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Abstract Detecting laser metal deposition (LMD) defects is a
key element of evaluating the probability of failure of the
produced part. Acoustic emission (AE) is an effective tech-
nique in LMD defect detection. This work presents a system-
atic experimental investigation of using AE technique for de-
tecting and classifying different defects in LMD. The defects
generated during LMD simulate AE sources on deposited ma-
terial while the AE sensor was mounted on the substrate to
capture AE signals. An experiment was conducted to investi-
gate the ability of AE to detect and identify defects generated
during LMD using a logistic regression (LM) model and an
artificial neural network (ANN). AE features, such as peak
amplitude, rise time, duration, energy, and number of counts
along with statistical features were extracted and analyzed.
Additionally, frequency analysis using fast Fourier transfor-
mation was conducted on the AE signal. The results show that
AE has considerable potential in LMD monitoring for
assessing the overall deposition quality and identifying defects
that can significantly reduce the strength and reliability of
deposited material, and consequently, increase the risk of a
component’s failure.

Keywords Laser metal deposition . Deposition defects .

Acoustic emission . Artificial neural network . Logistic
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1 Introduction

Laser metal deposition (LMD) is an advanced additive
manufacturing (AM) process used to build or repair metal
parts layer by layer for a range of different applications. Any
presence of deposition defects in the part produced causes
change in the mechanical properties that might cause failure
to the part. Using remedies to fix these defects will increase
the machining time and costs. Monitoring the LMD process is
crucial for detecting any undesired defects in the produced
part and for avoiding corrective actions. Therefore, early de-
tection is critical. Because different defect mechanisms can
produce similar waveforms, the analysis and the modeling of
the acoustic emission signals during the deposition process are
essential, and an online detection system of any significant
changes in those signals is required to detect these changes.

LMD is one type of powder-based laser deposition additive
manufacturing techniques such as laser cladding [2, 3], laser
direct casting [4, 5], direct metal deposition [6], directed light
fabrication [7–9], laser forming [10], shape deposition
manufacturing [11], laser engineered net shaping [12, 13],
free-form laser consolidation [14, 15], and many others. The
main process parameters of LMD are laser power, travel ve-
locity, and powder flow rate. These parameters control the
geometry accuracy and the mechanical properties of the fin-
ished part by determining the size of the molten pool, the part
deformation, and the microstructure of the deposited layers.
Additionally, they affect the temperature profile and cooling
rate in the molten pool, as well as the thermal cycles at each
location of the fabricated part [1].

The acoustic emission sensor is a piezoelectric transducer
that generates an electrical charge in response to the elastic
waves emitted from sources inside of a material as a result of a
sudden release of energy. The AE technique is one of most
powerful monitoring technologies available; it has been used
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for monitoring in many manufacturing processes such as the
cutting operations [16–18] and the welding process. Jolly [19]
monitored the crack growth in stainless steel welds, and it was
found that a maximum AE rate is directly related to the num-
ber of cracks in the weld defect zone. This work is considered
to be the first significant milestone in the application of the AE
technique for monitoring the welding process. A.S. Sun.
Rostek [20] in 1990 used computer-aided acoustic pattern
recognition to demonstrate the monitoring capabilities of
acoustic signals. Duley and Mao [21] studied the laser
welding process of aluminum 1100 using acoustic emission.
They found that a keyhole could be identified by a specific AE
frequency component, and they could then correlate the AE
with laser penetration and surface condition. Grad et al. [22] in
1996 developed a monitoring method that uses different sta-
tistical parameters to assess process stability.

Bohemen [23] demonstrated that martensite formation dur-
ing gas tungsten arc (GTA) welding of steel 42CrMo4 can be
monitored by means of AE. It was shown that a particular
relation exists between the root mean square (RMS) value of
the measured AE and the volume rate of the martensite for-
mation during GTA welding. Grad et al. [24] examined the
acoustic waves generated during short-circuit gas metal arc
welding process. It was found that the acoustic method could
be used to assess welding process stability and to detect the
severe discrepancies in arc behavior.

Yang [25] used an acoustic emission (AE) sensor to iden-
tify damage in metallic materials. Results suggested a strong
correlation between AE features (i.e., RMS value of the re-
constructed acoustic emission signal), surface burn, residual
stress value, and hardness of steels. Diego-Vallejo [26] found
that the focus position, as an important parameter in the laser
material interactions, changes the dynamics and geometric
profile of the machined surface as well as the statistical prop-
erties of the measured AE signal.

Wang [27] utilized acoustic emission testing to identify
crack location using two acoustic emission sensors during
laser cladding process. The temperature ranges of crack

generation and expansion were studied using finite element
analysis (FEA). The forms and extended forms of the cracks
were investigated by using optical microscope and scanning
electronmicroscope (SEM). However, the characteristic of the
acoustic emission and the features of the signal were not stud-
ied, and the microscopy investigation of cracks was not linked
to the location of the crack results. The experiment and anal-
ysis results show that the amount of cracks increases with the
area and thickness of coating and the cooling rate increasing.

Recently, Siracusano [28] proposed a framework for the
evaluation of material damages based on the Hilbert–Huang
Transform, and this framework facilitates the systematic em-
ployment of both established and promising analysis criteria.
The framework also provides unsupervised tools to achieve an
accurate classification of the fracture type. Bianchi [29]
suggested a wavelet packet decomposition within the
framework of multi-resolution analysis theory should be con-
sidered for analyzing acoustic emission signals when investi-
gating the failure of rail-wheel contact within a fatigue and
wear study. The application was shown to be adequate for
analyzing such signals and filtering out their noise during
real-time monitoring.

However, more research is needed to develop a technique
that uses AE as a reliable measure for LMD defect detection
and integrity assessment. In this paper, the defect type
distinguishing of LMD is investigated by modeling the AE
signals. The AE technique is suitable for examining the defect
sources during LMD; it contains rich defect-related informa-
tion such as crack and pore formation, nucleation, and propa-
gation. Information on defect development is difficult to ob-
tain by only using the AE waveform in a time domain. Thus,
other features such as amplitude, energy, rise time, count, and
frequency are extracted to analyze qualitative defect mecha-
nisms. The purpose of the present work is to develop reliable
prediction models of defect classification that are based on AE
data acquired during LMD.

This work used logistic regression and an artificial neural
network to represent the relationship between the AE signal

Fig. 1 Experimental setup shows
the LMD system and AE data
acquisition system
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and the defect types in LMD processes, and then the results of
the two models were compared with the results of clustering
analysis. The AE event features were fed into the two models
to measure operation quality during LMD. After the models
had been trained, the inference system classified the AE
events in real time from the experimental sensor signal. The
results of the monitoring algorithm can warn the operator to
take corrective actions in order to reach the optimum quality
of the produced part.

2 Experiments and data collection

Figure 1 shows a schematic diagram of the experimental set-
up. The YAG laser was attached to a 5-Axis vertical computer
numerical control machine that is used for post-process ma-
chining after LMD. The data acquisition system consists of
acoustic emission sensor, coupler, and data acquisition oscil-
loscope. The used AE system (Kistler 8152B111) has a rela-
tively superior signal-to-noise ratio and sensitivity at the ultra-
precision scale. The noise level is much smaller than the sig-
nals of interest; also, a frequency filtering was used which
allows the passing of only those signals falling within a se-
lected bandwidth.

The acoustic emission sensor is made up of the sensor
housing, a piezoelectric sensing element, and a built-in imped-
ance converter. The sensing element, made of piezoelectric
ceramic, is mounted on a thin steel diaphragm. Its construction
determines the sensitivity and frequency response of the sen-
sor. It is acoustically isolated from the housing by design and
therefore well protected against external noise. The acoustic
emission sensor is highly sensitive to surface and longitudinal
waves over a broad frequency range.

The AE-Piezotron coupler comprises plug-in modules that
amplify and filter the raw signal. The main function of the
coupler is to supply power to the sensor and process the emis-
sion signal. The gain factor, low- and high-pass filters, and
integration time constant are included in one electronic board,
allowing the best possible adaptation to a specific monitoring
function. The coupler provided 0–5 V voltage signals propor-
tional to the detected defect and eliminated any need for fur-
ther signal processing. Figure 3 shows the coupler assembly
diagram.

Picoscope 2205A works as a dual-channel oscilloscope to
capture the AE signal and stream it to a computer for further
analysis. The oscilloscopemeasures the change in the acoustic
emission signal over time, and helps in displaying the signal as
a waveform in a graph. The raw signals were first fed through

(a) Ti-6Al-4V Metal Powder (b) H13 Metal Powder 

Fig. 2 a, b Optical image of the
metal powders used in deposition
process

Table 1 The composition and
thermal properties of titanium and
tool steel metallic powders (mass
%)

Ti-6Al-4V H13

Iron, Fe < 0.25 Balance

Chromium, Cr – 4.75–5.5

Molybdenum, Mo – 1.1–1.75

Silicon, Si – 0.80–1.20

Vanadium, V 3.50 to 4.50 0.80–1.20

Carbon, C < 0.08 0.32–0.45

Nickel, Ni – 0.3

Manganese, Mn – 0.20–0.50

Titanium, Ti Balance –

Aluminum, Al 5.50 to 6.50 –

Thermal expansion (°K−1) 11 × 10 − 6 – 15 × 10 − 6 13 × 10 − 6 – 16 × 10 − 6

Thermal conductivity (W/mK) 8 28.6
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the data acquisition system and then processed and recorded
using Matlab software.

A powder feeder system was used to deliver the atomized
powder to the melt pool using argon gas (which is also used as
a shielding gas), and it flowed through channels in the nozzle
of laser deposition head to reduce the oxidation of the deposit.
During the laser metal deposition process, porosities and
cracks can be formed as the result of a lack of fusion, shield
gas trapping, and the difference in thermal coefficients of the
deposited material and the substrate. The AE signal was re-
corded during a laser deposition process in an oxidized envi-
ronment and with contaminated powder in order to induce
pores and cracks as a result of thermal coefficient difference.
The material of the substrate was tool steel. Cracks and poros-
ities were simulated primarily by mixing Ti-6Al-4V powder
with H13 tool steel powder. The two powder particles as il-
lustrated in Fig. 2 are non-uniform in shape and size and may
contain internal voids that can cause deposition defects when

mixed. Table 1 displays the chemical composition and the
thermal properties of both powders.

Different defect mechanisms can produce similar wave-
forms and amplitudes; it is not sufficient to use a particular
feature to represent the events. Therefore, seven AE signal
features (Table 2) were employed in the signal analysis to
overcome this problem. Representing the AE signal with
enough features is critical in order to collect as much informa-
tion as possible about the emitting source, especially when
there is little literature regarding the use of AE techniques
for motoring LMD process that can be utilized as a reference
during AE feature selection. The AE signal can be represented
in the frequency domain by using fast Fourier transform (FFT)
or in the time domain by using peak amplitude, kurtosis, en-
ergy, number of counts, duration, and rise time. Figure 3
shows some of the time-dependent features.

Among all of the features, the signal amplitude alone was
measured in real time by the data acquisition system. Once the

Table 2 Time domain and frequency domain AE signal features

Feature Definition

Peak amplitude It is the greatest measured voltage in an AE event.

Kurtosis It is a measure of whether the data of an AE event are peaked or flat compared to a normal distribution.

Kurtosis ¼
∑
N

i¼1
xi−xð Þ2=N
σ4 −3 (1)

where N is the number of samples (xi) in an AE signal, σ is the standard deviation, and x is the mean.

Energy Since the domain of the AE event signal is discrete, the energy of the signal is given by:

Energy ¼ ∑
N

i¼1
xið Þ2 (2)

Number of counts It is the number of pulses emitted by the AE event.

Duration It is the time difference between the first and last threshold crossings.

Rise time It is the time interval between the first threshold crossing and the AE event peak.

Peak amplitude frequency It is a characterization of the magnitude and frequency of an AE event using fast Fourier transform

Fig. 3 Time-dependent AE event
features
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AE signal is recorded, the other features were calculated from
the waveforms at the end of the deposited layer because they
are particularly dependent on the amplitude and threshold. In
this work, all of these features were used in a multi-logistic
regression statistical analysis and ANN analysis. No AE noise
associated with the operation of the laser system or the CNC
system was observed. Also, it was found in this study that the
noise level is much smaller than the signals of interest.
Additionally, a frequency filtering was used, which allowed

Table 3 Laser metal
deposition process
parameters

Parameter Value

Laser power 1000 W

Powder feed rate 10 g/min

Table velocity 300 mm/min

Layer thickness About 0.5 mm

Layer width About 2.5 mm

Table 4 Standardized AE signal features and the clustering results

Event number Rise time Peak amplitude Duration Kurtosis Number of counts Energy Frequency Defect

1 − 0.8632828 − 0.7341107 − 0.68626 − 1.44472 − 0.75435274 − 0.42589 − 1.27045 Pore

2 − 0.1261721 − 0.6508765 − 0.60598 − 1.25783 − 0.6648721 − 0.42121 − 0.28512 Pore

3 − 0.6931803 − 0.6231318 − 0.62959 −0.34811 − 0.6786384 − 0.42337 − 0.16714 Pore

4 − 0.0694712 − 0.5398975 − 0.51153 − 0.52405 − 0.5478591 − 0.41726 − 0.57824 Pore

5 − 0.2584740 − 0.4844081 − 0.55876 0.728254 − 0.5960409 − 0.4176 1.576003 Pore

6 − 0.2962745 − 0.5121528 − 0.28959 − 0.16773 − .2174693 − 0.41689 0.226959 Pore

7 − 0.5797787 − 0.5676423 − 0.53514 0.00428 − 0.5547422 − 0.42265 0.843153 Pore

8 2.803370 2.0958524 2.3407 − 1.1222 2.2535706 2.41352 0.053381 Crack

9 − 0.1072718 − 0.6786212 − 0.53987 − 0.14773 −0.5409760 − 0.42517 1.349834 Pore

10 − 0.5608784 − 0.7063660 − 0.64376 − 1.04886 − 0.6924046 − 0.42553 − 0.08978 Pore

11 − 0.3151748 0.3201892 − 0.02042 0.449555 − 0.0109757 − 0.31195 1.354937 Pore

12 − 0.3340751 − 0.4844081 − 0.68626 1.881232 − 0.7612358 − 0.42228 − 0.71316 Pore

13 2.1796615 2.0958524 1.953476 − 0.93525 1.9231809 1.795566 − 0.14501 Crack

14 − 0.1828729 − 0.5121528 − 0.29903 0.510621 − 0.2381187 − 0.41256 0.799576 Pore

15 − 0.5041776 − 0.3734291 − 0.33681 0.103122 − 0.3138330 − 0.40788 − 0.4526 Pore

16 1.8583568 2.0958524 1.967643 − 1.38266 1.7029210 2.668412 − 0.04808 Crack

17 − 0.1639726 − 0.6231318 − 0.23292 0.998504 − 0.1142225 − 0.42121 1.881284 Pore

18 0.0628306 0.9860629 0.267636 2.358211 0.3882451 − 0.26322 0.568001 Pore

19 − 0.8632828 − 0.6786212 − 0.74765 0.445735 − 0.8438333 − 0.42517 − 0.77585 Pore

20 − 0.7309809 − 0.734110 − 0.7382 − 0.56879 − 0.8300670 − 0.42589 − 0.82462 Pore

21 − 0.5986790 0.1259761 − 0.17625 0.437646 − 0.1555213 − 0.35378 − 0.48302 Pore

22 − 0.1828729 0.1814655 0.02208 0.054488 0.0785047 − 0.33756 − 0.34344 Pore

23 − 0.5797787 − 0.4566633 − 0.1007 1.929897 − 0.0109757 − 0.38877 0.603812 Pore

24 − 0.5608784 − 0.234705 − 0.28487 − 0.16722 − 0.2587681 − 0.39165 1.376322 Pore

25 − 0.0316707 0.1814655 − 0.09598 1.216332 − 0.0316251 − 0.36316 − 0.00579 Pore

26 − 0.4852773 − 0.6231318 − 0.28487 − 0.57514 − 0.1761706 − 0.42337 − 0.00107 Pore

27 − 0.2017732 − 0.4566633 − 0.41237 1.534873 − 0.3620149 − 0.4212 − 2.1943 Pore

28 − 0.4852773 − 0.7063660 − 0.51626 − 0.96409 − 0.5203266 − 0.42445 − 2.15717 Pore

29 0.0817309 − 0.6786212 − 0.42653 − 1.13012 − 0.3757811 − 0.42517 1.515988 Pore

30 0.8755425 1.9293840 0.65486 1.466014 0.8218817 0.066326 − 0.03145 Pore

31 2.7277695 2.0958524 2.760979 − 1.11484 2.8042202 2.811349 − 2.23613 Crack

32 − 0.6931803 − 0.734110 − 0.69098 0.127625 − 0.7612358 − 0.42589 0.776849 Pore

33 − 0.6931803 − 0.7063660 − 0.72403 0.144849 − 0.8094177 − 0.42553 0.102579 Pore

34 − 0.5608784 − 0.4566633 − 0.23764 − 0.33667 − 0.1899369 − 0.40212 0.40919 Pore

35 2.066259 2.0958524 2.765701 − 1.07521 2.7835709 2.630087 − 0.15449 Crack

36 − 0.8632828 − 0.6786212 − 0.67209 − 0.25692 − 0.7337033 − 0.42517 0.082367 Pore

37 − 0.0694712 0.4311682 − 0.04875 0.176898 − 0.0109757 − 0.2917 − 0.56332 Pore
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only those signals falling within a selected bandwidth (100 to
900 kHz) to pass through the filter.

Two depositions were performed with standard parameters
for depositing titanium powder, as shown in Table 3. The first
deposit was 15 mm in length and the second deposit was
5 mm in length. The first AE signal was used to group the
AE events into homogeneous subgroups (clusters), and the
experiment conditions, data collection, and results were
discussed in detail in a previous study by the authors [30]. In
this pervious study, the results were used to construct the LR
and the ANN models.

Table 4 shows the AE event features and results of the
signal analysis. The number of pores in the first signal was
32, while the number of cracks was found to be only 5. This
data was used to create LR and ANNmodels. To validate how
well the two models fit the data, a second AE signal was
acquired under the same experimental conditions. The second
set of the AE signal was used in this study to estimate the

probability of a binary response crack or pore (0 or 1) based
on the features of the AE events. The outcomes of the two
models were compared and verified with the second AE
signal.

Figure 4 illustrates the main steps in the developed proce-
dure that was used to analyze the AE data. The AE sensor was
attached to a substrate to transform the energy released by the
laser deposition into an acoustic emission signal. The forma-
tion of porosities and cracks generates an acoustic emission
signal, which is an elastic wave that travels from the source
toward a sensor, moving through the substrate until it arrives
at the acoustic emission sensor. In response, the sensor pro-
duces an electrical signal, which is passed to electronic equip-
ment for further processing and defect detection. Since the
LMD is an additive process and it deposits metals layer by
layer, the AE signal was recorded for each layer and was

Fig. 4 Step-by-step operations
used to perform the acoustic
emission analyses

Fig. 5 Sigmoid activation function

Table 5 Results of the regression analysis

Term Coefficients Standard error P value

Intercept − 12.2018419 0.0805 < 0.001

x1 2.37719998 0.2926 < 0.001

x2 − 4.78228419 0.2341 < 0.001

x3 46.23988958 3.112 < 0.001

x4 0.116482205 0.09162 0. 06

x5 − 34.48089538 2.429 < 0.001

x6 4.919644537 0.8852 < 0.001

x7 − 0.06002589 0.07432 0. 217
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analyzed in order to extract any useful information from the
AE events.

3 Results and discussion

3.1 Logistic regression-based modeling

In a logistic regression, the dependent variable is binary,
meaning that it can take only two values of “0” and “1,”
where 0 represents defect type I and 1 represents defect type
II. Each of these results represents the outcomes of crack or
pore, respectively. Cox [31] developed the logistic regression
in 1958. The LR model is used to estimate the probability of a
binary response (defect type) based on seven variables (AE
event features).

Logistic regression is used to model the probability of de-
fect classification into a type I or type II defect. Let y* indicate
the classification of the ith AE event such that y* = 1 if the AE
event is classified as pore and yi

* = 0 if the AE event is clas-
sified as crack:

y* ¼ ln
p

1−p

� �
¼ β0 þ ∑

n

i¼1
βixi ð1Þ

where β0 is the intercept and βi is the regression coefficient.

Table 6 Results of the logistic regression and neural network analysis

Event number y∗ LR probability ANN Defect

1 2.18E + 01 1 1 1

2 2.23E + 01 1 1 1

3 2.25E + 01 1 1 1

4 2.25E + 01 1 1 1

5 2.33E + 01 1 1 1

6 2.38E + 01 1 1 1

7 2.29E + 01 1 1 1

8 − 3.40E + 01 1.66E − 15 3.42E − 07 0

9 2.36E + 01 1 1 1

10 2.25E + 01 1 1 1

11 2.16E + 01 1 1 1

12 2.32E + 01 1 1 1

13 − 1.92E + 01 4.44E − 09 2.16E − 06 0

14 2.34E + 01 1 1 1

15 2.29E + 01 1 1 1

16 − 4.00E + 01 4.18E − 18 1.17E − 06 0

17 2.42E + 01 1 1 1

18 2.61E + 01 1 1 1

19 2.16E + 01 1 1 1

20 2.15E + 01 1 1 1

21 2.31E + 01 1 1 1

22 2.24E + 01 1 1 1

23 2.12E + 01 1 1 1

24 2.32E + 01 1 1 1

25 2.48E + 01 1 1 1

26 2.44E + 01 1 1 1

27 2.47E + 01 1 1 1

28 2.24E + 01 1 1 1

29 2.45E + 01 1 1 1

30 2.60E + 01 1 0.999998 1

31 − 3.97E + 01 6E − 18 1.96E − 07 0

32 2.18E + 01 1 1 1

33 2.18E + 01 1 1 1

34 2.20E + 01 1 1 1

35 − 3.92E + 01 9.74E − 18 3.90E − 07 0

36 2.21E + 01 1 1 1

37 2.39E + 01 1 1 1
Fig. 7 Neural network performance

Fig. 6 Neural network architecture
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Therefore, the probability (p) of the porosity defect being
formed is:

p ¼ ey
*

1þ ey*

 !
: ð2Þ

In Table 5, x1, x2, x3, x4, x5, x6, and x7 represent rise time,
peak amplitude, duration, kurtosis, number of counts, energy,
and frequency, respectively. By considering all terms, the LR
model for defect formation is:

y* ¼ ln
p

1−p

� �
¼ −12:2þ 2:37 x1−4:78x2 þ 46:23 x3

þ 0:11 x4−34:48 x5 þ 4:91x6−0:06 x7 ð3Þ

3.2 Artificial neural network-based modeling

An ANN is a statistical machine-learning tool established on
the idea of how neurons in a human brain work. The neural
network consists of layers and nodes, called neurons, and the
number of layers and neurons depends on the difficultly of the
problem being modeled. The input and output layers have
neurons equal to the number of the inputs and the outputs,
respectively. The neurons are connected by synapses, which
take a value from an input neuron, multiply it by a specific
weight, and output the results. The neurons have a more com-
plicated purpose: they add together all outputs from all syn-
apses and apply an activation function.

A sigmoid function was used for activation. This kind of
function was selected because it is one of the common types of
transformation functions and because it provides a method of
establishing complex, non-linear relationships between the
input and output data sets, as shown in Fig. 5. A sigmoid
function was used to map the output of the hidden layer to
the range of values of (0, 1).

Any ANN has at least three layers: an input layer, a hidden
layer, and an output layer. If X is the input data vector (which

in this work is a one by seven vector as shown in Fig. 6),W(1)
is the weight matrix (which is a seven by Nmatrix, where N is
the number of neurons in the hidden layer), and Z(2) is the
transfer function of the second layer:

Z 2ð Þ ¼ X �W 1ð Þ ð4Þ

By applying the transfer function to each element in Z(2),
a(2), the activation function of the second layer, can be obtain-
ed by:

a 2ð Þ ¼ f Z 2ð Þ
� �

ð5Þ

where a(2) has the same size as Z(2). By multiplying weight
matrix of the second layerW(2) (which is anN by one matrix),
there is only one output in our ANN which is defect type:

Z 3ð Þ ¼ a 2ð Þ �W 2ð Þ ð6Þ
where Z(3) is the transfer function of the third layer. Finally, the
activation function is applied to Z(3) to obtain the estimate for
defect type y′:

y
0 ¼ f Z 3ð Þ

� �
ð7Þ

Events Fig. 8 AE raw signal acquired
during LMD process

Table 7 Verification results of the logistic regression analysis and
neural network

Event number Clustering analysis LR probability ANN

1 Porosity Porosity Porosity

2 Crack Crack Crack

3 Crack Crack Crack

4 Porosity Porosity Porosity

5 Crack Crack Crack

6 Porosity Porosity Porosity

7 Porosity Porosity Porosity
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Without training, the network’s estimation error will be
very large, as training is the process of updating the weight
matrix in order to minimize the cost function J:

J ¼ ∑
1

2
y−y

0
� �2

ð8Þ

One of the training algorithms that can be used to train the
ANN is a supervised learning algorithm called a backpropagation
algorithm. This algorithm adjusts the learning rate and

momentum coefficient and keeps them between 0 and 1.
Equation 8 can be written as:

J ¼ ∑
1

2
y− f

�
f XW 1ð Þ
� �

W 2ð Þ
� �2

ð9Þ

In order to save time and reduce calculations, the gradient
descent method is used to guarantee that the search for J is in
the correct direction and stop the search when the smallest J is
reached (i.e., when the cost function stops decreasing). These
tasks are accomplished by taking the partial derivative of J

(a) Porosities produce less energy (b) Porosities have shorter duration

(c)  Porosities in have slower rise time (d)  Porosities have less number of counts 

(e) Porosities have lower amplitude 

Fig. 9 a–e Comparing the signal features between crack and porosities
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with respect toW ∂ J
∂W

� �
so that ∂ J∂W is positive (the cost function

is increasing) and vice versa. This method is useful, especially
for multi-dimensional problems. Gradient descent can be per-
formed either after using all training data (batch gradient de-
scent) or after each input–output pair is identified (sequential
gradient descent).

The neural network was trained with 25 data points (AE
signal features) to estimate the weights (included biases) of
candidate designs, and six data points were used to both esti-
mate the non-training performance error of candidate designs
and stop the training once the non-training validation error
estimate stopped decreasing. Also, six data points were used
as testing data to obtain an unbiased estimate of the predicted
error of unseen non-training data. Training, validation, and
testing data were randomly chosen from different cutting con-
ditions from the data set that consisted of 37 data points (AE
signal features).

Figure 7 illustrates the mean squared error versus iteration
(epochs) number while using the Bayesian regularization
training algorithm. Twenty-five neurons were used within
the hidden layer in this work. The network was trained for
30 iterations, at which time the performance was changed
dramatically, and the best performance was 0.000661 at epoch
18.

The defects are denoted in Table 6 as a binary variable (0 or
1), where 1 represents pores, and 0 represents cracks. The
mean squared error (MSE) for the LR model was 1.72973,
and the error for the ANN model was 1.702703, where the
ideal value of MSE is zero. The MSE defines the average of
the squares of residuals, which are found when the values
predicted by LR and ANN deviate from the actual values of
data. In this study, the performance of the ANN model was
slightly better than the LR model. Because there is an insig-
nificant difference in the performance of the two models, they
will both be used to estimate the type of defect.

3.3 Model verification (defect classification)

Figure 8 shows an AE signal acquired during the LMD pro-
cess in the presence of defects. The spikes in the signal are
called events, and these have features that are different from
the rest of the AE signals. The AE event is counted when the
amplitude of the signal is higher than a preset threshold and is
preceded and followed by a signal with amplitude lower than
the threshold for a specified period.

Table 7 shows the outcomes of logistic regression and neu-
ral network analysis compared to clustering analysis. Both
models succeed at predicting the type of defect, and the AE
signal contained three cracks and four pores.

As seen in Fig. 9, most of the features of AE events differ
significantly between the two types of defects. The signal
energy is the most significant feature, which means it has the

most contribution to the defect classification (Fig. 9a). The
features in the figure provide the greatest separation between
the two defects.

Figure 10 shows waveform samples emitted by a pore and
a crack, and it can be seen that the waveform created by a
crack is quite different from the waveform from created by a
pore. The cracks tend to create AE signals with high energy,

(a) Waveform signal sample emitted by a pore 

(b) Waveform signal sample emitted by a crack

Fig. 10 a, b Comparison between the waveforms emitted by cracks and
porosities

Fig. 11 Optical image of a transverse cross-sectioned laser deposit
showing a crack
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longer duration, slower rise time, large number of counts, and
higher amplitude when compared to the signals generated by
porosities.

After preparing the surface of deposited metal, the cracks
and pores were observed using an optical microscope.
Figure 11 shows cracks caused by thermal stress. During laser
deposition, the cracks are formed as result of thermal stress at
the combining surface of deposition. The temperature gradient
of the deposited layer is higher in the direction of thickness
than other directions, and the thermal expansion coefficients
are different for the two metal powders, which causes a ther-
mal stress. It also occurs with powder contamination in the
powder feeder [32].

The second type of observed defect is pores, which have
a spherical form and appear in random locations that are
not associated with the microstructure, as shown in Fig. 12.
The possible sources of these porosities are surface powder
contamination [32], gasses trapped within the powder par-
ticles due to the difference in the powder sizes, and an
oxidation effect caused by the oxygen level being high
due to not using the chamber to stimulate defect formation
in this research. In fact, surface oxides may most likely
remain in the solid state in the melting pool and, as such,
upset the wetting mechanisms that melted the powder and
induce voids.

4 Conclusions

In the presented paper, various types of LMD defects have
been evaluated using AE technique. The results of this inves-
tigation showed that AE features were influenced by defect
presence, and the findings exhibited the capability of AE tech-
nology to detect the presence of different defects in deposited
material.

The AE signal was collected during the LMD in an oxi-
dized environment with mixedmetal powders in order to stim-
ulate all possible types of defects. Several defect mechanisms
were activated and detected by AE sensor. A LR model was
implemented to analyze the AE signals and identify defect
source mechanisms. The results were then compared to the
outcomes of an ANN model, and both models demonstrated
good agreement with the clustering analysis technique.

According to the logistic regression analysis, the frequency
and kurtosis are not significant, which means that they have
little contribution to the classification solution, their P values
are greater than 0.05, three out of the seven detected defects
are cracks, and the rest are pores. The mean squared error of
the logistic regression and the neural network models are
1.72973 and 1.702703, respectively; there is an insignificant
difference in the performance of the two models.

The LR and ANN successfully distinguished two primary
defect types and their signal characteristics. Porosities pro-
duced AE signals with shorter decay time and less amplitude,
while cracks triggered the AE signals with shorter durations
and higher amplitudes; the signal energy is the most signifi-
cant feature, which means it has the most contribution to the
defect classification. AE offers the potential to detect and
identify different LMD defects and thus assess the overall
structural health of the part produced by LMD.
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