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Abstract Accurate online health prognostics is considered
as a significant part of the condition-based maintenance
(CBM), and it contributes to reduce downtime and achieve
the most reliable running condition for machinery equip-
ment. In this paper, an online machine health prognostics
approach is proposed based on the modified duration-
dependent hidden semi-Markov model (MDD-HSMM) and
the high-order particle filter (HOPF) method. In the MDD-
HSMM, the health state transition probabilities and the
observation probabilities are both defined not only as state
dependent like traditional HSMM does, but also as duration
dependent, which is more realistic to describe the state space
model to model the mechanical failure propagation process.
And a new forward-backward algorithm is developed to
facilitate the training process and to reduce computational
complexity of the proposed MDD-HSMM. Then, the HOPF
method with an online update scheme is applied to recog-
nize the health states and predict the residual useful lifetime
(RUL) value of machine in real time, which is based on the
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health state space model established by the MDD-HSMM
and the online sensing monitoring data. And, a sliding win-
dow with variable length, which represents the relationship
between current state and several previous states, is applied
to adjust the order of HOPF. Finally, a real case study is used
to illustrate the prognostics performance of the proposed
approach and the experiment results indicate that the pro-
posed approach has higher effectiveness than conventional
HSMM methods.
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1 Introduction

The demands for lower environmental risks and higher oper-
ation efficiency and reliability of the machinery equipment
are increasing with the development of modern manufactur-
ing [1]. Meanwhile, the complexity of machinery equipment
and the causes of its failures are also increasing with the
technology development, which makes it difficult to moni-
tor and predict the machine health conditions in real time.
In modern manufacture systems, the failures of machine
may not only cause large economic losses, but also threat
to human safety in some cases. Consequently, the effec-
tive maintenance is necessary to provide a healthy operating
condition for machinery equipment to prevent unexpected
downtime and reduce maintenance cost in the manufactur-
ing industry, in which the reliability, maintainability, and
safety are considered as important criteria [2, 3]. From
the earliest breakdown maintenance to the later plan main-
tenance, the equipment maintenance strategies have been
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changing to the current preventive maintenance [4] espe-
cially the condition- based maintenance (CBM) [5], which
is a decision-making strategy for optimally maintenance
schedule based on the current equipment health condition
assessment using the real-time condition monitoring data
[6].

Health prognostics is considered as an important part of
CBM to improve the reliability and lifetime of machine sys-
tems. The objective of health prognostics is to predict the
future failure and estimate the residual useful life (RUL)
values of machines before catastrophic faults occur [7].
Because of involving in large amounts of historical data
processing and complex computation, health prognostics is
generally complex and difficult, especially when the real-
time prognosis is acquired while the machine is in operation.
During the last few decades, numerous research efforts,
including academic papers and developed prediction mod-
els for practical applications, have appeared in the field of
machinery equipment health prognostics [8–10].

In general, machine health prognostics methods can be
classified into three categories: physical-based methods
[11], data-driven methods [12–14] and model-driven meth-
ods [15]. With the difficulty of constructing a good physical
model to present the degradation process accurately and the
higher costs, it is unrealistic that apply the physical-based
methods to heavy machine health prognostics, since the
fault degradation process is complicated. For the data-driven
methods that use the condition monitoring data to analy-
sis and predict the current and future health of a machine,
there are unavoidable limitations of slow convergence, local
optimal solution, and computational explosion problems
with massive online monitoring data. Consequently, the
model-driven methods that rely on the mathematical mod-
els to describe the degradation process of equipment and
predict the health condition based on the mathematical
model and monitoring data are considered as more appro-
priate for heavy machine equipment health management.
The hidden Markov model (HMM) [16–18] is utilized as
a main method of model-driven health prognostics models.
However, there are some inherent limitations of HMM, such
as the memoryless assumption of Markov chains, unrealis-
tic exponential state duration distribution. In recent years,
the semi-hidden Markov model (HSMM), as an extension
and generalization of HMM, has become an effective and
widely applied health condition prognostics technology by
adding the explicit state duration into its structures [19–21].

In this paper, we will develop a machinery equipment
health prognostics approach based on the HSMM. In fact,
the HSMM has been applied to machine health management
effectively with its mathematical foundation and modeling
perspectives. For example, Liu and Dong proposed an on-
line health prognosis method to recognize the health state
and predict the residual useful lifetime (RUL) values of

equipment based on HSMM and sequential Monte Carlo
(SMC) method [22]. Furthermore, they presented an adap-
tive hidden semi-Markov model (AHSMM) integrated with
multi-sensor measurements to predict the health condition
of equipment [23]. In addition, Wu et al. [24] also applied
HSMM to identify the machine states in real-time based
on the acoustic emission (AE) sensor monitoring signal.
Although the previous HSMM has been proved as a good
model for machinery equipment health prognostics, the
deterioration effect within a health state is not considered
in this model, which assumes that the state transition prob-
abilities are invariant, while it’s not applicable in real world
applications. For this limited time-invariant characteristic
of HSMM, Peng and Dong [21] integrated three types of
aging factors into the HSMM transition matrix to character-
ize the deterioration of equipment, and the deterioration was
assumed as a certain distribution form. Moreover, Tao et al.
[25] proposed the duration-dependent state transition prob-
abilities of HSMM, and developed a new forward-backward
algorithm to train the modified HSMM, which was used for
speech synthesis successfully. Wang et al. [26] also utilized
the HSMM with duration-dependent state transition proba-
bilities for equipment health prognostics, and its effective-
ness was proved with the comparison of traditional HSMM.
However, in the above studies, only the duration-dependent
characteristic of state transition probabilities is considered,
while the observation probabilities are still duration inde-
pendent, which ignore the relationship between the obser-
vations and the time-varying characteristic of observation
sequence. In fact, the sensing monitoring signal of operating
machinery equipment is affected by the deterioration effect
of health state, as a result, the output observation proba-
bilities of HSMM should also be considered as changing
with duration time of each health state. Therefore, this paper
presents a modified duration-dependent HSMM (MDD-
HSMM) where the transition probability distribution and
observation probability distribution are both related to the
duration of state.

In addition, the particle filter (PF) method is cho-
sen as the online state recognition and prediction algo-
rithm for heavy duty mechanical equipment based on
the complex nonlinear state space model established by
MDD-HSMM. The PF method is a sequential Monte
Carlo method refers to the recursive Bayesian algorithm,
which approximates the state probability density func-
tion (PDF) in real time using a set of random particles
with associated weights [27]. With the great advantages
of decreasing the computational complexity and dealing
with complex nonlinear and non-Gaussian problem use-
fully, PF has been applied to machinery health states
estimation and prognosis successfully [28]. High-order par-
ticle filter (HOPF) [29, 30] extends the first-order state
equation of original PF method to multi-order, which
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takes the relationship between current state and several
previous states into consideration. Therefore, HOPF is more
appropriate to describe the relationship between unobserv-
able states and monitored observation sequence of machin-
ery equipment where the health state is not only dependent
on the last state, but also on multiple previous states that
remaining in the same state.

Motivated by the above demands, in this paper, an
improved equipment health prognostics approach based on
MDD-HSMM and HOPF is proposed, where the MDD-
HSMMwith duration-dependent transition probabilities and
observation probabilities is used to obtain the nonlinear state
space model for modeling the health degradation of machine
equipment. In order to facilitate the computation of the pro-
posed MDD-HSMM, the new forward-backward variables
and associated algorithm are developed. Then, the HOPF
method is adopted to recognize and predict the health states
of machine accurately in real time based on the nonlinear
state space model constructed by the MDD-HSMM and the
online sensing monitoring data.

The remainder of this paper is organized as follows. In
Sections 2 and 3, the theories of MDD-HSMM and HOPF
are introduced respectively. Section 4 presents the pro-
posed online health prognostics framework. In Section 4,
the duration-dependent state space model is introduced first,
and then, the integration of the state space model and HOPF
for online health state recognition is demonstrated. Next, the
corresponding RUL value prediction method is proposed.
Section 5 illustrates a case study for the proposed prognos-
tics approach and gives a discussion for its performance.
Finally, conclusions are made in Section 6.

2 Modified duration-dependent hidden
semi-Markov model

2.1 Basic theory of general HSMM

The HSMM is an extension of HMM by adding the
explicit state duration into its structures, and the state

duration is assumed as a random integer variable in the set
D = 1, 2, ..., D. With the explicit duration, a state in HSMM
generates a segment of observations determined by the
length of state duration d, instead of a single observation in
standard HMM [20]. In general, the states in a segmental
HSMM are called macro-states and each of which con-
sists of several single states called micro-states, while only
the transition between macro-states is the Markov process
[31]. Suppose that a macro-state sequence consists of n seg-
ments (i.e., has n macro-states), and for the ith segment,
the end-point time index is qi , and the observations seg-
ment is oqi−1+1,...,oqi

, and the corresponding micro-states
is sqi−1+1,...,sqi

, which have the same macro-state label hi .
The general HSMM framework is illustrated in Fig. 1.

Let st denote the hidden state at time t in the state set
S = {1, 2, ..., N} and ot is the observation value at time t

which is usually a feature vector in machine health manage-
ment. In general, a HSMM is characterized by its param-
eters: initial state distribution π = {πi}(πi = P(s1 = i),
1 ≤ i ≤ N); state transition probability distribution A = {aij }
(aij = P(sqn = j |sqn−1 = i), 1 ≤ i, j ≤ N); observation prob-
ability distribution B = {bi(ot )}(bi(ot ) = P(ot |st = i), 1 ≤
i ≤ N, 1 ≤ t ≤ T), where T is the length of observation
sequence; state duration distribution D = {pi(d)}(pi(d) =
P(t2 − t1 = d|st1,···t2 = i, st1−1 �= i, st2+1 �= i), 1 ≤ i ≤
N, 1 ≤ d ≤ Di).

In practical applications, HSMM also has three basic
problems that need to be dealt with similar to HMM,
including evaluation, decoding, and learning. Furthermore,
there also have three basic algorithms for the above three
problems, that are, forward-backward algorithm, Viterbi
algorithm, and Baum-Welch algorithm.

2.2 Inference for modified duration-dependent HSMM

As opposite to the general HSMM, the MDD-HSMM sup-
poses that both the transition probabilities and observation
probabilities are related to the duration of state, which
means that these probability distributions depend not only
on the current state but also on the duration of state. In this

Fig. 1 A general HSMM
framework
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paper, we research the Markov model with left-to-right
structure where the states are ordered linearly from left
to right, and the state can only transit to adjacent right
state or stay in itself [32]. This directional structure is suit-
able to describe the health state degradation of machinery
equipment.

The parameters of the MDD-HSMM are defined as fol-
lows: the initial state distribution π = {πi} and the duration
distribution D = {pi(d)} are the same as the general
HSMM; the transition probability from state i to state j at time
t after having stayed in state i for dt (i) = d is defined as:

aij (d) = P(st+1 = j |st−d �= i, st−d+1 = · · · = st = i) (1)

where j = i + 1 or j = i.
The observation probability of state i at time t after

having stayed in state i for dt (i) = d is defined as:

bi,d(ot ) = P(ot |st−d �= i, st−d+1 = · · · = st = i) (2)

In this study, the observation sequence for MDD-HSMM
is consisted of multi-dimensional feature vectors extracted
from the machine sensing monitoring data, which may not
simply follow a single parametric probability distribution.
However, the Gaussian Mixture Model (GMM) has the
advantage of simply depicting the distribution of a feature
vector in the probability space, thanks to the use of the
weighted sum of the probability density functions of multi-
ple Gauss distributions [33], which is often chosen to model
the observation probability distribution of HSMM [17, 22,
26]. Thus, the Gaussian mixture distribution is used to repre-
sent the duration-dependent observation probabilities in this
study.

bi,d(ot ) =
G∑

g=1
ωi,d(g)N(ot , μi,d(g), �i,d(g)) (3)

where G is the number of Gaussian elements, and
N(ot , μi,d(g), �i,d(g)) is the gth Gaussian element at state
i with dt (i) = d. ωi,d(g), ui,d(g), and �i,d(g) are the weight
coefficient, mean vector, and covariance matrix of the gth
Gaussian element, respectively. In order to adapt to the
duration-dependent characteristic of the MDD-HSMM, the
forward and backward variables are modified and a new
forward-backward algorithm is developed to facilitate the
model training process.

The forward variable is defined as:

αt (i,d) = P(ot
1, st = i, dt (i) = d|λ) (4)

It presents the joint probability of generating the obser-
vation sequence o1, · · · , ot and having stayed in state i with
duration time d given model λ. We use the pair process
(st , dt ) to denote the state and its duration value at time t .

With the directional property of life-right model structure,
the initial value of the forward variable is:

α1(i,d) =
{

bi,d(o1), (i,d) = (1, 1)
0, else

(5)

By analyzing all the possible states that the state (i, d) =
(1, 1) can only be the value of (s1, d1), and the state (st , dt )=
(i, d) is transited either from the state (st−1, dt−1) = (i − 1,
d′) when d = 1 or (st−1, dt−1)= (i, d − 1) when 1< d ≤ Di .
Thus, for time t = 2, · · · , T, the forward recursion formulae
are written as follows:

αt (1,1) = 0 (6)

αt (i,1) =
∑

d≥1

αt−1(i − 1,d)Pi−1(d)a(i−1)i (d)bi,1(ot ) (7)

αt (i,d) = αt−1(i,d − 1)bi,d(ot ) (8)

As similar to forward variable, the backward variable is
defined as:

βt (i,d) = P(oT
t+1|st = i, dt (i) = d, λ) (9)

The initial value of backward variable is:

βT (i,d) =
{

Pi(d)ai,(N)(d),i = N, 1 ≤ d ≤ D

0, else
(10)

For time t = 2, · · · , T , the state (st , dt ) = (i, d) will
transit either to (st+1, dt+1) = (i, d + 1) or (st+1, dt+1) =
(i + 1, 1), and the backward recursion formula is written as
below:

βt (i,d) = bi,d+1(ot+1)βt+1(i,d+1)
+Pi(d)ai(i+1)(d)bi+1,1(ot+1)βt+1(i + 1, 1)

(11)

For the purpose of reducing the computational complex-
ity, some variables are defined in the MDD-HSMM for
parameters re-estimation. Firstly, given the model λ and
observation sequence OT

1 , the posterior probability for a
transition from state i to next state i+1 with the duration d at
time t can be expressed using the defined forward-backward
variables in above.

ξt (i,i + 1,d) = P(st = i,st+1 = i+1,dt (i) = d|OT
1 ,λ)

= 1
P (OT

1 |λ)
αt (i, d)pi(d)ai(i+1)(d)

·b(i+1),1(ot+1)βt+1(i + 1, 1), 1 ≤ i<N

(12)

Then, the posterior probability that state i is visited at
time t and has stayed for d time units can be calculated as
follow:

γt (i,d) = P(st = i,dt (i) = d|OT
1 ,λ)

= αt (i,d)βt (i,d)

P (OT
1 |λ)

(13)



Int J Adv Manuf Technol (2018) 94:1283–1297 1287

The posterior probability that state i transits to itself with
the duration d at time t can be obtained as follow, especially
ξt (N,N,d) = 1, 1 ≤ d ≤ DN .

ξt (i,i,d) = P(st = i,st+1 = i,dt (i) = d|OT
1 ,λ)

= γt (i,d) − ξt (i,i + 1,d)
(14)

Given the observation sequence, the parameters of this
duration-dependent model can be re-estimated using the
variables defined above. Firstly, the initial state probabil-
ity distribution is the probability that state i visited at time
t = 1 with the duration d = 1:

π̄i = γ1(i, 1) (15)

Next, the re-estimate formula of the transition probability
distribution is written as follows:

ai(i+1)(d) =

T∑

t=1
ξt (i,i + 1,d)

T∑

t=1
γt (i,d)

(16)

Then, the observation probability distribution bi,d(ot )

represented by Gaussian mixture distribution is updated.
The probability that state i is visited at time t with the dura-
tion dt (i) = d and the observation ot belong to the gth
Gaussian element is derived as follow:

γt (i,d, g) = γt (i,d) · wi,d(g)N(ot , μi,d(g), �i,d(g))

G∑

g=1
wi,d(g)N(ot , μi,d(g), �i,d(g))

(17)

Then, the weight wi,d(g), mean vector μi,d(g) and
variance matrix �i,d(g) of the gth Gaussian element are
calculated.

wi,d(g) =

T∑

t=1
γt (i,d, g)

G∑

g=1

T∑

t=1
γt (i,d, g)

(18)

μi,d(g) =

T∑

t=1
γt (i,d, g) · ot

T∑

t=1
γt (i,d, g)

(19)

�i,d(g) =

T∑

t=1
γt (i,d, g)(ot−μi,d(g))(ot−μi,d(g))T

T∑

t=1
γt (i,d, g)

(20)

Finally, the state duration probability with single Gaus-
sian distributions is re-estimated, which can be expressed as
the probability that a state has remained for d time units,

then transits to the next state. The mean and variance of
which can be calculated as below:

μ(i) =

T∑

t=1

D∑

d=1
ξt (i,i + 1,d) · d

T∑

t=1

D∑

d=1
ξt (i,i + 1,d)

(21)

σ(i) =

T∑

t=1

D∑

d=1
ξt (i,i + 1,d) · d2

T∑

t=1

D∑

d=1
ξt (i,i + 1,d)

− [μ(i)]2 (22)

Based on the defined variables, the MDD-HSMM is
trained iteratively, and all the parameters are modified
until the model is convergent with the maximum value of
P(O|λ).

3 High-order particle filter method

The particle filter method has been proposed in the 1990s,
which is a significant and effective state estimation method-
ology based on the Monte Carlo simulations for imple-
menting the recursive Bayesian filter [34]. The Bayesian
theorems construct the posterior probability density func-
tion of the states based on the observation data in specific
space model. In this paper, the HOPF method is researched,
and the state space model of the machine health dynamic
propagation system is modeled by the MDD-HSMM intro-
duced above. For the HOPF with mth-order, the current
health state evolution depends on a group of m-steps-before
states instead of only on the previous state in traditional
first-order PF model. The mth-order HOFP model is written
as:

xk = fk(xk−1, xk−2, ..., xk−m, wk−1) (23)

yk = hk(xk, vk) (24)

where {xk , k ∈ N} is the state sequence, xk denotes the
state at time k, and {yk , k ∈ N} is the observation sequence,
yk denotes the observation value at time k. fk is state
evolution function, and hk is measurement function that
denotes the nonlinear mapping relationship between the
model states and the observation sequence, and the func-
tions fk and hk are corresponding to the states transition and
observation probability function of MDD-HSMM, respec-
tively [30]. {uk , k ∈ N} and {vk , k ∈ N} are independent
identically distributed process noise and observation noise,
respectively.

The key idea of the PF method is to calculate the pos-
terior density function p(xk|y1:k−1) recursively using the
sample set, which is obtained iteratively through prediction
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and update operation. In this paper, we denote the set of ran-

dom weighted samples as
{
xi
0:k, w

i
0:k

}N

i=1, where the xi
k is

a particle with the weight wi
k , and N is the number of par-

ticles for the computation. Then, the posterior probability
p(x0:k|y1:k) can be approximated as follows [35]:

p(x0:k|y1:k) ≈
N∑

i=1

wi
kδ

(
x0:k − xi

0:k
)

(25)

where wi
k ∝ p

(
xi
0:k |y1:k

)

q
(
xi
0:k |y1:k

) .

q (x0:k|y1:k) is the importance density function, which is
chosen with a special structure as the factorization.

q (x0:k|y1:k) = q (xk|xk−m:k−1, yk) q (x0:k−1|y1:k−1) (26)

In general, the state transition probability is taken as the
importance density function for brevity of calculation:

q
(
xi
k|xi

k−m:k−1, yk

)
= p

(
xi
k|xi

k−m:k−1

)
(27)

and the factorization of p (x0:k|y1:k) can also be derived
using Bayesian criterion:

p(x0:k|y1:k) = p(yk |x0:k,y1:k)p(x0:k |y1:k−1)
p(yk |y1:k−1)

= p(yk |xk−n+1:k)p(x0:k |y1:k−1)
p(yk |y1:k−1)

∝ p (yk|xk−n+1:k) p (xk|xk−m:k−1)

·p (x0:k−1|y1:k−1)

(28)

Consequently, the weight of particle xi
k updates by:

wi
k = wi

k−1p
(
yk|xi

k−n+1:k
)

(29)

and wi
k = wi

k/
N∑

i=1
wi

k .

In order to eliminate the weights degeneracy problem, the
approximated effective sample size Neff is introduced.

Neff =
(

N∑

i=1

(
wi

k

)2
)−1

(30)

Furthermore, the resampling method is applied to pre-
vent the degeneracy by eliminating the particles with small
weights and replicating those having large weights when
the effective samples number Neff is smaller than the fixed
threshold Nthres [36], and after this, the weights of all
samples are reset to be equal.

4 The proposed MDD-HSMM and HOPF based
online machine health prognostics approach

Health prognostics procedure fuses and utilizes the historical
information with the objective of assessing and determin-
ing the state transition relations and duration information,
and further predicting the health condition or estimating
the RUL values. The proposed machine health prognostics
approach is presented in this section.

Firstly, The MDD-HSMM is trained offline based on
the historical lifetime health data to obtain the duration-
dependent probability distributions and the state duration
information, and then a nonlinear state space model is con-
structed. Next, the HOPF model is established for modeling
dynamic health changes of machine based on the nonlinear
state space model. With the online sensing monitoring data,
the health state will be recognized using the HOPF model,
and then the corresponding RUL values can be estimated
in real time. The framework of online health prognostics
approach based on the MDD-HSMM and HOFP model is
shown in Fig. 2.

Fig. 2 Health prognostics
framework based on HSMM and
HOFP model
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Fig. 3 Diagram of the
experimentation platform

4.1 Integration of MDD-HSMM in HOPF for online
machine health state recognition

The proposed online health prognostics framework inte-
grates the MDD-HSMM and mth-order HOPF model,
which aims to take advantages of the robust mathematical
foundation of MDD-HSMM and the real-time characteris-
tic of HOPF. Thus, the state space model defined in Eq. 23
and 24 for HOPF need to be constructed firstly based on
the trained MDD-HSMM. Furthermore, since the machine
health state evolution is no longer only state-dependent,
but also duration-dependent, as defined in MDD-HSMM,
a variable-order state space model related to the duration
of state is explored for HOPF. In this paper, we propose a
sliding window with variable length to present the relation-
ship between current state and several-steps-before states
that remaining in the same state, and the length of this win-
dow, ranging from l = 1 to l = Di , is determined by the
duration of the last state i, where Di is the maximal dura-
tion of state i defined in MDD-HSMM. Finally, the health
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Fig. 4 Comparison of sample entropy distribution of the four health
states

state probability distribution can be calculated based on the
HOPF model and the sensor monitoring data in real time,
and the probability change trend of each health state can be
obtained.

For the HOPF model with variable order, the order m is
equal to the length of the sliding window l, and the mth-
order state equation is expressed as follow:

xk = gk(xk−1, xk−2, ..., xk−m) (31)

where gk(xk−1, xk−2, ..., xk−m) is the nonlinear function
determined by duration-dependent state transition probabil-
ity of the MDD-HSMM (i.e. aii(m) or ai(i+1)(m) ), and
xk−1, xk−2, ..., xk−m are the states sequences which have
stayed in the same state for m time units. This online health
recognition algorithm aims to calculate the state probability
density function using the modified mth-order state equa-
tion with random samples set. Let {xi

0:k, w
i
0:k}Ni=1 approx-

imate the state PDF p(x0:k|y1:k). The procedure of the
one-step-ahead health recognition algorithm can be carried
out as follows:

Step 1: one-step-ahead state PDF prediction:

p(xk|y1:k−1) ≈
N∑

i=1

wi
k−1δ

(
xk − xi

k

)

where particle xk is emitted from previous several states
according to the state duration and the nonlinear function in
Eq. 31.

Table 1 Initial weight coefficients of observation probability

Health states State1 State2 State3 State4

Gaussian1 0.3333 0.2857 0.5714 0.4285

Gaussian2 0.3840 0.3840 0.2381 0.3840

Gaussian3 0.2857 0.3333 0.1905 0.1905
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Table 2 Initial means of
observation probability Health states State1 State2 State3 State4

Gaussian1 [−0.1322, 0.0378] [ 0.0088, 0.0702] [0.0334,−0.0065] [0.1153,−0.0435]

Gaussian2 [−0.1915,−0.0459] [−0.0282,−0.0129] [0.0627, 0.0326] [0.1077, 0.0066]

Gaussian3 [−0.0758,−0.0318] [−0.0568, 0.0590] [0.0131,−0.0510] [0.2038, 0.0052]

Step 2: Update the weight with the new measurement yk :

wi
k = wi

k−1p
(
yk|xi

k−m+1:k
)

where p
(
yk|xi

k−n+1:k
)
is the duration-dependent observa-

tion probability (i.e.bxk,n(yk)) that the output probability of
yk is determined by all the n steps previous particles which
stayed in the same state as xk .

Step 3: Correct the state PDF with new weight:

p(xk|y1:k) =
N∑

i=1

wi
kδ

(
xk − xi

k

)

Then, the state PDF can be calculated iteratively with the
process of probability prediction and weight update.

4.2 Integration of MDD-HSMM in HOPF for online
machine RUL prognostics

The purpose of online machine health prognostics is to pre-
dict the degradation condition and estimate the RUL values
using the result of health recognition algorithm. Suppose
that the whole machine life can be characterized by normal
stage, degradation stage and failure stage, and the machine
will go through health states si(i = 1, 2, · · · ,N − 1) before
entering failure state sN . Let D(si) denote the expected
duration of health state si , which is calculated as below:

D(si) = μ(si)+ρσ 2(si) (32)

where μ(si) and σ 2(si) are duration mean and variance of
state si , respectively. And ρ is denoted as:

ρ = (T −
N∑

i=1

μ(si))/

N∑

i=1

σ 2(si) (33)

there has a constraint that T =
N∑

i=1
D(si).

The RUL values can be calculated as the summation of
the expected residual useful life of current health state si and
the duration of total future health states before failure [22].
The expected residual useful life of current health state si
can be denoted as D(si

(d)) at the dth time point, which is
determined by the probability of staying at health state si .

D(si
(d)) =p(sd = si |y1:d)D(si) (34)

Thus, the RUL of equipment at the dth time point can be
calculated using the following formula.

RUL(d)=D(si
(d)) +

N−1∑

j=i+1

D(sj ) (35)

By integrating the MDD-HSMM with HOPF, the dura-
tion of each health state and the probability of staying at
current health state can be obtained, and then the RUL
values also can be calculated.

4.3 Application procedure of the proposed prognostics
approach

The detailed application procedure for the proposed online
health prognostics approach can be described as follows:

Step 1: Collect the health monitoring signals from the
machinery equipment, and then the signal denoising and
feature extraction methods are applied to obtain the input
observation feature vectors sequence for MDD-HSMM.

Step 2: The MDD-HSMM is trained offline based on
the modified forward-backward algorithm, then the dura-
tion dependent transition probabilities among health states

Table 3 Initial covariances of observation probability (*10−3)

Health states State1 State2 State3 State4

Gaussian1

(
0.9175 0.2012

0.2012 0.5908

) (
0.5857 −0.2044

−0.2044 0.2056

) (
0.5677 −0.1707

−0.1707 0.3243

) (
0.4153 0.0022

0.0022 0.2936

)

Gaussian2

(
0.7009 −0.4695

−0.4695 1.4737

) (
0.2702 0.1291

0.1291 0.5511

) (
0.2592 0.0747

0.0747 0.1758

) (
0.3257 0.1209

0.1209 0.6799

)

Gaussian3

(
0.7146 0.2616

0.2616 0.6220

) (
0.6011 0.0512

0.0512 0.1533

) (
0.3343 0.0622

0.0622 0.4602

) (
0.5698 −0.5396

−0.5396 1.6586

)
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Table 4 Expected duration values of each health state

Health states State1 State2 State3 State4

Resident Mean 19.5929 19.5147 19.6278 17.9070

Resident Variance 1.3793 1.6064 1.2740 3.5629

Expected duration 20.1849 20.2042 20.1746 19.4363

and output observation probabilities and the expected state
duration are obtained.

Step 3: Based on the duration-dependent transition prob-
abilities and observation probabilities of the MDD-HSMM,
the nonlinear state space model is constructed for modeling
the fault propagation of machine.

Step 4: A variable-order HOPF model is applied with
the nonlinear state space model. Based on the random sam-
pling particles, the health state probability distribution is
calculated iteratively with the online sensing monitored
data.

Step 5: Based on the health state probability distribution
and change trend, the health condition change point can be
determined, and then the current health state is recognized.

Step 6: The residual duration of current health state and the
RUL of machinery equipment are calculated with Eqs. 34
and 35.

5 Case study and result analysis

In this section, the proposed online health prognostics
approach was applied to a real case study for the vertical
roller mill (VRM) based on the dynamic pressure signal of
the hydraulic supply system, and a detailed analysis for the
experiment result is described to evaluate the application
performance of the proposed method.

5.1 Experimental setup

In this case study, the hydraulic cylinder of the long-term
working VRM, which is a widely used heavy rotating
machine equipment in cement production industry, was
researched. As the important supply and drive unit of VRM,
the hydraulic cylinder is mainly working for driving the
rocker arm movement and providing working power for the

Table 5 Health states transition probability matrix with dt (i) = 1

Health states State1 State2 State3 State4

State1 0.9374 0.0626 0 0

State2 0 0.9626 0.0374 0

State3 0 0 0.9661 0.0339

State4 0 0 0 1

Table 6 Health states transition probability matrix with dt (i) = 10

Health states State1 State2 State3 State4

State1 0.8622 0.1378 0 0

State2 0 0.7707 0.2293 0

State3 0 0 0.8229 0.1959

State4 0 0 0 1

grinding roller through transforming the hydraulic energy
into mechanical energy. In the experiment, the internal leak-
age fault of the hydraulic fluid has been studied, which is
one of the most serious faults regarding to the hydraulic
cylinder. The hydraulic pressure signal was selected as the
data source to detect the corresponding fault feature infor-
mation. And there are some advantages of acquiring the
pressure signal easily in the operating hydraulic cylinder,
because of the low-cost and convenient mounts and non-
intrusive sensors. The pressure signal is mainly composed
of the low-frequency pressure ripples, the high-frequency
transient fluctuation, and the environment noise. With the
internal leakage increasing, the flow rate of the hydraulic
cylinder will decrease, which results in the slowly rise
of pressure signal and the disorder movement of the oil
fluid. Since the pressure signal indicates hydraulic cylin-
ders health state, the internal leakage stages corresponding
to different degrees of flow loss and pressure signal transient
fluctuation were defined as the health states of the hydraulic
cylinder in this study.

The diagram of the experimentation setup is shown in
Fig. 3. The test was performed on the VRM VME46.4, and
the studied hydraulic cylinder is working at normal con-
dition with the hydraulic pressure of 14 MPa. The FBG
pressure sensors are mounted on the hydraulic cylinder that
connected with the rocker arm to measure the hydraulic
pressure in real time. The FBG pressure sensor used in this
study is a high hydraulic pressure transducer suitable for
the wide-range measurement requirement, which is charac-
terized with the measuring range of 0 to 130 MPa and the
sensitivity of 10 pm/MPa. The pressure sensing signals were
processed with the high performance FBG demodulator and
stored in data servers, and the A/D conversion scheme of
this FBG demodulator is 8-bit, and the sampling rate is set

Table 7 Health states transition probability matrix with dt (i) = Di

Health states State1 State2 State3 State4

State1 0 1 0 0

State2 0 0 1 0

State3 0 0 0 1

State4 0 0 0 1
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to 4 kHz. The long-term signal collection is conducted to
obtain the run-to-failure hydraulic pressure data.

5.2 Data processing

According to the failure experience knowledge of hydraulic
cylinder, there are four hidden health states divided with
the change of pressure, including the normal (denoted by
state1), deterioration1 (denoted by state2), deterioration 2
(denoted by state3) and failure (denoted by state4), respec-
tively. For the convenience of this experiment, we took the
data filtering and sampling process for the massive long-
term sensing monitoring signals, and got the whole life data
of hydraulic cylinder for the internal leakage fault.

In general, there is a lot of noise in the raw sensing signals
which needs to be minimized before the feature informa-
tion extraction phase. It is known that the wavelet transform
technology has great capability in non-stationary signals
de-noising because of its extraordinary time-frequency rep-
resentation performance, which decompose signals into
separate frequency bands orthogonally [37]. In this study,
the wavelet packet with Symlets wavelet 5 (sym5) was
applied to decompose the noisy signals into two layers,
then the heuristic threshold and soft threshold function were
chosen to process the wavelet decomposition coefficients
to eliminate the redundant noisy information. Finally, the
de-noised signals were reconstructed from the threshold
wavelet coefficients based on the inverse wavelet transform.

After the wavelet decomposition and reconstruction pro-
cess, the ensemble empirical mode decomposition (EEMD)
method was used to extract the fault feature information

from the de-noised signals, which is an effective self-
adaptive analysis method for decomposing the time series
signal into a series of different frequency bands, termed the
intrinsic mode function (IMFs) [38]. The ensemble num-
ber and the white noise amplitude of the EEMD were set as
100 and 0.3 times standard deviation of the de-noised signal
respectively in this study, then the IMFs relating to the fault
information were obtained, and the sample entropy of each
IMF component was selected to compose the feature vec-
tors. The procedure of the fault feature extraction method
based on EEMD is described as follows:

Step 1: The EEMD is used to decompose the signals into
several IMFs, and the first k IMFs which contain the main
failure information are extracted.

Step 2: The sample entropy [39]Ei of IMFi is computed
as the composition of fault feature vector T.

Step 3: Construct and normalize feature vector T =
T/E, where E =

k∑

j=1
Ej .

The sample entropy feature vectors of four health states
were constructed, as displayed in Fig. 4.

Figure 4 shows that the sample entropy is mainly concen-
trated in the first two bands, and the distribution is changed
with the health state degradation. Moreover, a principal
component analysis (PCA) method was used to capture the
major variance, and the variances explained by these seven
IMFs are 69.41, 20.74, 4.93, 3.17, 1.43, 0.31, 0.01%. The
sum variance of the first two principal components PC1 and
PC2 is 90.15%, which contains most of the variance. Thus,
for the propose of reducing the dimensionality of feature
vectors for lower computational complexity while ensuring
the major feature information, the new feature vectors con-
sist of the first two principal components was selected as the
observation sequence for the MDD-HSMM.

5.3 MDD-HSMM training

The MDD-HSMM with all health states is trained offline
using the processed observation sequence consists of the
first two principal components PC1 and PC2 from PCA.
A left-to-right Markov structure with four states is cho-
sen in this study, and the initial state distribution is π0 =
[1, 0, 0, 0], and the initial health states transition probability
is set as equiprobability and duration invariant, i.e. aii(d) =

Table 8 Means and variances of observation probability with dt (i) = 1

Health states State1 State2 State3 State4

Mean [−0.2242, −0.0058] [−0.0892, 0.0645] [0.0044, −0.0790] [0.0959, −0.0516]

Variance (*10−4)

(
1.7392 −2.0135

−2.0135 2.7359

) (
1.0572 −0.1780

−0.1780 0.0312

) (
0.0746 0.2416

0.2416 0.7837

) (
0.3785 0.1558

0.1558 0.0679

)
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Table 9 Means and variances of observation probability with dt (i) = 10

Health states State1 State2 State3 State4

Mean [−0.1081, −0.0403] [−0.0440, 0.0617] [0.0305, −0.0035] [0.1178, −0.0267]

Variance (*10−4)

(
1.7027 0.4676

0.4676 0.2884

) (
0.1634 0.0344

0.0344 0.0072

) (
0.0089 −0.0092

−0.0092 0.0095

) (
0.0065 0.0431

0.0431 0.2887

)

ai(i+1)(d) and aij (1) = · · · = aij (Di). The initial value
of state duration distribution is denoted as a Gaussian dis-
tribution P(i, d) =N(d|μi, σi) with means and variances
(μi, σi) = (T /N, 2), where i = 1, 2, 3, 4. The observation
probability distribution is represented as Gaussian mixture
distribution with three elements, and the initial values are
also set as duration invariant. The weight coefficient wi,d ;
mean vector μi,d ; and covariance matrix �i,d are initialized
with k-means clustering algorithm and the initial values are
shown in Tables 1, 2, and 3, respectively.

The initial parameters indicate the necessity of taking
the Gaussian mixture distribution to represent the observa-
tion probability, since the weight coefficients distribution is
nearly uniform and the distance between each mean vector
within a state is obvious.

Based on the initial parameters, the MDD-HSMM is
trained using the modified forward-backward and parame-
ter re-estimation algorithm mentioned in Section 2.2. The
log-likelihood is used to indicate the iterative training pro-
cess, and the maximum iteration steps is set to 40 and the
convergence error is 0.0001. The final estimated values of
the MDD-HSMM are presented below. The initial probabil-
ity is π = [1, 0, 0, 0], which means that the machine must
start from the normal state. The expected duration values of
each health state are obtained in Table 4.

The estimated values for the health states transition prob-
ability matrixes with duration time dt (i) = 1, dt (i) = 10,
dt (i) = Di , where i= 1, 2, 3, 4, are shown in Tables 5, 6,
and 7, respectively.

The estimated values of duration-dependent weight coef-
ficients of the Gaussian mixture distribution for the four
states with duration time dt (i) = 1, dt (i) = 10 dt (i) = Di ,
where i= 1, 2, 3, 4, are given in Fig. 5 as all 12 groups of
weight data. It is noticed on Fig. 5 that convergent weight-
coefficients have large variance for every certain state and-
duration time, which means that the observation probability

focus on a major single Gaussian element at each certain
duration time.

The mean vector μi,d and covariance matrix �i,d of the
major single Gaussian observation probability distribution
for the four states with duration time dt (i) = 1, dt (i) = 10
dt (i) = Di , where i= 1, 2, 3, 4, are presented in Tables 8, 9
and 10, respectively.

5.4 Health prognostics based on MDD-HSMM
and HOPF

Based on the trained MDD-HSMM, the HOPF method is
executed to predict the health state and RUL values of equip-
ment. According to the state duration values calculated in
the Sub-section 5.3, we set the maximal order of the HOPF
as D(i), and the order of HOPF is changed dynamically
with time. Firstly, the probability distribution of staying at
health state si at the dth observation point can be computed
as p(sd=si |y1:d),i= 1, 2, 3, 4 and the results are shown as
Fig. 6.

The Fig. 6 shows the changing trend of state probability
with the time points, and the health state change points are
obtained when the state probability reaches the maximum
value. As shown in Fig. 6, the health state is changing from
the state1 to state4 gradually, and the start point of each
state is assumed as the corresponding state change point.
From the 1st time point to the 20th time point, the probabil-
ity of health state1 is decreasing with the time points, while
the probability of health state2 is increasing, which means
that the health state1 is remaining from the 1st time point
to the 19th time point and the health state2 is start from
the 20th with the maximum state probability. According to
the analysis of the state transition process, it can be seen
from the Fig. 6 that the state3 is start from the 40th observa-
tion time point, and once the machine equipment enters the
state4 i.e. failure state, it always stays at that state. Thus, the

Table 10 Means and variances of observation probability with dt (i) = Di

Health states State1 State2 State3 State4

Mean [−0.0640, −0.0025] [0.0320, 0.0555] [0.0849, 0.0430] [0.1912, 0.0388]

Variance (*10−4)

(
0.4122 0.5714

0.5714 1.4149

) (
0.5359 −0.3393

−0.3393 0.2148

) (
0.4935 0.2309

0.2309 0.1081

) (
0.1611 −0.4267

−0.4267 1.1314

)
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next machine RUL assessment only relates to the expected
residual duration of health state 1 to state 3. Based on Eq.
(34), the residual useful life of current health state D(si

(d))

(i = 1, 2, 3) can be obtained, and then according to the
Eq. (35), the RUL values for all observation time points are
calculated. The prognostic results of MDD-HSMM and the
actual RUL and the relative error are listed in Table 11, and
the comparison between the prognostic results and actual
RUL is shown in Fig. 7, which indicates that the predicted
RUL can fit with the real RUL quite well. Therefore, the
proposed method based on the MDD-HSMM is effective for
equipment health prognostics.

5.5 Discussions and performance evaluation

In order to further illustrate the better performance of the
proposed method for online machine health prognostics,
some HSMM based modified models are conducted as
comparative studies for health prognosis. Firstly, the modi-
fied HSMM with duration-dependent transition probability
(DD-HSMM) [26] which considered that the state transition
probabilities are varying with the duration of each state, is
used as the comparison to illustrate the necessary of consid-
ering the deterioration effect within a health state and prove
the superiority of the proposed method with additional
duration-dependent observation probabilities. Moreover, the
DD-HSMM using HOPFmethod is also selected as compar-
ison to show the strength of the HOPF method. In addition,
the age-dependent HSMM [21] integrated with aging fac-
tors is used as another comparative study.And in this paper,
the aging factor with multiple form is selected and the hazard
rate method is also performed for the RUL computation.
Similarly to Peng and Dong [21] the aging factors β̂ in this
paper is calculated with step length = 0.001 and itera-
tion number k = 24, and β̂ = k × step length = 0.024.
Finally, the pure HSMM [19] is introduced for compa-
ration, in which the RUL computation is only related to
current state and the residual duration of each health state

Table 11 Comparison between prognostics results and actual URL

Actual
RUL

Predicted
RUL

Relative
error (%)

Actual
RUL

Predicted
RUL

Relative
error (%)

58.00 57.3935 1.0458 29.00 29.3011 1.0382

57.00 56.5865 0.7254 28.00 27.8741 0.4495

56.00 56.2097 0.3745 27.00 26.7056 1.0904

55.00 55.6884 1.2516 26.00 25.4645 2.0597

54.00 54.9831 1.8205 25.00 23.9034 4.3863

53.00 54.3623 2.5703 24.00 22.6767 5.5136

52.00 53.0690 2.0558 23.00 21.4886 6.5711

51.00 52.1773 2.3085 22.00 20.4367 7.1060

50.00 51.1736 2.3471 21.00 19.7173 6.1082

49.00 50.1280 2.3021 20.00 18.1212 9.3939

48.00 48.6817 1.4202 19.00 17.8869 5.8585

47.00 47.5432 1.1558 18.00 17.4815 2.8806

46.00 46.2054 0.4465 17.00 16.9310 0.4058

45.00 44.7777 0.4940 16.00 16.4872 3.0450

44.00 43.3806 1.4078 15.00 16.0084 6.7228

43.00 42.1532 1.9694 14.00 15.3173 9.4092

42.00 41.2057 1.8912 13.00 14.5376 11.8278

41.00 40.3921 1.4828 12.00 13.6677 13.8978

40.00 38.8452 2.8869 11.00 12.3449 12.2260

39.00 38.7430 0.6591 10.00 10.9812 9.8125

38.00 38.4491 1.1818 9.00 9.9745 10.8275

37.00 37.6594 1.7821 8.00 8.6273 7.8409

36.00 36.5934 1.6484 7.00 7.1234 1.7628

35.00 35.7297 2.0849 6.00 5.9768 0.3872

34.00 34.8213 2.4155 5.00 4.8885 2.2300

33.00 33.7845 2.3772 4.00 3.5563 11.0914

32.00 32.6899 2.1561 3.00 2.4397 18.6765

31.00 31.7290 2.3517 2.00 1.5751 21.2456

30.00 30.6261 2.0869 1.00 0.8312 16.8842

is assumed as the all duration of this state. The compari-
son results of the five prognostics methods are shown in
Table 12 and Fig. 8, which illustrate that the proposed
method based on the MDD-HSMM with HOPF has a
better performance for machine health prognostics than DD-
HSMM with HOPF, DD-HSMM, age-dependent HSMM
and pure HSMM.

In generally, there are some error criteria that used to
evaluate the prognostics performance of proposed approach.
In this study, both the absolute and relative error criteria
are used to illustrate the prognostics performance from dif-
ferent perspectives. The absolute error criteria concentrate
on root mean square error (RMSE), mean absolute error
(MAE) and variance absolute error (VAE) that are often
used in most experiments. The mean absolute relative error
(MARE) and variance relative error (VRE) are the relative
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error criteria which represent the prediction accuracy rel-
ative to the original actual value. Based on the selected
five error criteria, the prognostic performance evaluation of
MDD-HSMM with HOPF, DD-HSMM, with HOPF, age-
dependent HSMM, DD-HSMM and pure HSMM is shown
in Table 13. It can be seen from Table 13 that the prog-
nostic performance of the proposed method based on the
MDD-HSMM with HOPF is superior to the DD-HSMM
with HOPF, age-dependent HSMM, DD-HSMM, and pure
HSMM when both the absolute error and relative error are
considered.

Through the overall case study, the online machine health
prognosis is implemented based on the proposed method
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Fig. 8 The RUL prognostic results comparison of different methods

with the sensing monitoring observation data, and the results
illustrate that the proposed methods has a better perfor-
mance for machine health prognostic than compared meth-
ods. For these compared methods, the pure HSMM [19]
assumes that state transition probability is fixed, and the
residual useful life of current state is assumed to be the
total state duration, then the prognostic result is shown as a
step signal related to each health state. The DD-HSMM [26]
takes duration dependent transition probability into con-
struct, the probability that transits to itself is a decreasing
function of duration time dt (i), so that the RUL prognos-
tic result of DD-HSMM is not only state dependency but

Table 12 Prognostics results
of the different methods Actual RUL MDD-HSMM

with HOPF
RUL

DD-HSMM
with HOPF
RUL

Age-HSMM DD-HSMM
RUL

Pure HSMM
RUL

58.00 57.3935 55.4330 56.6527 57.5305 58.4945

56.00 56.2097 55.5641 56.1271 57.5865 58.4945

53.00 54.3623 56.7478 55.0568 57.2927 58.4945

50.00 51.1736 51.4811 53.4911 56.8384 58.4945

47.00 47.5432 47.7387 51.1532 55.1804 58.4945

44.00 43.3806 43.5200 47.5843 52.2504 58.4945

41.00 40.3921 37.7389 42.0045 43.0750 58.4945

38.00 38.4491 35.7708 34.4818 38.1278 37.5081

35.00 35.7297 33.9597 33.3319 36.8941 37.5081

32.00 32.6899 31.5008 31.8398 35.8416 37.5081

29.00 29.3011 27.1870 29.8806 34.3644 37.5081

26.00 25.4645 24.0396 27.2749 32.0517 37.5081

23.00 21.4886 20.7837 23.7618 28.5057 37.5081

20.00 18.1212 17.3076 18.9558 18.9560 37.5081

17.00 16.9310 13.9173 13.3803 17.6192 17.8222

14.00 15.3173 11.3331 12.1968 16.8950 17.8222

11.00 12.3449 9.4864 10.6868 16.0019 17.8222

8.00 8.6273 5.8959 8.7394 14.5743 17.8222

5.00 4.8885 3.0213 6.1987 12.2121 17.8222

2.00 1.5751 0.7517 2.8428 6.9563 17.8222
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Table 13 Prediction performance evaluation results of different
methods

Prognostic
methods

RSME MAE VAE MARE VRE

MDD-HSMM
with HOPF

0.8841 0.0933 0.7729 0.0462 0.0027

DD-HSMM
with HOPF

1.9873 −1.3580 2.1052 0.1316 0.0242

Age-HSMM 2.2351 0.2931 4.9098 0.0927 0.0094

DD-HSMM 4.9757 4.2100 7.0337 0.3718 0.3915

Pure HSMM 10.4807 8.8768 31.0487 0.9581 5.6854

also changing with the observation time point. However,
without the effective RUL calculation method, the RUL of
DD-HSMM is only determined by the duration dependent
transition probability, thus, there are lager prediction error.
The DD-HSMM with HOPF method introduces the online
iterative and updating process into the RUL values esti-
mation, which is effective for RUL prediction because of
the self-updating scheme with observation data. The age-
dependent HSMM [21] assumes the transition probability
is changed with the multiple aging factors, and the haz-
ard rate is also combined for RUL computation, which
is effective for health prognostics. From the prognostic
performance evaluation results, we can see that the MDD-
HSMM with HOPF method is superior for prognosis than
these comparative studies, which indicates that the duration
dependent characters of both the transition probabilities and
the observation probabilities are significant to model the
failure propagation of machine, and the duration-dependent
variable-order HOPF is effective for online machine health
prognostics.

6 Conclusions

In this paper, a machine health prognostics approach based
on the MDD-HSMM and HOPF is proposed. In order to
describe the degradation of machinery equipment more
appropriately, a MDD-HSMM is developed, in which the
state transition and output observation probabilities are
defined that depend not only on the current state, but also
on the duration of state. The forward and backward vari-
ables are modified in this paper, and a forward-backward
algorithm is also developed to facilitate the training of the
proposed MDD-HSMM. Moreover, due to the difficulty
for online health recognition and prognostics, the HOPF
method with better online features is introduced, and the
HOPF is improved with a sliding window to adjust the
order of HOPF dynamically according to duration of pre-
vious state. Based on the nonlinear state space model of

the MDD-HSMM and the online prediction and update
scheme of the HOPF, the probability distribution of machine
health state is obtained and then the probability distribu-
tion change trend is used to recognize the health state.
Furthermore, the corresponding RUL prediction algorithm
is developed. The integration of MDD-HSMM and HOPF
takes the full advantages of the robust mathematical foun-
dation of MDD-HSMM and online characteristic of HOPF,
which is proved to obtain better prognostics performance.
The real experimental results for the hydraulic cylinder of
vertical roller mill equipment indicate the effectiveness of
the proposed prognostics method, which has higher predic-
tion accuracy and online performance than several methods,
such as DD-HSMM with HOPF, age-dependent HSMM,
DD-HSMM, and pure HSMM method. Consequently, the
proposed approach in this paper can be applied to online
machine health prognostics to improve the process reliabil-
ity during the manufacturing processing.
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