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Abstract In this paper, parameter optimization of FSW of
cryorolled AA2219 alloy was carried out to obtain defect free
weld joint with maximum weld strength. To achieve this, ar-
tificial neural network (ANN) was used to model the relation-
ship between the input parameters and the mechanical and
corrosion properties (output) of the weld joints. The optimal
FSW parameters were determined by genetic algorithm (GA).
The feasible solution of the GA was tool rotational speed of
1005 rpm, tool travel speed of 20 mm/min and tool tilt angle
of 3°. The feasible parameter was used to weld and check the
ability of the parameter to produce better weld joint than
the L9 orthogonal array parameters. The weld, subjected to
the confirmation test, was investigated by means of metallur-
gical, mechanical, and corrosion testing. This process reduces
the costs associated with trial runs to obtain optimal parame-
ters and also the production cost of the cryorolled (CR) plate
which is high.
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1 Introduction

Friction stir welding (FSW) process is one of the novel tech-
niques invented by Thomas et al. in the year 1991 at The
Welding Institute in UK. This joining technique was mainly
used for the aluminum alloys. Nowadays, FSW plays a vital
role in the field of solid state metal joining processes for non-
ferrous alloys and is gradually replacing the conventional arc
weld joining process with aluminum alloys. FSW also elimi-
nates the radiation effect and harmful emission of gases during
the fusion welding process.

During the FSW process, a rotating tool with shoulder sur-
face and unique pin design is plunged in between the abutting
surfaces of the plates to be joined. Due to the contact of the
shoulder with the top surface of the joining portion, heat is
generated and the metal flows from retreating section to ad-
vancing section by means of tool rotational speed, tool incli-
nation and tool travel made along the joining line [1]. Thus,
the frictional heat makes the material soft and allows the ma-
terial to flow along the welding line without reaching the
melting point. Finally, the weld joint is fabricated by the thrust
force of the tool shoulder [2]. The heat treated aluminum
AA2219 alloy has superior strength to weight ratio and the
alloy is one of the best materials to satisfy the required
properties for aerospace structural applications and cryogenic
fuel tanks [3].

The tensile property of the FSW joints depends on the tool
rotational speed, tool travel speed, and tilt angle. Better tensile
strength was achieved by optimizing the process parameters
of FSW [4]. The FSW parameters which are spindle speed,
tool travel speed, and downward force data were considered to
maximize the tensile strength. The FSW parameters were
modeled with response surface methodology (RSM) and the
results were optimized with fuzzy grey relational analysis [5].
The positioning of weld plates during welding played a vital
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role in determining the strength of the joint. The Taguchi’s L9

orthogonal array was used for optimizing the rotational speed,
dwell time, tool plunge depth, and tilt angle. Also, the analysis
of variance (ANOVA) demonstrated that the tool rotational
speed was the most dominant parameter that influenced the
strength of the joint. Conformation testing on the results was
performed to prove the optimal parameters resulted in the
maximum tensile strength of the weld joint [6, 7]. Tool pin
profile and shoulder to pin diameter ratio is one of the
influencing factors on the tensile strength of the FSW joint,
which was analyzed with Taguchi L16 orthogonal array [8].

The RSM and multi-objective Taguchi method were
used to optimize the FSW process parameter against the
response of the weld quality, tensile strength, and hardness
value [9, 10]. The findings of most influential factors from
the Taguchi in the FSWprocess showed that the tool rotational
speed contributed 41%, transverse speed contributed 33%,
and axial force 21% on the ultimate tensile strength (UTS)
of the FSW joint [11, 12]. Shojaeefard et al. studied multi-
objective optimization to find out the better combination of
the process parameters. Here, artificial neural network (ANN)
was used to model the relationship between the decision var-
iables and the quality of the weld and the PSO was used to
optimize the Pareto solutions. The Order Preference by
Similarity to the Ideal Solution (TOPSIS) was used to find
out the best compromise solution [13]. Gupta et al. found
the significant process parameters using the hybrid approach
of grey relational analysis (GRA) with principal component
analysis (PCA). The optimum welding parameters with
significant contribution were welding speed (42.8%), tool
rotational speed (30.7%), and shoulder (25.93%) [14].

Shojaeefard et al. investigated the influence of transverse
and rotational speeds on HAZ breadth, peak temperature, and
welding force. A hybrid multi-objective optimization was
used with ANN modeling to investigate the effects of param-
eter on weld during FSWand TOPSIS was used to acquire the
optimal solution at the Pareto frontier [15]. Dewan et al. in
their work compared ANN model and a newly developed
Adaptive Neuro-Fuzzy Inference System (ANFIS) model in
optimizing FSW parameters. The authors concluded that the
ANFIS model produced better result than the ANN [16, 17].
The maximization of mechanical properties of FSW joint was
optimized by using simulated annealing algorithm with
ANFIS [18]. The ANN model was used on the L9 Taguchi
design of laser welding of NiTinol. Here, four learning
algorithms were used namely Legvenberg-Marquardt back
propagation, batch back propagation, quick propagation, and
incremental back propagation. On comparing the four algo-
rithms, it was found that the Legvenberg-Marquardt model
gave the least error. Genetic algorithm (GA) was used to find
the optimal process parameter [19].

A set of L25 Taguchi orthogonal array of Flux cored arc
welding process parameters was optimized using ANN

simulation by MATLAB using particle swarm optimization
(PSO) algorithm [20]. Khethier et al. worked with a design
of experiments and Taguchi technique for friction stir spot
welding parameter optimization on dissimilar Al alloys
(AA2024 and AA5754) and found that the tool pin profile
had a higher influence than the tool rotational speed and
plunging time [21]. ANN was used to find out the best FSW
tool among different tool pin profiles and it was found that the
weld joint made by conical pin tool with thread exhibits max-
imum tensile strength and microhardness [22]. Similarly,
ANN-GA was used to find out the optimal FSW parameters
like tool travel speed, rotation speed and offset distance to
obtain better UTS on dissimilar joints of AA5052 and AISI
304. From the ANN-GA optimization, it was determined that
for the inputs of 500 rpm, 80 mm/min and 2-mm tool offset
producedmaximum tensile strength [24]. Panneerselvam et al.
used hybrid ANN-GA optimization to obtain maximum joint
strength by using frictional vibration joining method for
plastics sheets and the optimal parameters were tested with
conformation test [25].

FSW process parameters optimization for Al1080 alloy
was carried out with GONNS (Genetically Optimized
Neural Network Systems) intelligent decision-making system
to train the network and the results were fed into one or more
ANN and optimized by GA tomaximize the mechanical prop-
erties [26]. Anand et al. attempted to reduce the weld heat
affected portion of friction welded joint using ANN modeling
and maximize the mechanical properties [27]. Likewise, GA
was used to maximize the joint strength of friction stir welded
ferritic stainless steel AISI 430. It was found that for 1120 rpm
rotational speed, 125 mm/min welding speed, 4.5 kN axial
force with 0° tool tilt angle better tensile strength was obtained
compared to the base material [28]. ANN modeling and com-
parative study of GA and PSO were worked out in drilling
operation and found that the GA provides better solution than
the PSO [29].

The process parameter optimization for FSW on AA2219
was done by experimental design and it was found that in-
creasing tool rotational speed increased the welding strength
[30–32] and also the lowering welding speed gave more UTS
[33]. The low axial force caused less UTS value [34], and the
high axial thrust force increased the hardness of the material
[35, 36]. In FSW on copper plate, the increasing welding
speed reduced the peak temperature of the weld zone and it
caused finer grain refinement at the nugget portion [37]. But in
the friction stir spot welding of 2024 aluminum alloy, the tool
plunge rate and dwell time influenced the heat generation and
weld joint efficiency [38]. The result of the RSM parameter
optimization of FSW on pure copper alloy, showed the tool
rotational speed was the major influencing parameter on the
UTS of the weld joint [39], and also the ANOVA gave more
than 95% of confidence level of result [40, 41]. The geomet-
rical shape of the FSW tool pin influenced the microstructural
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changes on the weldment and strength [42, 43]. Also, the tool
pin profile facilitated the proper material flow around the tool
during FSW process [44].

The FSW on Al 7075 and its process parameter optimiza-
tion were carried out using ANFIS and it was found that the
square pin tool profile with welding speed of 100 mm/min,
tool rotational speed of 1400 rpm with 7.5 kN axial load
produced the highest joint efficiency of the weld [45]. FSW
on Cu-Zn alloy was carried out, its parameters and output
responses were correlated by using RSM and it was reported
that the Zn content dissolution increased with a decrease of
tool rotational speed and welding speed [46]. A second order
regression model was used to analyze the process parameter
and UTS of the plasma-MIG hybrid weld AA2219 joints and
it was reported that the maximum of UTS achieved was
289.6 MPa [47]. The analysis of variance was commonly
employed to predict the accuracy level of optimization model
[48]. Nowadays, the current manufacturing scenario focuses
on the product lifecycle management (from beginning to end
of the product), particularly managing the different process of
the product manufacturing cycle that generates large amount
of data. Here, it becomes necessary to optimize the parameters
of a particular process, flow of process and process constraints
[49]. From the literature, it can be found that the predicting
accuracy of ANNmodel is more efficient than the RSM. Also
the RSM needs more number of experimental data than the
ANN modeling and also it delivers very less error on the
predicted results with minimum number of experimental runs.

From the literature survey, it is found that a lot of research
was done for the optimization of process parameters of fusion
and solid state welding processes with different optimization
techniques. But there were no prior optimization works for
FSWon CR AA2219 material. Hence, this present study con-
centrates on the FSW parameter optimization of the cryorolled
AA2219-T87 material.

The cryorolling process is one of the foremost severe plas-
tic deformation methods to produce ultrafine grain structure to
obtain improved strength of the alloy. Themain scope of using
ANN-GA optimization technique in this present FSW on CR
AA2219 material study was to obtain the optimal process
parameters to get better quality weld joints with high strength.
As the cost of cryorolled processed material is quite expen-
sive, this work can reduce the number of trial run experiments.
Therefore, it becomes necessary to optimize the input FSW
process parameters. Figure 1 shows the flow chart of ANN
and GA methodology followed for this present work.

Here, three ANN models namely Batch Back Propagation
(BBP), Quick Propagation (QP), and Incremental Back
Propagation (IBP) were used. The input parameters were op-
timized by using GA. Here, the ANN was employed to model
the mathematical associations between control parameters and
tensile strength, microhardness and corrosion current density,
while the GAwas used to evaluate the optimal of the inputs.

Consequently, the overall target of this work is to establish the
set of process parameters that provide weldment with the
optimal quality characteristics.

2 Materials and methods

The AA2219 material is basically Al-Cu-Mn based alloy
which is usually difficult to join. Here, the properties of the
base alloy were improved by severe plastic deformationmech-
anismwith the cryorolling process. The AA2219 plate was cut
into 200 × 100 × 22.5 mm thick and the surface was cleaned
before starting of cryorolling process. During cryorolling, the
AA2219 plates were kept in liquid nitrogen for 30min and the
plates were subsequently rolled with the heavy duty rolling
mills. There was 46% percentage of reduction in thickness in
base AA2219 material with no change in chemical composi-
tion. Table 1 presents the chemical composition of the
AA2219 material.

The final size of the cryorolled plate was 12.2 mm thick
and CR plate was cut into 150 × 100 × 6 mm thick plates by
electro discharge wire cutting process to weld. The FSW of

Fig. 1 Logical flow chart of integrated ANN–GA model
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CR AA2219 material was conducted on four axis BISS
friction stir welding machine with Taguchi L9 experimental
design. The FSW machine is shown in Fig. 2.

Table 2 presents enhanced properties of ultimate tensile
strength, microhardness, and corrosion resistance of
cryorolled AA2219 alloy. Here, it is be found that the proper-
ties of the CR AA2219 material got improved with respect to
the base alloy. This was due to the effect of the cryorolling
process.

Figure 3 presents the FSW hexagonal pin tool profile and
the same was used to join the CR material during the L9

experiment. The non-consumable tool was machined from
M42 grade super high-speed steel bar. Figure 4 presents the
tensile test specimen of the FSW joint. The tensile samples
were prepared according to the ASME E-8M standards. The
tensile test was conducted with the tensometer (make: FIE-
Bluestar, India; Model: UNITEK−94100).

The Vickers microhardness test was performed based on
the ASTM E384 standard with a load set at 0.5 kg and
dwell time equal to 10 s (make: Wilson Hardness VICKERS
402MVD). The welded joint portion was cut and polished
with different grade emery sheets. Further polishing was per-
formed with disc polishing machine with alumina slurry and
finally mirror finished with diamond cloth. The macro and
microscopic analysis were performed with the optical macro
andmicroscopy (Olympus BX51M). The HITACHI-S3000-N
scanning electron microscopy was used to perform energy-
dispersive X-ray spectroscopy (EDX) test on the weldment.
The potentiodynamic polarization test was carried out with the
computerized electrochemical system. The test utilized a sat-
urated calomel reference electrode (SCE), graphite counter
electrode (reference electrode), and the working electrode as

corrosion specimen. The open circuit potential was obtained
for the specimen by the initial holdup of 3600 s. The corrosion
current density was found out for all weldment specimens
with scan rate of 0.5 mV/s from −1 V/SCE to +1 V/SCE.
The image analyzer was used to measure the corrosion pit
details. Table 3 presents the process parameters of the FSW
experiments and their range.

Table 4 presents the results of the output responses of the
Taguchi L9 experimental run. Here, the input parameters were
tool rotational speed, travel speed, and axis inclination of the
FSW tool. Also the results of Table 4 express the ultimate
tensile strength values of the nine weld experiments. Here,
the three tensile specimens were cut from each experimental
weld runs and the average of three UTS test results of each
experiment weld joint were noted in Table 4. Likewise,

Fig. 2 Friction stir welding machine

Table 1 Chemical composition of AA2219-T87 alloy

Element Cu Mn Zr V Ti Fe Si Al

Weight percent 6.26 0.4 0.15 0.11 0.07 0.2 0.12 Balance

Table 2 Mechanical and corrosion properties of cryorolled AA2219
alloy

Material Ultimate
strength
(MPa) ±2

Microhardness
(HV0.5) ±1

Corrosion resistance
Icorr value (μA/cm

2) ±2

Cryorolled
AA2219

463.93 168 85.14

Fig. 3 Hexagonal pin FSW tool

Fig. 4 Tensile sample of the friction stir welded joint
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the microhardness of the weld nugget portion was measured at
three different locations along the middle of the nugget in
lateral direction to the weld joint. Since the corrosion test
(potentiodynamic polarization test) process time was too long
and very expensive, only one corrosion test was conducted on
the weld nugget portion for each weld experimental run.

3 Results and discussion

3.1 Artificial neural network

The ANN was developed based on the functional aspects of
the biological neurons and it is one of the mathematical
models used for mapping a non-linear relationship between
a set of inputs and their corresponding responses. In ANN,
every neuron is connected with each other through links called
as synapses. Also, every synapse has a weight value associat-
ed with it that causes an excitatory or inhibitory response. The
modeling and optimization analysis were carried out using
Neural Power professional version 2.5 software. There are
two steps involved in the neural network modeling, which is
training and testing. In this software, the experimental data
was split into 80 and 20%. Neural power software consists
of up to five learning algorithms. The following algorithms
BBP, IBP, and QP with one hidden layer were selected to train
the ANN model. The hidden layer neurons were selected in

the range of 5 to 25. The number of iterations was fixed for
each type of model at 10000.

Here, from Table 4, the 2nd experiment results to 8th exper-
imental results were (80% of experimental data) utilized in the
training phase of the algorithm and that training results were
presented in Table 5. Then, the remaining 20% of experimen-
tal results in Table 4 (experimental result 1st and 9th) were used
to test the capability of the ANN to forecast the output re-
sponses by feeding only the input responses. The 80 to 20%
ratio of training data to forecasting data respectively can be
selected in all possible ways from the whole experimental
results. This is one of the significant features of the Neural
Power professional version 2.5 software. The software also
facilitates modeling of the data with several learning algo-
rithms (The training with the different models are presented
in Table 5). For the present study, seven FSW trial experimen-
tal results with their inputs (experiment 2nd to 8th) were select-
ed to train the ANN model designed in Neural Power profes-
sional. The experiments 1 and 9 were selected as test data to
determine the forecasting accuracy of the ANN and the same
was presented in Table 7. From the result of the ANN model-
ing with the three algorithms, the least root mean square error
(RMSE) value was selected as best which was calculated from
Eq. 1

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
P−Eð Þ2

s

ð1Þ

where

E actual value
P forecasted value
n number of experiments in the data set

It was observed from many of the literatures, the tanh
function yielded better result than the other function [19].
So, the Hyperbolic tanh function was utilized as activation

Table 3 Process parameters of FSW and their levels

Symbol Parameters Units Levels

1 2 3

X Tool rotational speed rpm 1000 1250 1500

Y Tool travel speed mm/min 20 25 30

Z Tool tilt angle Degree 2.5 3 3.5

Table 4 Taguchi L9 orthogonal array and experimental results (input and output response)

Exp.No Tool rotational
speed (rpm)

Tool travel speed
(mm/min)

Tool tilt angle
(deg.)

Ultimate tensile strength
(MPa) ±2

Microhardness
(HV0.5) ±1

Corrosion resistance
Icorr value (μA/cm

2) ±2

1 1000 20 2.5 290 115 28.5

2 1000 25 3 331 126 14.4

3 1000 30 3.5 285 118 31.5

4 1250 20 3 302 124 18.9

5 1250 25 3.5 177 96 362.4

6 1250 30 2.5 127 90 424.3

7 1500 20 3.5 213 98 153

8 1500 25 2.5 184 99 232.2

9 1500 30 3 128 83 426.1
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in both hidden and output layers. Hyperbolic tanh equation is
presented in Eq. 2

F xð Þ ¼ 1−exp −axð Þ
1þ exp −axð Þ ð2Þ

Table 5 presents the mean RMSE value of the different
learning algorithms by changing the number of hidden layer
nodes.

From Table 5, the least RMSE value was found with BBP
algorithm having seven hidden layer nodes. The difference
between the experimental output values and training results
was obtained from the ANN of BBP learning algorithm (with
experimental input and output) for seven neurons and is pre-
sented in Table 6. The ANN has a single input layer having
three input nodes, single hidden layer having seven neurons
and a single output layer having three output responses. The
structure of the ANN is as shown in Fig. 5.

The difference between the 8th and 9th experiment results
and the training data obtained from BBP (with experimental
input and without output) learning algorithm with seven neu-
rons are presented in Table 7.

The experimental results and calculated ANN results of
UTS, microhardness, and corrosion current density were

presented in Tables 6 and 7. The tool rotational speed param-
eter’s contribution in influencing the weldment quality was
36%, the tool travel speed contributed 35%, and the tool tilt
angle contributed 29% on the weld joint performance. Also, it
is found that the experimental and calculated results were very
close. The experimental result lines were almost coinciding
with the predicted values by BBP with seven neurons. The
GA optimization was carried out to determine the optimal
welding parameters by employing the BBP model.

3.2 Genetic algorithm

Genetic algorithm is a metaheuristic optimization method to
solve both unconstrained and constrained problems and is
influenced by evolution. The algorithm continually regener-
ates the population of individual solutions to find a more op-
timal solution set with respect to the previous iteration. During
each iteration, the GA selects solution sets from the population
using a randomizing method as parents to generate offspring
for the next iteration. The algorithm can be made to reach the
optimum by generating offspring from parents that are the
most optimal in the current solution set. GA relies on reaching
the optimum beginning from a randomly generated solution

Table 5 Average RMSE values for different learning algorithms

No of hidden
layer neurons

Average RMSE

BBP IBP QP

5 0.0099997 0.019916 0.4836

7 0.0089991 0.036574 0.5667

9 0.0099892 0.0099802 0.43143

14 0.0099809 0.0099913 0.24356

16 0.018637 0.089475 0.099818

18 0.511771 0.017012 0.09929

23 0.11101 0.99999 0.0982

25 0.06269 0.99989 0.059938

Table 6 Difference between the experimental output and training data output (with experimental input and output) of BBP learning algorithm with
seven neurons in the hidden layer

Exp. No Ultimate tensile strength (MPa) Microhardness (HV0.5) Corrosion resistance Icorr value (μA/cm
2)

Exp. results ANN results Difference Exp. results ANN results Difference Exp. results ANN results Difference

2 331 330.98 0.023741 126 126.01 0.0054019 14.4 14.406 0.0056256

3 285 285 0.0045919 118 118 0.0009991 31.5 31.499 0.0006336

4 302 302.01 0.0071165 124 124 0.0029101 18.9 18.891 0.0093354

5 177 177 0.0021978 96 96.001 0.0007011 362.4 362.4 0.0027912

6 127 127.01 0.013657 90 89.996 0.0037053 424.3 424.28 0.016838

7 213 213 0.0002565 98 98 0.000129 153 153 0.0004291

8 184 184 0.0042901 99 99.001 0.0011322 232.2 232.2 0.0034639

Fig. 5 ANN structure
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set. By changing the number of population or adjusting the
bounds of the parameters, an optimal solution can be reached
by running several times. The fundamental steps involved in
genetic algorithm are listed below.

1. Initializing the population randomly
2. Objective function evaluation
3. Fitness function finding.
4. Iteratively perform genetic operations random selection,

crossover, and mutation until the algorithm converges to
optimal point.

The GA optimization process was performed by means of
Neural Power Professional 2.5 version software. The objective
function derived fromBBP learning algorithmwas passed onto
the GA algorithm module. The selection of parameter for ge-
netic algorithm was by trial and error method. Eventually, the
parameters of the GA like population size, crossover rate and
mutation rate were selected from the following literature [19].

Size of randomly generated population: 100.
Rate of crossover: 0.9.
Rate of mutation: 0.01.
Criteria for selection: random selection.
Type of crossover: single point.
The range of bound values for tool rotational speed: 1000

and 1500 rpm.
The range of bound values for welding speed: 20 and

30 mm/min.
The range of bound values for tool tilt angle: 2.5° to 3.5°.

3.3 Confirmation test

The confirmation experimentation was done with feasible
solution and their results are tabulated in Table 8.

Table 8 shows the calculated ANN optimal solution of
input parameters and its relevant calculated output responses.
The feasible solution was taken from the nearest round off
value of optimal solution for the convenience to carry out
the confirmation test. After confirmation FSW experimenta-
tion with the feasible solution, the FSW joint was subjected to
tensile, microhardness and potentiodynamic polarization test
and the results were tabulated in the Table 8. From the results,
it is found that the optimal results of the UTS, microstructure
and corrosion current densities were closer with the confor-
mation FSW joint results. Also the percentage of error was
calculated between the calculated ANN and confirmation
experimental results. The percentage of error was minimal
and also within the range of acceptance.

3.4 Metallurgical studies

Figure 6a, b presents microstructure of base AA2219 material
and cryorolled AA2219material respectively. The microstruc-
ture of the base AA2219 material (Fig. 6a) consists of dark
intermetallic compounds with larger grain boundaries. The
main precipitate compound of AA2219 alloy is Al2Cu and a
few of Al6Mn and Al7Cu2Fe compounds spread over in the Al
matrix. Owing to the cold working and aging treatment, the
precipitates were formed in both stable and metastable state in
the cast alloy. The presence of the dark intermetallic particles
in Fig. 6a, b were θ phase coarser or stable (Al2Cu) precipi-
tates and the metastable precipitates were not visible in the
optical microscope. The average grain size of the base alloy
was 68 μm and the same was measured with the line intercept
method.

Figure 6b presents the microstructure image of the
cryorolled AA2219 material. Here, the grains were elongated
in the rolling direction of the material. Due to the rolling

Table 8 Confirmation test results

Experiment Tool rotational
speed (rpm)

Tool travel speed
(mm/min)

Tool tilt angle
(deg.)

Ultimate tensile
strength (MPa)

Microhardness
HV0.5

Corrosion resistance
Icorr value (μA/cm

2)

Optimal solution 1005.659 20.034 2.954 341.27 127.91 12.627

Feasible solution 1005 20 3 – – –

Confirmation test results 1005 20 3 333.5 131 13.5

Percentage error 2.27 2.35 6.46

Table 7 Difference between the experimental output and training data output (with experimental input and without output) of BBP learning algorithm
with seven neurons in the hidden layer

Exp. No Ultimate tensile strength (MPa) Microhardness HV0.5 Corrosion resistance Icorr value (μA/cm
2)

Exp. results ANN results Diff. Exp. results ANN results Diff. Exp. results ANN results Diff.

1 184 184.00006 0.00006 99 98.999969 0.000031 232.2 232.20027 0.00027

9 128 127.69541 0.3046 83 88.905982 5.9060 426.1 420.73954 5.36046
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carried out under severe strain, the larger grains of the
AA2219 alloy were fragmented and compressed in nature.
During the cryorolling, cross-slip occurred in the grains and
it caused the fragmentation of grains and precipitates in the
alloy. The CR AA2219 material had average grain size of
36 μm. The bimodal grain distribution of coarser elongated
grain islands with sever dislocation tangles can give high
strength without major loss in ductility.

The confirmation experiment was done with the feasible
solution, with tool rotational speed of 1005 rpm, tool travel
speed of 20 mm/min and the tool tilt angle of 3°. The micro-
structural analysis, EDX, XRD, and fractograph analysis
were done for the confirmation test of FSW joint. Also the
corrosion resistance of the weld portion was found with
the potentiodynamic polarization test and the same sample
was analyzed by image analyzer to reveal the pit formation
in the confirmation test weld nugget portion.

Figure 7 presents the macrostructure of the weld nugget
portion of confirmation test specimen with the optimized
parameter.

Here, the weld zone consists of the middle portion called
nugget, the adjacent left is advancing side (AS) which is
thermo-mechanically affected zone (TMAZ) and further
advancing side is heat affected zone (HAZ). The adjacent
right side is called retreating side (RS) which is thermo-
mechanically affected zone and further retreating side is heat
affected zone. The macroscopic examination confirmed that

there was no visible defect in the weldment area. Also, it
clearly revealed the different zones of the weld portion and a
flat surface on the weldment area. The presence of weld area
built-up material (projections) was not to be seen.

Among the L9 orthogonal array process parameters and
their responses, the 2nd experiment weld joint exhibited better
output responses than the other. It exhibited weld strength of
331 MPa (UTS) microhardness of 126Hv0.5 and Icorr value
(corrosion resistance) of 14.4 μA/cm2. For better understand-
ing, the 2nd experiment weld joint and the confirmation test
weld joint were compared in mechanical and microstructural
aspect. Figure 8a–c presents the microstructure of advancing
side TMAZ, weld nugget and retreating side TMAZ portions
of the 2nd experiment weld joint.

Here, the weld nugget portion consisted of coarser grains
and the average grain size of 4 μm compared to the confirma-
tion test weld nugget portion. Then, the TMAZ portion
consisted of more amounts of undissolute precipitates than
the conformation test TMAZ portion. These particles reduced
the strength at particular zone. Figure 9a–c presents the mi-
crostructure of advancing side TMAZ, weld nugget and
retreating side TMAZ portions, respectively.

Figure 9b clearly shows the weld nugget microstructure
with ultrafine grain morphology. Also, the grains were
equiaxed in shape with the average size 3 μm. The friction
stirring action of the hexagonal pin tool generated the pulsat-
ing action (100 pulses/s) and ratio of dynamic volume to static
volume of the tool pin (volumetric ratio is equal to 1.21). The
combination of these forces regenerated coarse grains to
ultrafine grain at the joint portion. Owing to ultrafine grain
structure and complete dissolved precipitates, the strength of
the weld portion got improved in conformation test weld nug-
get portion than the 2nd experiment weld nugget. Also the
volumetric ratio of the tool also led to the proper material flow
around the pin at joining portion during FSW. This produces
the finer grains in weld nugget and in both side of TMAZ
portions. Some coarser dark undissolved precipitates were
found in the TMAZ region. But no major changes in the grain
structure were found in the HAZ region comparing to the CR
AA2219 alloy.

Fig. 6 a, b Microstructure of
Base AA2219 and CR AA2219
material, respectively

Fig. 7 Macrostructure of hexagonal pin tool—weld confirmation test
weld zone
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The TEM analysis was carried out for both weld nuggets of
2nd experiment weld joint and confirmation test weld joint and
the same are presented in Fig. 10a, b, respectively. The TEM
image of the weld nugget in Fig. 10a, b reveals the metastable
intermetallic particles. The complete dissolution of intermetal-
lic particles increased the homogeneity of grains reformation.
Generally in an alloy, the coarser intermetallic particles reduce
the material’s strength and finer or dissolute metastable pre-
cipitates increases the strength of the particular zone.

Here, in Fig. 10a, b, weld nugget portion precipitates were
varying in size and thickness due to the severe plastic defor-
mation. The coarser θ precipitate particles were fragmented
and dissolute within the Al matrix and formed the θ′ and θ″
metastable precipitate particles. Also, the precipitates were
categorized by their size and thickness. During the TEM

analysis, the selected area diffraction pattern technique was
used to classify the θ′ and θ″ particles. The metastable θ″
particles were in the size range of 30 to 120 nm within the
thickness range of 8 nm and the θ′ particles were in the size
range of 50 to 180 nm with the thickness range of 15 nm and
higher size of the precipitates were stable. Here, in Fig. 10b,
the confirmation test weld nugget TEM image consists of θ′
and θ″ particles are found and these are Al2Cu intermetallic
particles that improve the strength of the material [23].
Figure 10a majorly consists of θ′ and very few θ″ particles
in the weld nugget but a few of stable θ particles are also
present.

Figure 11 presents the EDS results of the weld nugget.
Here, it is confirmed that the copper element weight percent-
age of contribution was reduced in the surrounding bulk

Advancing side TMAZ Weld nugget Retreating side TMAZ 

a b cFig. 9 a–c Microstructure of
confirmation test FSW joint

Advancing side TMAZ Weld nugget Retreating side TMAZ

a b cFig. 8 a–c Microstructure of 2nd

experiment FSW joint

Fig. 10 a, b TEM image of a 2nd

experiment WN and b
conformation test WN
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aluminum matrix. This was the effect of the precipitate
dissolution due to the FSW process.

Figure 12 presents the XRD (X-ray diffraction) analysis re-
sult. Here, it is revealed that there were no phase changes made
in the weld portion material after FSW process. This was due to
the low temperature heat input during welding. Also, the XRD
plot confirmed that the intensity of the Al2Cu peaks was re-
duced due to dissolution of precipitates within the Al matrix.

Tensile test of FSW joint was conducted for the confirma-
tion experiment and it delivered an UTS value of 333.5 MPa,
which is better than the 2nd experiment weld joint. Then, the
fractured portion of the tensile specimen was analyzed. The
SEM fractrographic study of confirmation test specimen is
presented in Fig. 13a, b. Here, Fig. 13b was observed with
higher magnification. The SEM images show that the fracture
surface consisted of the fine dimple structure and dimple co-
alescence [23]. And no defect was found at the weld fracture

surface. It was confirmed that the weld joint failure was of
ductile nature. Also the fine dimple structure of the grains is
the evidence for the grains size refinement and it leads to the
ductile mode of fracture.

The result of the corrosion analysis of the weld nugget portion
is presented in Fig. 14a–c. The potentiodynamic
polarization was conducted and the result of the Tafel curve is
presented in Fig. 14a. Here, the anodic curve of the tafel
first goes in the active region and at certain point, the curve
moves on to the continuous passive region. This is because of
the strong protective oxide film formation over the corrosion
surface. This protects the weld nugget surface against corrosion.
Themeasured corrosion current density was about 13.5μA/cm2.
The current density is directly proposal to the corrosion rate and
so, weld nugget possess superior corrosion resistance [23]. This
was also because of the dissolution of the Al2Cu precipitates.
The SEM image of corroded surface of the weld nugget is pre-
sented in Fig. 14b. Here, very tiny pits were found in the weld
nugget. This was comparatively much lesser than the other weld
joints. Primarily, the corrosion action begins around the interme-
tallics particles. This is due to the non-cohesive nature of the
intermetallics with the surrounding Al matrix. Due to the com-
plete dissolution of precipitate particles during FSW process, it
eliminates coarser θ particles in the weld nugget region [23].

Figure 14c presents the results of pit measurement details
and surface topography by 3D optical image analyzer. The 3D
optical image analyzer was used to find out and analyze the
nature of pit formation over the corroded surface of the weld
nugget. From the image analysis of the corroded surface to-
pography, it is found that there were very less number of pits
and remaining were surface irregularities. From the corroded
surface, the notable pit was measured and it had a pit depth of
35.1 μm and width of 32.17 μm. The weld joint made by
using optimized process parameters exhibited better mechan-
ical and metallurgical behaviors compared to the L9 Taguchi
experimental weld joints.

Fig. 11 EDS result of confirmation test weld nugget portion

Fig. 12 XRD plot of confirmation test weld nugget
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4 Conclusions

In the present investigations, the ANN modeling with GA
optimization was carried out for ultimate tensile strength, mi-
crohardness and corrosion resistance of friction stir welded
cryorolled AA2219 alloy. The ANN was used to establish
the relationship by supplying the L9 orthogonal array experi-
mental input and their output responses. Then, the results were
further optimized with GA. The following findings were
observed from the ANN-GA modeling optimization and the

characterization results of FSW joint made with feasible
solutions.

& The ANN modeling forecasted the output responses with
high accuracy and the least RMSE value was found from
the BBP (0.0089991) model with seven numbers of neu-
rons in the hidden layer. If there is more number of train-
ing data sets, accuracy of the ANN results will improve.
Also the GA was effectively executed to find out the
optimized process parameters of FSW.

Fig. 13 a, b Tensile tested
fractograph of confirmation test
weld joint

Fig. 14 a–c Tafel plot curves, SEM image of corroded surface of the confirmation test nugget potion and its depth measurement using image analyzer of
FSW nugget, respectively
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& The Neural Power professional version 2.5 software pro-
vides five ANN modeling algorithms to find the least
RMSE value from the least number of inputs with output
response and provide the optimal solution. Here, it was
possible to feed different combinations of training data
sets (80% of the data was selected for training) to train
the ANN. The remaining 20% of data can be utilized to
check the ability of the model to predict the unknown
responses. This methodology provides reliability and
verifies the accuracy of the obtained optimal solution.

& The GA gives the feasible input parameters for conforma-
tion test and they are rotational speed of 1005 rpm, tool
travel speed of 20 mm/min and tool tilt angle of 3°.

& The FSW joint made with feasible solution (confirmation
experiment) exhibits tensile strength, microhardness and
corrosion current density of 333.5 MPa, 131 HV0.5 and
13.5 μA/cm2, respectively. The corrosion pit dimensions
are also very minimum.
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