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Abstract The sharp corners on final contours in flat glass
grinding can cause broken wheel center trajectories. A corner
transitional trajectory planning algorithm based on arc splines
is proposed in this paper to control the wheel center trajectory
G1 continuity and the grinding depth at a corner. The radii of
arc splines are derived first to meet design requirements based
on the geometrical features of a sharp corner. A three-phase
feedrate planning scheme is introduced to generate the arc
splines. Corner classification and treatment are presented to
make the proposed algorithm flexible, and steps for algorithm
application are summarized. Experimental results demonstrate
that the proposed algorithm can achieve satisfactory shape
accuracy at corners without any breakage, rounding, or
flattening.

Keywords Flat glass . Edge grinding . Sharp corner
transition . Arc splines . Grinding depth control

1 Introduction

Flat glass is widely used in the building, automobile, and
household furniture industries. The demand for personalized
glass products with sharp corners is increasing significantly
because of their unique appearance. A piece of regular glass is
usually cut first to obtain a specific shape but with sharp edges
and inaccurate contours. Grinding with diamond wheels is a

necessary procedure to remove redundant material along
edges and create a final shape that qualifies for assembly.

As shown in Fig. 1, the blue area denotes the glass with a
continuous final contour and the red is the redundant material
to be removed. The final contour is radius compensated to
obtain the wheel center trajectory shown with the black
dashed lines. Obviously, at the sharp corners, the wheel center
trajectory is broken and transitional trajectories are needed for
wheel movement.

“Corner rounding” and “velocity blending” are two main
techniques for sharp corner machining of metallic materials.
Corner rounding usually uses various parametric curves to
correct sharp corners and impose G1, G2, or higher-order con-
tinuity on the tool path. Sencer and Shamoto [1] and Pateloup
et al. [2] use B-spline curves to interpolate discrete segments
and thereby eliminate abnormal motion vibrations induced by
sharp corners. Combined with acceleration/deceleration (acc/
dec) control algorithms, analytical contour error control equa-
tions were presented to realize high-precision corner machin-
ing. Polynomial curves were adopted to smooth sharp corners
[3–6]. Considering the contour error limitations and capacities
of servo system, the velocities along the tool path were opti-
mized. Bezier curves were also used to smooth a discrete tool
path composed of linear and circular segments [7–9]. Corner
velocities were optimized with curvature constraints and acc/
dec algorithms. Nonuniform rational basis spline (NURBS)
curves were usually proposed to interpolate tool paths which
were corrected to higher-order continuity to avoid harmful
mechanical vibrations at sharp corners [10–14]. In addition,
Jahanpour and Imani [15, 16] and Farouki and Nittler [17]
used Pythagorean hodograph (P-H) curves to blend sharp cor-
ner trajectories and achieved constant feedrate machining at
corners.

Velocity blending [18] is another method of sharp cor-
ner machining. Tajima and Sencer [19] and Jahanpour and
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Alizadeh [20] adopted S-type acc/dec algorithms and cal-
culated optimum velocities at sharp corners taking into
account the constraints, such as jerk limitation and servo
capacities. Luo et al. [21] and Li et al. [22] proposed ve-
locity look-ahead algorithms under constraints, such as
maximum velocity and corner geometrical angle.

Both “corner rounding” and “velocity blending” can guar-
antee that the tool traverses a sharp corner smoothly, but can-
not be directly used in glass edge grinding for the following
reasons:

1. There is always more redundant material at a sharp corner
than normal. The abrupt increase in grinding depth easily
results in glass breakage, rounding, or flattening. How to
properly control the grinding depth at a corner has rarely
been considered.

2. There is neither an interpolating point in broken zones for
curve fit nor enough acc/dec distance for velocity
blending.

To realize sharp corner grinding, a transitional trajectory
planning algorithm based on arc splines is proposed in this
article. The article is structured as follows: Section 2 describes
the transitional trajectory design. Section 3 presents the clas-
sification and treatment of corners and summarizes the appli-
cation steps. In Section 4, a typical contour is ground to test
the performance of the proposed algorithm. Section 5 presents
our conclusions.

2 Trajectory design

2.1 Transitional process planning

As shown in Fig. 2a, the black dashed lines denote the broken
wheel center trajectory, and the blue solid line is the desired
transitional trajectory, which is composed of four circular arcs
denoted as AB, BC, CD, and DE, respectively. When the
wheel center moves from point A to point E along the arcs,
the process is scheduled as follows:

1. Circular arc AB is tangent to the wheel center trajectory at
point A. From point A to point B, the grinding depth de-
creases, gradually.

2. Circular arc AB is tangent to the BC at point B. As shown
in Fig. 2b, from point B to point C, the grinding depth
continues to decrease, and to be zero at point C.

3. Circular arc BC is tangent to the CD at point C. From
point C to point D, the grinding depth tends to increase,
gradually.

4. Circular arc CD is tangent to theDE at pointD. As shown
in Fig. 2c, from point D to point E, the grinding depth
continues to increase and returns to normal at point E,
finally.

5. Circular arcDE is tangent to the wheel center trajectory at
point E.

Desired arc splines guarantee that the connected tool path is
of G1 continuity, the grinding depth is controllable, and the
direction of the wheel center movement is always tangent to
the final contour at points A and E.

2.2 Sharp corner geometrical analysis

As shown in Fig. 3, a typical corner is formed by two straight
lines. Q is the corner point which is radius compensated to
yield points E and A. The broken wheel center trajectories are
extended, and intersect at point P. QP is the bisector of corner
angle 2φ, 0 ≤φ ≤ 90°.

Let dc be the scheduled grinding depth, and RT be the wheel
radius. According to the tool radius compensation algorithm,
we have

QAk k ¼ QEk k ¼ RT : ð1Þ

Obviously, around the corner Q, the maximum grinding
depth d is

d ¼ dc
.
sinφ: ð2Þ

MN is the common tangent of circular arcs BC and CD,
and perpendicular to the bisector QP. To guarantee that the

grinding depth becomes zero at point C, the length of QC
should be

QCk k ¼ RT þ d: ð3Þ

Moreover, circular arcs AB and DE, BC and CD are both

symmetrical with respect to bisector QP.
Points O1 and O2 are the center of arcs AB and BC, respec-

tively. Obviously, pointsO1,Q, and A are collinear, pointsO1,
O2, and B are collinear, and points Q, O2, and C are collinear.

Let angle ∠BO1A be θ1 and ∠BO2A be θ2. GF is the common
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Fig. 1 Glass edge grinding
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tangent of circular arcs AB and BC, and perpendicular to the

linear segment O1B. We have

θ1 þ θ2 þ φ ¼ π
2
: ð4Þ

2.3 Radii of arc splines

A local Cartesian coordinate system X1QY1 is established.
Let corner point Q be the origin, R be the radius of circular
arcs AB and DE, and r be the radius of circular arcs BC and
CD. We have

O1 ¼ RT−Rð Þes; ð5Þ

and

O1A ¼ Res; ð6Þ

where the unit vector es ¼ A
Ak k.

Let O1A rotate θ1 degrees counterclockwise to yield

O1B ¼ Res
cosθ1 sinθ1
−sinθ1 cosθ1

� �
; ð7Þ

and

O2B ¼ res
cosθ1 sinθ1
−sinθ1 cosθ1

� �
: ð8Þ

Let O1A rotate (θ1 + θ2) degrees counterclockwise to yield

O2 ¼ r−RT−Rð Þcosφ
RT þ R−rð Þsinφ

� �
: ð9Þ

With the pointO1 and vectorO1B, pointB can be derived as

B ¼ −Rsinθ1
RT þ Rcosθ1−R

� �
: ð10Þ

With the point O2 and vector O2B, point B can be also
derived as

B
0 ¼ r−RT−dð Þcosφ−rsinθ1

rcosθ1− r−RT−dð Þsinφ
� �

: ð11Þ

Hence, we have

B ¼ B
0
: ð12Þ

With Eq. ((12), the radii R and r can be derived as

R ¼ RT sinθ1−cosφð Þ þ RT þ dð Þcos θ1 þ φð Þ
sinθ1−cosφþ cos θ1 þ φð Þ ; ð13Þ

and

r ¼ Rsinθ1
sinθ1−cosφ

−
RT þ dð Þcos φð Þ
sinθ1−cosφ

: ð14Þ

θ1 is yet unknown and will be figured out in the next sec-
tions, but the relationships between θ1 and the radii can be
checked first. Typically, let half angle φ = 15°, wheel radius
RT = 75 mm, and grinding depth dc = 0.13 mm. As shown in
Fig. 4, two rules can be concluded as follows:

Rule 1. Radius R is always greater than the wheel radius RT.
R decreases and approaches RT indefinitely with the
increase of θ1.
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Rule 2. Radius r is always smaller than the wheel radiusRT. r
increases and approaches RT indefinitely with the
decrease of θ1.

2.4 Feedrate constraint

As shown in Fig. 5, when the wheel center moves along the arc
splines from point A to point E, the direction of Y axis always
remains unchanged, but the X axis will reverse at point C.
From position C, ΔX and ΔY are the increased displacements
of axes X and Y after an interpolation cycle, respectively. Two
triangles,ΔCC1C2 andΔCO2C3, are created with a same inner
angleβ. And ‖C1C2‖ = ΔX , ‖CC2‖ = ΔY , ‖CO2‖ =
r , ‖CC3‖ ≈ΔY/2, we have

tan βð Þ ¼ ΔX
ΔY

≈
ΔY
2r

ð15Þ

where ΔX and ΔY can be derived as

ΔX ¼ 1

2
axTs

2; and

ΔY ¼ vc1Ts

(

where vc1 is a transitional feedrate, ax is the acceleration value
of axis X, and Ts is the interpolation period. With Eq. (15), we
have

vc1≈
ffiffiffiffiffiffiffi
axr

p
: ð16Þ

Taking the X and Y axes into consideration, with Eq. (16),
the transitional feedrate constraint can be derived as

vc1≤min
ffiffiffiffiffiffiffi
axr

p
;

ffiffiffiffiffiffiffi
ayr

p� � ð17Þ

where ay is the acceleration value of axis Y.

If the X or Y axis reverses on AB or DE, Eq. (17) should be
corrected to

vc1≤min
ffiffiffiffiffiffiffiffi
axR

p
;

ffiffiffiffiffiffiffiffi
ayR

p� �
: ð18Þ

According to the rules 1 and 2, the radius R is always
greater than the radius r. Therefore, only Eq. (17) can meet
the control requirements.

2.5 Generation of arc splines

Motion through a sharp corner requires a dec/acc process. Let
vmax be the maximum machining feedrate, and vtrans be the
transitional feedrate. The planned arc splines are divided into
three motion phases:

– Circular arc AB is a deceleration portion, where feedrate
decreases from vmax to vtrans.

– Circular arcs BC and CD are both uniform speed por-
tions, at constant feedrate vtrans.

– Circular arcDE is an acceleration portion, where feedrate
increases from vtrans to vmax.

The scheduled feedrate profile is shown in Fig. 6.
A linear acc/dec algorithm is used and the required decel-

eration distance is

LAB ¼ vmax
2−vc22

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ ay2

p ð19Þ

where LAB is the required deceleration distance, and vc2 is a
transitional feedrate that can be initially set by

vc2 ¼ φ
90

vmax: ð20Þ

According to feedrate planning, LAB is equal to the length
of arc AB. Hence, the value of θ1 can be derived as
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θ1 ¼ LAB
R

¼ 1− φ
90

� �2
2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ ay2

p vmax
2: ð21Þ

Because rule 1 says that radius R is always greater than the
tool radius RT, we have

θ1R > θ1RT : ð22Þ

To guarantee enough deceleration distance, wheel radius
RT can be taken into Eq. (21) as a substitute to solve angle
θ1. Taking the obtained angle θ1 into Eqs. (13) and (14), radii
R and r are both determined. Then, with Eqs. (17) and (20),
transitional feedrate vtrans can be confirmed by

vtrans ¼ min vc1; vc2ð Þ: ð23Þ

After confirmations of θ1, R, and r, the circular arc AB can
be derived as

cAB θð Þ ¼ −Rsinθ
Rcosθ−Rþ RT

� �T
ð24Þ

where 00 ≤ θ ≤ θ1.
The circular arc BC is derived as

cBC θð Þ ¼ −rsin θ1 þ θð Þ− RT þ d−rð Þcosφ
rcos θ1 þ θð Þ þ RT þ d−rð Þsinφ

� �T
ð25Þ

where 00 ≤ θ ≤ θ2.
For symmetry, arcs AB and BC are mirrored relative to

bisector QP, and the circular arc CD is expressed as

cCD θð Þ ¼ cBC θð Þ cos2φ−sin2φ −sin2φ
−sin2φ sin2φ−cos2φ

� �
ð26Þ

where 00 ≤ θ ≤ θ2.

Table 1 Corner types and treatments

Type Sharp corner Radius compensated Arcs generation Final result
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The circular arc DE is expressed as

cDE θð Þ ¼ cAB θð Þ cos2φ−sin2φ −sin2φ
−sin2φ sin2φ−cos2φ

� �
ð27Þ

where 00 ≤ θ ≤ θ1.

3 Application of the proposed algorithm

3.1 Corner classification and treatment

To make the wheel center trajectory continuous, generated arc
splines should be properly inserted into the broken zones
shown in Fig. 1. A sharp corner formed by two straight lines
can be defined as a line-line type and was used as an example
in Section 2 to show how arc splines are generated and
inserted, but a circular arc or parametric curve is also usually
used to form a corner.

As shown in the second row of Table 1, the corner is

formed by a straight line QQ1 and a circular arc QN of which

Q is the starting point and N is the end point. In the last row of

Table 1, the corner is formed by a straight line QQ1 and a
curve QN of which Q is the starting point and N is the end
point. To use the proposed algorithm, an auxiliary linear seg-

ment (red dashed line)QQ2 is created and tangent to the arc or
curve at point Q.

Suppose that the circular arc center is Qc, we have

Q2 ¼ QþMc
Q−Qcð ÞT
Q−Qck k Le ð28Þ

where Le is the length of the auxiliary line. IfON is clockwise,

Mc ¼ 0 1
−1 0

� �
; otherwise, Mc ¼ 0 −1

1 0

� �
.

Suppose that curve ~QN is defined as c(u), 0 ≤ u ≤ 1, we
have

Q2 ¼ Q−
Le

c0 0ð Þk kc
0
0ð Þ ð29Þ

Fig. 8 Experimental setup. a Glass grinding center. b Man-machine interface

Input: positions, maximum feedrate vmax, tool radius RT, et al. 

Detect sharp corners and compute corner angles 2φ. 

Compute θ1. 

Compute r, R and vtrans. 

Contour is updated with arc splines insertion. 

Radius compensated trajectories generation. 

Corner type transformation: if it is line-line type, program continues directly; if not, corner 

is transformed. 

Fig. 7 Flow chart of the
proposed algorithm
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Then, with the straight lines QQ2 and QQ1, the corners of
other type are transformed into the line-line type, and the
proposed algorithm can be used directly to generate transition-
al arc splines. The final results are shown in the last column of
Table 1.

3.2 Application steps

The transformation makes the proposed algorithm suitable for
various corners. The steps for application are summarized in
Fig. 7 and depicted briefly as follows:

Step 1

Data input Contour is represented by G-codes where the data
types, positions, maximum velocities, and other useful infor-
mation are stored. The necessary information should be ex-
tracted and stored first in a struct defined as follows:

typedef struct{
double xpositon;
double ypositon;
double velocity;
int type;
……
}INPUTPOINT;
Then, every INPUTPOINT struct object is added to an ar-

ray, which is defined as follows:
typedef CArray<INPUTPOINT, INPUTPOINT>

CInputPointArray;
Other necessary machining parameters, such as tool radius

RT, normal grinding depth dc, and spindle speed S, should also
be input before machining.

Step 2

Contour update The data segments in the array
CInputPointArray are checked one by one to detect sharp cor-
ners and compute corner angles. According to the detected

A͡BA͡B B͡CB͡C D͡E C͡DC͡D D͡E

a b

Fig. 10 The distance change profiles between the wheel center and corner points when diamond wheel traverses corners 2 and 4. aCorner 2. bCorner 4
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corner type, all corners are transformed into line-line corner
type. After the contour is radius compensated and broken zones
are confirmed, the contour is updated with arc spline insertions.

4 Experimental results

The experiment is carried out on a three-axis NC glass grind-
ing center shown in Fig. 8a. The X, Y, and Z axes travel to-
gether to span a 1900 mm × 3100 mm × 240 mm 3-D space.
The experimental parameters are set as follows: spindle speed
S = 6000 r/min, acceleration values of the X and Y axes ax =-
a
y
= 50mm/s2, glass thickness Tg = 12mm,maximum feedrate

vmax = 3600 mm/min, wheel radius RT = 75 mm, and normal
grinding depth dc = 0.13 mm.

As shown in Fig. 8b, the man-machine interface is coded
with Visual C++ 6.0 and integrated with the proposed algo-
rithm. When required trajectories (represented by G-codes)
are loaded into the PC, the steps shown in Fig. 7 are imple-
mented to update the contour which will be downloaded to the
motion controller to achieve processing.

As shown in Fig. 9, a piece of curtain wall glass with six
sharp corners is ground. The original contour is shown with
blue lines, and the radius-compensated trajectories are shown
with red lines. Inserted transitional arc splines at each corner
are shown with different colors. The machining G-codes with
inserted arc splines (enclosed in the red dashed rectangles) are
also listed on the right of Fig. 9.

The corners are numbered sequentially and calculation re-
sults are expressed as follows:

1. Half angle φ = 29.3° at corners 1, 3, 4, and 6; φ = 58.6° at
corners 2 and 5.

2. Let Le = 10 mm, and corners of other type are all trans-
formed into line-line type with Eq. (28).

3. With Eq. (21), θ1 = 17.39° at corners 1, 3, 4, and 6;
θ1 = 11.20° at corners 2 and 5.

4. With Eqs. (13), (14), and (23), R = 76.616 mm,
r = 74.562 mm, and vtrans = 1160 mm/min at corners 1,
3, 4, and 6; R = 77.841 mm, r = 73.553 mm, and v-
trans = 2300 mm/min at corners 2 and 5.

5. With Eqs. (24), (25), (26), and (27), transitional arc
splines for each corner are generated.

Figure 10a, b shows the distance change profiles between
the wheel center and corner points when the diamond wheel
traverses corners 2 and 4.When the wheel center moves along

arcs AB and BC at the corners, the increasing distance indi-
cates the gradually decreasing grinding depth. When the
wheel center moves along arcs CD and DE, the decreasing
distance indicates the gradually increasing grinding depth.
The distance change profiles at two different corners are both
in accordance with the design requirements.

Figure 11 shows the kinematic profiles of the machining
process. When wheel traverses a sharp corner with the pro-
posed algorithm, there is no an abnormal jerk value, and the
wheel movement is smooth without any harmful mechanical
vibration.

Figure 12 shows the final ground glass. The proposed al-
gorithm can achieve satisfactory shape accuracy without any
corner breakage, rounding, or flattening. The corner angle
accuracy of ±0.1° fully meets the factory requirements.

5 Conclusions

A transitional trajectory planning algorithm based on arc
splines is proposed in this article. The algorithm takes grind-
ing depth into consideration when the wheel traverses a sharp
corner with arc splines. A four-portion trajectory scheduling
algorithmwith three-phase acc/dec arrangements is adopted to
grind sharp glass corners.

The techniques now available cannot be used directly in
glass edge grinding. Compared with previous related works,
the proposed algorithm has the following advantages:

1. Taking into consideration the grinding depth control at a
sharp corner, a four-arc trajectory is designed to meet the
transitional requirements.

2. Four arcs are tangent to each other and guarantee the
whole trajectory G1 continuity. Meanwhile, a transitional
feedrate constraint is introduced to guarantee smooth mo-
tion. Arcs can be easily implemented by the control sys-
tem unlike parametric curves.

58.6

117.2

Fig. 12 Final ground glass

�Fig. 11 The kinematic profiles. a Displacement profile of the X axis. b
Displacement profile of the Y axis. c Velocity profile of the X axis. d
Velocity profile of the Y axis. e Acceleration profile of the X axis. f
Acceleration profile of the Y axis. g Jerk profile of the X axis. h Jerk
profile of the Y axis
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3. Corner types are analyzed and a transformation algorithm
makes the proposed algorithm flexible and suitable for
machining various glass corners.

The experimental results show that the transition scheme
proposed in this paper can achieve satisfactory shape accuracy
without any corner breakage, rounding, or flattening.
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