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Abstract In order to solve the problems of high cost and low
efficiency in milling of titanium alloy, multiobjective optimi-
zations are proposed to optimize machining and ultrasonic
parameters by nondominated sorting genetic algorithm II
(NSGA-II). In the present work, longitudinal-torsion ultrason-
ic vibration has been superimposed to the milling of titanium
alloy (Ti-6Al-4V). Orthogonal experiment of milling has been
carried out to evaluate influence of the parameters on machin-
ing results. Then, to meet the different engineering demands,
three multiobjective optimization models are established to
obtain optimization parameters. According to the optimization
results, a group of milling verified experiments was developed
for optimized models. The results show that the three optimi-
zation models balance the different objective well, and the
optimization results are close to experiment results. It provides
choices for engineering application.

Keywords Ti-6Al-4V . Longitudinal-torsion ultrasonic
vibration .Multiobjective optimization . NSGA-II

1 Introduction

Titanium alloy has a series of excellent properties such as
corrosion resistance, high strength, and good heat resistance
[1–3], widely used in medical treatment, aerospace, and other
fields. It is considered as a typical difficult-to-machine mate-
rial, due to its chemical, physical, and mechanical properties,

for instance cutting temperature is high, friction force is large,
tool wear is serious, and so on [4–6]. So it is very meaningful
to improve the processing efficiency and quality.

A large number of studies have shown that ultrasonic vibra-
tion cutting is an effective machining method for difficult-to-
machine material [7, 8]. Ko et al. [9] found that it was helpful to
improve the surface quality and stress, while appropriate feed
per tooth was adopted in ultrasonic vibration milling. Ahmed
et al. [10] developed rotary ultrasonic system in milling of
alumina, and lower cutting force and better surface quality were
obtained. Hara et al. [11] performed ultrasonic vibration in the
cutting of steel. The periodic rippling was formed on machined
surface. While low amplitude and high cutting speed were
adopted, the result was similar to low speed cutting. Wang
et al. [12] studied the influence of machining parameters on
the surface quality in ultrasonic torsional vibration milling of
titanium alloy. It proved that it could reduce obviously the sur-
face roughness in ultrasonic torsional milling, and large ampli-
tude and low milling speed are more conducive to reduce sur-
face roughness (SR). Jiang et al. [13] developed an elliptic
ultrasonic in milling of titanium alloy. Cutting force can be
reduced to 50%. Soutome et al. [14] analyzed surface quality
in high-speed cutting of alumina. The better SR could be ob-
tained while proper direction of vibration was adopted.

Great attention has been paid to the optimization of ma-
chining process in recent years, and a lot of researches have
been done from different angles, such as tool inclination an-
gle, tool path, cutting parameters, and so on. Among them, the
optimization of cutting parameters plays a decisive role in the
tool durability, processing stability, and workpiece quality.
Budak et al. [15], based on the theory of chatter, studied the
selection method of axial depth of cut and radial depth of cut,
to achieve the maximum material removal rate. Merdol et al.
[16] considered the constraints of cutting force, chip thick-
ness, spindle power, workpiece dimension error, and
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machining stability, and a general optimization strategy of
cutting parameters was proposed. Liu et al. [17] optimized
and predicted of surface roughness by particle swarm optimi-
zation. Mahdavinejad et al. [18] presented a method of multi-
perceptron artificial neural network to optimization of cutting
parameters, and better surface roughness was obtained.
Brecher et al. [19] pointed out the problem of poor surface
quality in machining, main caused by the inter-action effect of
machine tools and cutting process.

From the analysis of cutting optimization, in view of the
complexity of machining process of titanium alloy, several dif-
ferent and even conflicting goals need to be met as much as
possible, so multiobjective optimization of cutting parameters
has more application value. Experiment method is intuitive and

easy to realize, however, due to restrictions on the number of
data is discrete and cannot describe the chance of dynamically
output with the cutting parameters. It realizes optimization by
mathematical model, but it only fits for the single-objective
optimization requirement. In contrast, genetic algorithm, parti-
cle swarm optimization, and other evolutionary algorithms can
search the solution space in parallel and have a good ability to
find the optimal or suboptimal solution. It is suitable for solving
multiobjective optimization problems. Li et al. [20],
Chakraborti et al. [21], Koura et al. [22], and Gholami et al.
[23] established the multiobjective optimization model using
nondominated sorting genetic algorithm II (NSGA-II), respec-
tively, and verified the optimization results, and the results
showed that NSGA can effectively solve the problems of
multiobjective optimization.

In the present work, longitudinal-torsion ultrasonic vibra-
tion has been superimposed to the milling of titanium alloy
(Ti-6Al-4V). Based on the orthogonal experiment design,
milling experiments have been proposed to evaluate the influ-
ence of the machining and ultrasonic parameters on

Table 1 Main chemical composition of Ti-6Al-4V

Element Ti Al V Fe O C H N

Wt (%) matrix 5.5–6.8 3.5–4.5 0.3 0.2 0.1 0.015 0.05

Fig. 1 a, b The experimental
devices
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machining results. The empirical models of residual stress
(RS), SR, and surface hardness (SH) have been developed
through logarithmic model. Then, to meet the different de-
mands, three multiobjective optimization models are
established to optimize milling parameters. Multiobjective op-
timization I aims to coupling optimize of the material removal
rate (MRR) and surface quality RS. The multiobjective objec-
tive II aims to coupling optimize of the processing efficiency
MRR and SR. Meanwhile, multiobjective optimization III
aims to coupling optimize of SR and SH. Finally, a group of
milling verified experiments was carried out for optimized
results.

2 Experiment setup and design

In this work, a series of longitudinal-torsion ultrasonic vibra-
tion assisted milling of Ti-6Al-4Vexperiments have been pro-
posed, RS, SR, and SH were measured. According to the

experimental results, influence of the machining and ampli-
tude of ultrasonic parameters on machining quality have been
analyzed, and then the empirical models of RS, SR, and SH
have been developed through regression analysis.

2.1 Experiment setup

The end milling experiments were carried out on vertical ma-
chining center VMC-850E. As the workpiece material, chem-
ical composition of Ti-6Al-4V was listed in Table 1, and the
size of rectangular workpiece was 30 mm × 20 mm × 20 mm.
The experimental equipment was composed of Kistler dyna-
mometer system (9257B), self-developed wireless transmis-
sion longitudinal-torsion ultrasonic vibration assisted milling
system (the amplitude ratio of longitudinal and torsion was
1:1; detail in Section 2.2), high-speed photography, and com-
puter. In machining processing, the cemented carbide UNION
tool (C-CES 10*25) was adopted. The experimental devices
and machining schematic are shown in Fig. 1a, b.

2.2 Self-developed wireless transmission
longitudinal-torsion ultrasonic vibration systems

The realization of longitudinal-torsional vibration mainly de-
pends on helical groove horn, as in Fig. 2, single-excited lon-
gitudinal vibration is converted to longitudinal-torsional vi-
bration through the helical groove, the frequency is about
35 kHz, and the amplitude could be adjusted from 2 to 6 μm
by changing the power of generator and elongation of milling
tool. From simulation models in Fig. 3, the longitudinal-
torsional vibration is visible at the output end. Then, the sim-
ulation of frequency is verified by impedance tests in Fig. 4.

Tool

Wireless transmission tool

holder system

Helical groove horn

Fig. 2 The horn with helical groove

Fig. 3 Simulation of vibration
frequency and modes
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The amplitude of longitudinal can be measured directly
through infrared displacement sensor; however, it is difficult
to measure the amplitude of torsional directly, and a novel
measurement method was found as follows. The milling tool
was prefabricated in a small plane in the radial direction and
the amplitude of torsional is calculated by measuring result of
radial amplitude. It is illustrated in Fig. 5. Line-segment AC is
the radial amplitude of point Ameasured by infrared displace-
ment sensor, R is the radius of tool (R = 5 mm), AE can be
measured directly, and ED is the amplitude of torsional. It can
be solved by Eqs. (1) to (3).

It is found that the amplitude ratio between longitudinal
and torsional is about 1:1, through repeated-measure, as
shown in Fig. 6. Therefore, the expressed amplitude of vibra-
tion represents the amplitude of longitudinal and torsional.

AO ¼ R−EA ð1Þ

θ ¼ arctan
AC
AO

ð2Þ

ED ¼ θ�π�R=180 ð3Þ

2.3 Experiment design

The orthogonal experiment method was adopted with five
parameters and with five levels. The parameters includedmill-
ing speed (MS), feed per tooth (FpT), width of cut (WoC),

depth of cut (DoC), and amplitude of ultrasonic (AoU), and
it is listed in Table 2.

3 Experimental results and discussion

After milling experiments, RS was measured with the help of
the PROTO X-ray by using XRD method, and Cu target has
been chosen. The measurement method of residual stress was
presented in Fig. 7. The residual stress in feed direction is used
to evaluate the physical property of machined quality. The
average of two measurements results is taken as the results.

The surface roughness Ra is measured in feed direction by
Taylor Hobson roughometer (Surtronic 3+). The average value
of four measuring results is used to evaluate surface roughness.

Surface hardness is measured by a micro-hardness instru-
ment (MH-5). The average value of two measuring is used to
evaluate surface hardness, as shown in Fig. 8, where test force
is 50 N and retention time is 5 s.

The experimental results are showed in Table 3, whileMRR
was obtained by calculation from Eq. (4), where, v , z , fz , ap ,
ae , d is MS, number of teeth, FpT, DoC, WoC, and tool diam-
eter (φ10 mm), respectively.

MRR ¼ 1000v
πd

� z� f z � ap � ae ð4Þ

From Table 3, all SR are negative. As indicated, residual
compressive stress (RCS) can be obtained under all selected
processing parameters in this work, which proved that
longitudinal-torsion ultrasonic vibration assisted milling is
an effective anti-fatigue machining method for milling of Ti-
6Al-4V. Meanwhile, the better SR and SH are obtained as
well.

3.1 Results and discussion of residual stress

Figure 9 was drawn according to the experimental results of
RS from Table 3. Then, the effects of parameters on RS are
analyzed. It can be seen from Fig. 9 that the RCS can be
obtained in all the selected parameters, especially, and a large
RCS can be obtained by small machining parameters and

Fig. 4 Impedance test of helical
groove horn

Fig. 5 Illustrative diagram of torsional amplitude measured
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appropriate amplitude. Specifically, the RCS decreases first
and then fluctuates with the increase of all machining param-
eters. On the one hand, the separation characteristics of ultra-
sonic become feebler with the increase of MS and FPT. It
weakens the effect of ultrasonic surface strengthening. On
the other hand, the cutting heat and cutting force increase with
the increase in MRR. It reduces the RCS, and with cutting
parameters, it continues to increase. Partly, the material re-
moval mode changes from shearing to squeezed. It helps im-
prove RCS. Meanwhile, the RS appears fluctuating with an
increase of amplitude. Therefore, it is very important to
choose the appropriate parameters to obtain the different RCS.

According to experimental results, the RS model was
established from Eq. 5 to Eq. 8.

f 1 ¼ σ ¼ −c0vc1 f c2z a
c3
e a

c4
p A

c5 ð5Þ
lg σj j ¼ lgc0 þ c1lgvþ c2lg f zþ

c3lgae þ c4lgap þ c5lgA
ð6Þ

lg σj j ¼ 2:763−0:3439lgv−0:2020lg f z−
0:2635lgae−0:0919lgap þ 0:0520lgA

ð7Þ

f 1 ¼ σ ¼ −549:4v−0:3439 f z
−0:2020ae−0:2635ap−0:0919A0:0520 ð8Þ

In order to directly reflect the influence of processing pa-
rameters on the result, the sensitivity of processing parameters
on RS was obtained in Fig. 10. It can been seen that MS has
the greatest influence on the RS. Contribution rate reaches
36.07%. WoC, FpT, and DoC followed is 27.64, 21.19, and
9.64%, respectively. The reason is that the parameters have
great influence on cutting force and cutting temperature, the
effect of thermal-force has a great influence on the RS. The
influence of AoU is 14.43%, ultrasonic vibration reduces cut-
ting heat effectively, and moreover, it provides impact force
on surface, both of them improve RCS, however, amplitude
has a smaller influence on the RS.

3.2 Results and discussion of surface roughness

The influence of parameters on Ra fromTable 3 was presented
in Fig. 11. It can be seen that better Ra can be obtained in all
the selected parameters, specifically: Ra rising on a whole
with the increase of FpT and DoC. The reason is that residual
peak between the two teeth increases with the increase in FpT
and DoC. The possibility of machining defects increases as
well. From the mechanism of ultrasonic assisted milling, it
could reduce the height of the residual peak, and the peak
increases with the increase of amplitude. The MRR increased
with the WoC increased and caused surface cracks, micro-
hole, and other defects. It reduces the surface quality; howev-
er, Ra is improved whenWoC is 5 mm. It is possible to reduce
friction between the flank and the machined surface.
Therefore, it is very important to choose the appropriate pa-
rameters to obtain the better Ra.

According to experimental results, the Ra model was
established from Eq. 9 to Eq. 12.

Table 2 Parameters and levels

Levels MS
v, m/min

FpT
ƒz, mm/z

WoC
ɑe, mm

DoC
ɑp, mm

AoU
A, μm

1 20 0.01 1 0.15 2

2 40 0.018 2 0.3 3

3 60 0.026 3 0.45 4

4 80 0.034 4 0.6 5

5 100 0.042 5 0.75 6

Fig. 6 The amplitude measuring
device
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Ra ¼ c0vc1 f c2z a
c3
e a

c4
p A

c5 ð9Þ
lgRa ¼ lgc0 þ c1lgvþ c2lg f zþ

c3lgae þ c4lgap þ c5lgA
ð10Þ

lgRa ¼ 0:1887þ 0:0125lgvþ 0:2756lg f zþ
0:0981lgae þ 0:1078lgap þ 0:1517lgA ð11Þ

f 2 ¼ Ra ¼ 1:544v0:0125 f 0:2756z a0:0984e a0:1078p A0:1517 ð12Þ

The sensitivity of processing parameters on Ra was obtain-
ed in Fig. 12. From the figure, FpT has a greatest influence on
the Ra. AoU followed, and both contribution rates reach
66.14%. DoC and WoC have similar effects on the Ra,
16.69% and 15.23%, respectively. MS has a smallest influ-
ence on Ra, only 1.93%.

3.3 Results and discussion of surface hardness

According to the experimental results of SH, Fig. 13 was
presented, and then effects of parameters on SH are analyzed.
It is shown that SH rise on a whole with the increase of AoU,

the impact energy of the tool on the workpiece increases with
the increase of AoU, and it increases surface hardness. And
the curve of SH appears fluctuating with increase of other
machining parameters. Thus, to obtain different SH, the ap-
propriate parameters should be chosen. According to experi-
mental results, the SH model was established from Eq. 13 to
Eq. 16.

HV ¼ c0vc1 f c2z a
c3
e a

c4
p A

c5 ð13Þ

lgHV ¼ lgc0 þ c1lgvþ c2lg f zþ
c3lgae þ c4lgap þ c5lgA

ð14Þ

lgHV ¼ 2:5421þ 0:0350lgvþ 0:0868lg f zþ
0:0822lgae þ 0:0269lgap þ 0:2787lgA ð15Þ

f 3 ¼ HV ¼ 348:4v0:035 f 0:0868z a0:0822e a0:0269p A0:2787 ð16Þ

The sensitivity of processing parameters on Ra was obtain-
ed in Fig. 14. According to Eq. (16), as shown, AoU has the
greatest influence on the SH. The contribution rate is more
than half, and FpT and WoC are followed, 17.03 and
16.13%, respectively. Then, MS and DoC are 6.87 and
5.28%, respectively.

Based on the above analysis of the influence of processing
parameters on the experimental results, it was found that the
same factors have different effects on different response.
Therefore, to meet the different engineering demands, appro-
priate parameters should be adopted, and it is necessary to
establish multiobjective optimization models, especially in
conflicting requirements.

3.4 Verification for empirical model

According to empirical model (Eqs. 8, 12, and 16) of RS, SR,
and SH, predicted value would be calculated and then com-
pared with the experimental results, as shown in Fig. 15. It

Vertical Feed 

Feed direction 

Fig. 7 Residual stress measurement

Fig. 8 Surface hardness
measurement
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illustrates that prediction value is close to experimental results;
thus, the model has a high prediction precision in the scope of
the experiment.

4 Multiobjective optimization results

Among the many multiobjective optimization methods,
NSGA-II has features of fast nondominated sorting approach,
fast crowded distance estimation procedure, and simple
crowded comparison operator, so it is widely used in machin-
ing process [24, 25].

Table 3 Design of experiments and results

No. MS
v, m/min

FpT
ƒz, mm/z

WoC
ɑe, mm

DoC
ɑp, mm

AoU
A, μm

RS
σ, MPa

SR
Ra μm

SH
H, HV

MRR
Q, mm3/min

1 20 0.01 1 0.15 2 −498.36 0.31 310.1 3.820

2 20 0.018 2 0.3 3 −443.47 0.89 349.9 27.503

3 20 0.026 3 0.45 4 −423.94 0.67 393.8 89.384

4 20 0.034 4 0.6 5 −259 0.89 594.6 207.799

5 20 0.042 5 0.75 6 −409.44 0.96 491.2 401.082

6 40 0.01 2 0.45 5 −351 1.06 599.4 45.838

7 40 0.018 3 0.6 6 −352.5 0.55 443.4 165.017

8 40 0.026 4 0.75 2 −266.67 1.07 410.7 397.262

9 40 0.034 5 0.15 3 −375 0.74 489.1 129.874

10 40 0.042 1 0.3 4 −399 0.72 364.8 64.173

11 60 0.01 3 0.75 3 −318.5 0.76 326 171.892

12 60 0.018 4 0.15 4 −397.36 0.74 344.6 82.508

13 60 0.026 5 0.3 5 −101 0.84 546.4 297.947

14 60 0.034 1 0.45 6 −320 0.47 523.1 116.887

15 60 0.042 2 0.6 2 −287 0.55 471.1 385.039

16 80 0.01 4 0.3 6 −233 0.70 494.3 122.235

17 80 0.018 5 0.45 2 −163 0.41 430.7 412.542

18 80 0.026 1 0.6 3 −330 0.70 347.5 158.905

19 80 0.034 2 0.75 4 −142.22 0.99 460.9 519.497

20 80 0.042 3 0.15 5 −255.44 0.86 568.5 192.519

21 100 0.01 5 0.6 4 −354.1 0.45 447.8 381.983

22 100 0.018 1 0.75 5 −378.5 0.63 483.2 171.892

23 100 0.026 2 0.15 6 −298 0.87 491.3 99.316

24 100 0.034 3 0.3 2 −227 0.92 371.2 389.623

25 100 0.042 4 0.45 3 −140.5 1.10 419.9 962.597
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Fig. 9 Parameters’ influence on RS Fig. 10 The sensitivity of processing parameters on RS
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4.1 Constraint condition

The mathematical equations and constraint conditions of opti-
mization procedure were established in the following sections.

First of all, construct optimization variables: x = (×1, ×2,
×3, ×4, ×5), ×1, ×2, ×3, ×4, ×5 representing the value of MS,
FpT, WoC, DoC, and AoU.

Then, according to NSGA-II and experimental design, con-
straint conditions were constructed, as shown in Eqs. 17 to 21.

MS 20 ≤ V ≤ 100:

g1 xð Þ ¼ 20−x1≤0
g2 xð Þ ¼ x1−100≤0

�
ð17Þ

FpT 0.01 ≤ ƒz ≤ 0.042:

g3 xð Þ ¼ 0:01−x2≤0
g4 xð Þ ¼ x2−0:042≤0

�
ð18Þ

WoC 1 ≤ ɑe ≤ 5:

g5 xð Þ ¼ 1−x3≤0
g6 xð Þ ¼ x3−5≤0

�
ð19Þ

DoC 20 ≤ ɑp ≤ 100:

g7 xð Þ ¼ 0:15−x4≤0
g8 xð Þ ¼ x4−0:75≤0

�
ð20Þ

AoU 2 ≤ A ≤ 6:

g9 xð Þ ¼ 2−x5≤0
g10 xð Þ ¼ x5−6≤0

�
ð21Þ

4.2 Multiobjective optimization results and discussion

Better surface quality and higher MRR are chased in the
finishing machining process. However, it is focused on
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different places in different applications. To meet the different
demands, the present study established three different
multiobjective optimization models to optimize processing
parameters (including mill and AoU parameters).
Multiobjective optimization I aims to coupling optimize of
the processing efficiency MRR and surface quality RS. The
multiobjective objective II aims to coupling optimize of the
processing efficiency MRR and SR. Meanwhile,
multiobjective optimization III aims to coupling optimize of
SR and SH. In the optimization procedure, a population size of
200 and an evolutional generation of 100 were adopted.

4.2.1 Multiobjective optimization I

In order to obtain the anti-fatigue parts, an increase in the RCS
on the machined surface is an effective method, while process-
ing efficiency also needs to be considered. Thus, the
multiobjective objective I considers optimization of MRR
and RS simultaneously. The optimization model function is
given in Eq. 22.

Object : min f f 1 xð Þ; f 4 xð Þð Þ
Find : x1; x2; x3; x4; x5

s:t: gi xð Þ≤0 i ¼ 1;⋯; 10:

8<
: ð22Þ

After calculation, the Pareto front of optimization objective
I is shown in Fig. 16.

From Fig. 16, the value of RCS decreases rapidly along
with a litle increase of MRR in region A. Meanwhile, the
MRR increases rapidly along with a litter decrease of RCS
in region C. However, an inflection point appears in region
B, that is to say, it balances the RCS and MRR in this region.
Therefore, it is regarded as an optimal region to get bigger
RCS and higher MRR. Some Pareto optimal solutions of re-
gion B are listed in Table 4.

FromTable 4, to balanceMin (RS) andMax (MRR), small-
er MS (21.5–37.5 m/min), larger FpT (0.026–0.042 mm/z),
and DoC (0.61–0.94 mm) should be considered. The reason is

Table 4 Pareto optimal solutions for optimization I

MS
v, m/min

FpT
ƒz, mm/z

WoC
ɑe, mm

DoC
ɑp, mm

AoC
A, μm

RS
σ, MPa

MRR
Q, mm3/min

21.5 0.036 1.50 0.73 6 −400 108.4

21.5 0.042 1.51 0.73 6 −387.9 126.6

24.4 0.036 1.87 0.69 6 −363.8 144.8

27.6 0.026 2.22 0.73 6 −354.6 147.8

22.0 0.037 2.87 0.70 6 −334 209.9

22.3 0.034 3.40 0.71 6 −323.3 233.1

27.1 0.027 3.49 0.74 6 −314.3 238.5

23.7 0.033 4.08 0.61 6 −307.5 249.9

21.9 0.036 4.53 0.71 6 −298.8 321.2

31.6 0.036 4.61 0.70 6 −262 468.5

30.7 0.040 4.52 0.71 6 −260.6 496

33.7 0.039 4.74 0.74 6 −248.8 589.7

37.5 0.039 4.65 0.74 6 −241.2 640.6
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Fig. 16 Pareto front for multiobjective optimization I
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that MS has a predominant influence on cutting heat. Less
cutting heat contributes to larger RCS. Meanwhile, larger
FpT and DoC compensated for the effect of MS on the
MRR. And moreover, AoU has no influence on MRR from
Eq.(4). Larger amplitude should be chosen to get better RCS.

4.2.2 Multiobjective optimization II

SR is a very important index to judge the quality of finish
machining, especially for precision assembly parts.
Improvement of the Ra on the machined surface is an effective
method, while processing efficiency also needs to be consid-
ered. Thus, the multiobjective objective II considers optimi-
zation ofMRR and Ra simultaneously. The optimizationmod-
el function is listed in Eq. 23.

Object : min f f 4 xð Þ; f 2 xð Þð Þ
Find : x1; x2; x3; x4; x5

s:t: gi xð Þ≤0 i ¼ 1;⋯; 10:

8<
: ð23Þ

After calculation, the result of optimization is drawn
in Fig. 17.

From Fig. 17, it illustrates that the value of Ra increases
with the increases of MRR. However, in region A, MRR in-
creases rapidly along with a little increase of Ra. It is mean
that it balances the Ra and MRR in this region. Therefore, it is
regarded as an optimal region to get better Ra and higher
MRR. Pareto optimal solutions of region B are listed in
Table 5.

FromTable 5, to balanceMin (SR) andMax (MRR), small-
er FpT (0.011–0.012 mm/z) and AoU (2 μm), larger MS
(93.8–100 m/min), and larger DoC (0.46–0.74 mm) should
be considered. The reason is that FpT and AoU have a great
influence on Ra. Smaller FpT and AoU could help reduce
machining residual peaks and defects and improve machining
quality. Meanwhile, larger MS and DoC compensated for the
effect of FpT on the MRR.

Table 5 Some Pareto optimal solutions for optimization II

MS
v, m/min

FpT
ƒz, mm/z

WoC
ae mm

DoC
ap mm

AoU
A, μm

MRR
Q, mm3/min

SR
Ra, μm

93.8 0.011 2.84 0.46 2 175.9 0.54

93.8 0.012 2.84 0.46 2 182.5 0.54

98.0 0.012 2.32 0.65 2 216.9 0.55

96.2 0.011 3.61 0.48 2 235.1 0.55

98.4 0.011 3.72 0.51 2 261.7 0.56

97.2 0.010 3.79 0.63 2 301.1 0.56

97.2 0.010 3.79 0.63 2 308.3 0.56

99.9 0.010 4.67 0.59 2 349.2 0.57

96.9 0.011 4.47 0.61 2 370.5 0.58

98.3 0.010 4.79 0.68 2 421.2 0.58

98.3 0.011 4.79 0.68 2 436.2 0.58

100.0 0.010 4.95 0.74 2 475.3 0.59

100.0 0.011 4.95 0.74 2 498.3 0.59
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Fig. 18 Pareto front for multiobjective optimization III

Table 6 Some Pareto optimal solutions for optimization III

MS
v, m/min

FpT
ƒz, mm/z

WoC
ɑe, mm

DoC
ɑp, mm

AoU
A, μm

SH
H, HV

SR
Ra, μm

86.8 0.011 1.04 0.15 2 329.6 0.43

86.8 0.010 1.02 0.15 3 337.5 0.43

86.8 0.011 1.02 0.15 3 338.3 0.44

87.0 0.010 1.03 0.15 3 343.7 0.44

86.9 0.010 1.03 0.15 3 351.7 0.44

86.9 0.011 1.03 0.15 3 353.7 0.45

86.9 0.010 1.02 0.15 3 361.1 0.45

88.3 0.010 1.05 0.16 3 368.9 0.46

86.8 0.010 1.03 0.15 4 375.8 0.46

87.0 0.011 1.01 0.16 4 377.9 0.47

88.2 0.010 1.08 0.15 4 387.1 0.47

88.0 0.010 1.17 0.16 4 395.9 0.48

88.2 0.010 1.15 0.16 5 404.0 0.48

Table 7 Verification experiment design

No. MS
v, m/min

FpT
ƒz, mm/z

WoC
ɑe, mm

DoC
ɑp, mm

AoU
A, μm

1 21.5 0.042 1.51 0.73 6

2 22.3 0.034 3.40 0.71 6

3 31.6 0.036 4.61 0.70 6

4 93.8 0.012 2.84 0.46 2

5 98.4 0.011 3.72 0.51 2

6 96.9 0.011 4.47 0.61 2

7 86.8 0.010 1.02 0.15 3

8 88.2 0.010 1.08 0.15 4

9 88.0 0.010 1.17 0.16 4
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4.2.3 Multiobjective optimization III

Increasing the SH could increase the wear resistance of parts
to a certain extent, for such parts are often used for precision
assembly, and the SR of parts need be considered as well.
Thus, the multiobjective objective III considers optimization
of HV and Ra simultaneously. The optimization model func-
tion is given as follows:

Object : min f f 2 xð Þ; f 3 xð Þð Þ
Find : x1; x2; x3; x4; x5

s:t: gi xð Þ≤0 i ¼ 1;⋯; 10:

8<
: ð24Þ

After calculation, the result of optimization is drawn in Fig. 18.
It can be seen from Fig. 18. The value of Ra increases rapidly

alongwith a litter increase of SH in regions B andC.Meanwhile,
the SH increases rapidly along with a litter increase of Ra in
region A. It balances the Ra and HV in this region. Therefore,
it is regarded as an optimal region to get better SR and SH. Pareto
optimal solutions of region A are listed in Table 6.

FromTable6, tobalanceMin (SR)andMax (SH), smallerFpT
(0.010–0.011 mm/z) and DoC (0.15 mm), and larger MS (86.8–
88.2 m/min) should be considered. Meanwhile, the appropriate
WoC andAoUneed to be selected according to the requirements.

5 Verification experiment for multiobjective
optimization results

In order to judge the results of the multiobjective optimization,
verification experiment was carried out in accordance with
Table 7. It verifies multiobjective optimization I from no. 1 to
3 in Table 7, no. 4 to 7 for multiobjective optimization II, and
no. 4 to 7 for multiobjective optimization III. According to the
results of verification experiment and optimization, comparison
results were drawn in Fig. 19, to be specific, Fig. 19a for
multiobjective optimization I, Fig. 19b for multiobjective opti-
mization II, and Fig. 19c, d for multiobjective optimization III.

It can be seen from Fig. 19 that the optimization results are
close to experiment results. It proves that all the optimization
models have high precision and provide choices for engineering
application.

6 Conclusions

In this work, longitudinal-torsion ultrasonic vibration has been
composited to the milling of titanium alloy (Ti-6Al-4V). Milling
experiments have been proposed to evaluate influence of the ma-
chining and AOU parameters on machining results. To meet the
different demands, three multiobjective optimization models are
established to optimize milling parameters, and milling-verified
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experiments were carried out for optimized results. The results
show that the three optimization models balance the different ob-
jective well, and the optimization results are close to experiment
results. It provides choices for engineering application.

1. It is an effective method for machining of Ti-6Al-4V that
longitudinal-torsion ultrasonic vibration has been
superimposed to the milling, especially to obtain the sur-
face compressive stress.

2. Amultiobjective optimization model of MRR and RS has
been established, to balance the processing efficiency and
surface stress. A range of parameters has been obtained:
MS, 21.5–37.5 m/min; FpT, 0.036–0.039 mm/z; WoC,
1.5–4.7 mm; DoC, 0.61–0.74; and AoU, 6 μm.

3. A multiobjective optimization model of MRR and Ra has
been established, to balance the processing efficiency and
surface quality. A range of parameters has been obtained:
MS, 93.8–100 m/min; FpT, 0.011–0.012 mm/z; WoC,
2.84–4.95 mm; DoC, 0.46–0.74; and AoU, 2 μm.

4. A multiobjective optimization model of HV and Ra has
been established, to balance the surface hardness and sur-
face quality. A range of parameters has been obtained:
MS, 86.8–88.3 m/min; FpT, 0.010–0.011 mm/z; WoC,
1.02–1.17 mm; DoC, 0.15–0.16; and AoU, 2–5 μm.
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