of the work gear CC point; nt , tt , τt, three orthog-
onal unit vectors of the disk tool reference point; r0, cutter
radius; r1, position vector of the work gear’s topographic
point; rt, position vector of the disk tool reference point; ρb,
fillet radius of the blade; u, parameter of the cutting edge; wp,
point width of the blade; [B], matrix of the three-dimensional
coordinates of the control points; [C], matrix of the products
of the basic functions; [D], matrix of the three-dimensional
coordinates of the surface data points.

STL model
Theoretic tooth

surface

Average:             , Sum of Squared:

Tooth Space Error: 

Convex

Concave

0.2 m
24,048 m0.0 m

Gap

(a) Pinion 

STL model

Theoretic tooth

surface

Average:             , Sum of Squared:

Tooth Space Error: 

Concave

Convex

0.9 m
25, 457 m0.0 m

Gap

(b) Ring gear 

Fig. 11 Topographic deviations of the gear flank produced by VERICUT simulation
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